Topological Defects

Problem Sheet 7

4 December 2023

1. Gravitational Field of a String

On a previous problem sheet, we already analyzed the gravitational field of a domain wall. In a similar manner, we want to analyze the gravitational field of a string.

1. (optional) Show that in the weak-field approximation the Einstein equation becomes

$$
\begin{equation*}
\square h_{\mu \nu}=-16 \pi G\left(T_{\mu \nu}-\frac{1}{2} T \eta_{\mu \nu}\right) . \tag{1}
\end{equation*}
$$

2. Take the theory

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{*}\left(D^{\mu} \phi\right)-V(\phi) \tag{2}
\end{equation*}
$$

and consider a string located along the z-axis. Calculate the components T_{00}, $T_{33}, T_{0 i}$, and $T_{3 i}$.
3. To calculate the other components, we will use the approximation

$$
\begin{equation*}
\tilde{T}_{\mu \nu}(x, y, z)=\delta(x) \delta(y) \int T_{\mu \nu}(x, y) \mathrm{d} x \mathrm{~d} y \tag{3}
\end{equation*}
$$

Show that the energy-momentum tensor takes the form

$$
\begin{equation*}
\tilde{T}_{\mu \nu}(x, y, z)=\varepsilon(x, y, z) \delta(x) \delta(y) \operatorname{diag}(1,0,0,-1) \tag{4}
\end{equation*}
$$

where $\varepsilon(x, y, z)$ is the energy density of the string.
4. Insert this into equation (1) and find the solution for $h_{\mu \nu}$. You will find that the non-zero components are h_{11} and h_{22}.
Hint : Solve the equation in cylindrical coordinates.
The metric can be written as

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} t^{2}-\mathrm{d} z^{2}-\mathrm{d} r^{\prime 2}-r^{\prime 2} \mathrm{~d} \varphi^{\prime 2}, \tag{5}
\end{equation*}
$$

where r^{\prime} and ϕ^{\prime} depend on r and ϕ. This means that in the $\left(t, z, r^{\prime}, \varphi^{\prime}\right)$ coordinates, the trajectories are straight lines, but translated into the observable coordinates (t, z, r, φ) the trajectories are curved.
5. Make a sketch of a light beam that passes by the string.

2. Non-Abelian Gauge Theory

Let us consider the following Lagrangian

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+\operatorname{Tr}\left(\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)\right) \tag{6}
\end{equation*}
$$

The scalar field ϕ is given in the adjoint representation of $S U(N)$ with $\phi=\phi^{a} T^{a}$, where T^{a} are the generators of the $S U(N)$ group normalized by $\operatorname{Tr} T^{a} T^{b}=\delta^{a b} / 2$. Remember that the generators satisfy the algebra

$$
\begin{equation*}
\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} \tag{7}
\end{equation*}
$$

The covariant derivative is given by

$$
\begin{equation*}
D_{\mu} \phi=\partial_{\mu} \phi-i g\left[W_{\mu}, \phi\right], \tag{8}
\end{equation*}
$$

and the field strength tensor is

$$
\begin{equation*}
G_{\mu \nu}=\partial_{\mu} W_{\nu}-\partial_{\nu} W_{\mu}-i g\left[W_{\mu}, W_{\nu}\right] \tag{9}
\end{equation*}
$$

with $W_{\mu}=W_{\mu}^{a} T^{a}$.

1. The gauge transformation of ϕ is given by

$$
\begin{equation*}
\phi \mapsto U \phi U^{\dagger}, \tag{10}
\end{equation*}
$$

with $U=e^{i T^{a} \varphi^{a}(x)}$. How does the gauge field W_{μ} transform, if the covariant derivative transforms in the same way as the field ϕ ?
2. Show that the Lagrangian is invariant under $S U(N)$ gauge transformation.
3. How does the infinitesimal gauge transformation look like for the components ϕ^{a} and W_{μ}^{a} ?
4. Find the equations of motion for both, the gauge field and the scalar field.
5. If φ^{a} is a constant, what is the conserved Noether current?
6. Prove the Bianchi identity

$$
\begin{equation*}
\varepsilon^{\mu \nu \alpha \beta} D_{\nu} G_{\alpha \beta}=0 \tag{11}
\end{equation*}
$$

Hint : Use the Jacobi identity.
7. Assuming W_{μ} is a pure gauge, i.e. $W_{\mu}=\frac{i}{g} U \partial_{\mu} U^{\dagger}$, show that $\operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)=0$.

