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Problem 1 Flux insertion – counts as two [a-d / e-g]

In this problem we consider non-interacting spin-less particles on a ring (or a torus) and couple
them to a U(1) gauge flux through the ring (or through one cycle of the torus).

(1.a) We start by considering a one-dimensional lattice on a ring of length L. The simplest way to
introduce a total U(1) gauge flux Φ is by the Hamiltonian:

Ĥ(Φ) = −t
L−1∑
j=1

(
ĉ†j+1ĉj + h.c.

)
− t

(
eiΦĉ†1ĉL + e−iΦĉ†Lĉ1

)
. (1)

For which values of Φ is this Hamiltonian translationally invariant? How are eigenstates at
Φ = 0 and Φ = 2π related to one another?

(1.b) Find a unitary gauge transformation

Û = exp

[
−i

L∑
j=1

φjn̂j

]
(2)

such that
H̃(Φ) = Û †Ĥ(Φ)Û (3)

is translationally invariant (make an appropriate choice of φj and calculate H̃(Φ) explicitly!).

How are eigenstates at Φ = 0 and Φ = 2π related?

(1.c) Using Fourier transformations, derive all eigenenergies En(Φ) of H̃(Φ) for general values of
Φ. Show that the corresponding eigenstates are plane waves with momentum

kn =
2π

L
n, n = 1...L, (4)

and show that eigenenergies are related as:

En(Φ + 2π) = En+1(Φ). (5)

(1.d) Now consider an initial eigenstate |Ψ0(Φ)⟩ of H̃(Φ) for Φ = 0 with N particles with
momenta knm , where m = 1...N labels the particles and nm ∈ {1, 2, ..., L}. Express the
total momentum Px of this state in terms of the momenta knm .
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(1.e) Next, assume that Φ is adiabatically increased from Φ = 0 to Φ = 2π, such that the quantum
numbers knm cannot change. Accordingly, Px cannot change. Show that the new eigenstate
|Ψ1⟩ = |Ψ0(Φ = 2π)⟩ of H̃(Φ = 2π) is related to |Ψ0(Φ = 0)⟩ by a gauge transformation V̂ :

|Ψ1⟩ = V̂ †|Ψ0(Φ = 0)⟩, V̂ = exp

[
−i

L∑
j=1

ϑjn̂j

]
(6)

for appropriately chosen values of ϑj . Hint: Show that H̃(Φ = 2π) and H̃(Φ = 0) are related

by the gauge transformation V̂ .

(1.f) Show that |Ψ1⟩ is also an eigenstate of H̃(Φ = 0) but with momentum:

P ′
x = Px +

2π

L
N mod 2π. (7)

Hint: Use the relation from (1.d).

(1.g) Generalize your results from above for a higher-dimensional system on a Lx × Ly torus and
show that

P ′
x = Px +

2π

Lx

N mod 2π (8)

when flux Φx is adiabatically introduced through the x-cycle of the torus. Here N still denotes
the total particle number in the higher-dimensional system.

Problem 2 Effective field theory of fractional quantum Hall systems

In this problem, we explore topological aspects of fractional quantum systems using an effective
field theory formalism. The field theory of a fractional quantum Hall system is described by the
Chern-Simons Lagrangian

L =
1

4π
ϵµνλ aTµK∂νaλ − e

4π
ϵµνλ Aµt

T∂νaλ . (9)

In Eq. 9, aµ = (a1,µ, · · · , an,µ)T is the n-component auxiliary compact U(1) gauge field, K is a
symmetric n−by−n integer matrix, t is a charge vector, and e is the charge of the external gauge
field Aµ.

(2.a) For the classical Lagrangian L, derive the Euler-Lagrange equations. Show that the Aµ

current operator Jµ = e
2π

∑
i ϵ

µνλ ∂νai,λ is quantized according to Jµ = C e2

2π
ϵµνλ ∂νAλ, where

the many-body Chern number is given by

C =
∑
i,j

ti
(
K−1

)
ij
. (10)

(2.b) Here take n = 1. Integrate out the auxiliary U(1) gauge field and show that the effective
Lagrangian for Aµ is of the form of a Chern-Simons gauge field.

(2.c) Show that the Chern-Simons term is gauge invariant (up to surface terms).
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