

Sheet 11:

Hand-out: Tuesday, Jan. 16, 2024; Solutions: Tuesday, Jan. 23, 2024

Problem 1 Kondo model

Consider the Kondo Hamiltonian,

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{K}}=\int d^{3} \boldsymbol{k} \sum_{\sigma} \epsilon(k) \hat{c}_{\boldsymbol{k}, \sigma}^{\dagger} \hat{c}_{\boldsymbol{k}, \sigma}+J \hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{S}}_{e}(\mathbf{0}), \tag{1}
\end{equation*}
$$

with the band electron spin at the location $\boldsymbol{r}=\mathbf{0}$ of the Kondo spin $\hat{\boldsymbol{S}}$:

$$
\begin{equation*}
\hat{\boldsymbol{S}}_{e}(\mathbf{0})=(2 \pi)^{-3} \int d^{3} \boldsymbol{k} d^{3} \boldsymbol{k}^{\prime} \sum_{\alpha, \beta} \hat{c}_{\boldsymbol{k}, \alpha}^{\dagger} \frac{1}{2} \boldsymbol{\sigma}_{\alpha, \beta} \hat{c}_{\boldsymbol{k}^{\prime}, \beta} \tag{2}
\end{equation*}
$$

(1.a) By an expansion into plane waves, show that the Kondo problem reduces to a 1D Hamiltonian $\hat{\mathcal{H}}_{\mathrm{K}}^{1 D}$ which decouples from the rest of the system:

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{K}}=\hat{\mathcal{H}}_{\mathrm{K}}^{1 D}+\hat{\mathcal{H}}_{\mathrm{K}}^{\prime} . \tag{3}
\end{equation*}
$$

Derive an expression for $\hat{\mathcal{H}}_{\mathrm{K}}^{\prime}$ and show that

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{K}}^{1 D}=\int_{0}^{\Lambda_{\mathrm{UV}}} d k \sum_{\sigma} \epsilon(k) \hat{s}_{k, \sigma}^{\dagger} \hat{s}_{k, \sigma}+J \hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{S}}_{e}(\mathbf{0}), \tag{4}
\end{equation*}
$$

where:

$$
\begin{equation*}
\hat{\boldsymbol{S}}_{e}(\mathbf{0})=\sum_{\alpha, \beta} \hat{s}_{\alpha}^{\dagger}(0) \frac{1}{2} \boldsymbol{\sigma}_{\alpha, \beta} \hat{s}_{\beta}(0), \quad \hat{s}_{\sigma}(0)=\frac{1}{\sqrt{2} \pi} \int_{0}^{\Lambda_{\mathrm{UV}}} d k \hat{s}_{k, \sigma} . \tag{5}
\end{equation*}
$$

(1.b) Linearizing the band Hamiltonian Eq. (4) around the Fermi energy, $\epsilon(k) \simeq \hbar k v_{\mathrm{F}}$, yields:

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{K}}^{1 D} \simeq \int_{-\infty}^{\infty} d k \sum_{\sigma} \hbar v_{\mathrm{F}} k \hat{s}_{k, \sigma}^{\dagger} \hat{s}_{k, \sigma}+J \hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{S}}_{e}(\mathbf{0}) . \tag{6}
\end{equation*}
$$

This Hamiltonian can be bosonized by defining spin- and charge- density operators,

$$
\begin{array}{ll}
\hat{\rho}(k)=\sum_{\sigma= \pm} \int_{-\infty}^{\infty} d p \hat{s}_{p+k, \sigma}^{\dagger} \hat{s}_{p, \sigma}, & \hat{\rho}(-k)=\hat{\rho}^{\dagger}(k) \\
\hat{\sigma}(k)=\sum_{\sigma= \pm} \int_{-\infty}^{\infty} d p \sigma \hat{s}_{p+k, \sigma}^{\dagger} \hat{s}_{p, \sigma}, & \hat{\sigma}(-k)=\hat{\sigma}^{\dagger}(k) . \tag{8}
\end{array}
$$

Calculate the commutation relations of $\hat{\rho}$ and $\hat{\sigma}$, assuming a band with all states at $p<0$ occupied. Show that they define bosonic operators, $\hat{\rho} \propto \hat{b}_{-k}$ and $\hat{\sigma}(k) \propto \hat{a}_{-k}$. For the new bosonic operators we will show in the tutorial that:

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{K}}^{1 D}=\hbar v_{\mathrm{F}} \int_{0}^{\infty} d k k\left(\hat{a}_{k}^{\dagger} \hat{a}_{k}+\hat{b}_{k}^{\dagger} \hat{b}_{k}\right)+J \hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{S}}_{e}(0) . \tag{9}
\end{equation*}
$$

(1.c) The Kondo interaction can be written as:

$$
\begin{equation*}
J \hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{S}}_{e}(0)=\frac{J_{z}}{2} \hat{S}^{z} \sum_{\sigma= \pm} \sigma \hat{s}_{\sigma}^{\dagger}(0) \hat{s}_{\sigma}(0)+J_{\perp}\left[\hat{S}^{+} \hat{s}_{-}^{\dagger}(0) \hat{s}_{+}(0)+\text { h.c. }\right], \tag{10}
\end{equation*}
$$

with $J_{z}=J_{\perp}=J$. Express the J_{z}-term by the new bosonic operators \hat{a}_{k} and \hat{b}_{k}. As usual, $\hat{S}^{ \pm}=\hat{S}^{x} \pm i \hat{S}^{y}$.
(1.d) Show that the operators

$$
\begin{align*}
& \hat{\psi}_{\sigma}(x)=(2 \pi a)^{-1 / 2} \exp \left[\hat{j}_{\sigma}(x)\right], \quad \text { with } \tag{11}\\
& \hat{j}_{\sigma}(x)=\int_{0}^{\infty} d k e^{-a k / 2} C_{k}\left(\hat{b}_{k}+\sigma \hat{a}_{k}\right) e^{i \sigma k x}-\text { h.c. } \tag{12}
\end{align*}
$$

and an appropriately defined normalization constant $C_{k}=\alpha / \sqrt{k}$ (to be determined), obey fermionic anti-commutation relations for given spin σ :

$$
\begin{equation*}
\left\{\hat{\psi}_{\sigma}(x), \hat{\psi}_{\sigma}^{\dagger}\left(x^{\prime}\right)\right\}=\delta\left(x-x^{\prime}\right) \tag{13}
\end{equation*}
$$

In the above expression, a defines a short-distance cut-off which may be sent to $a \rightarrow 0$ in the end.
Hint: Show first that $\left[\hat{j}_{\sigma}(x), \hat{j}_{\sigma^{\prime}}(y)\right]=-i \pi \sigma \operatorname{sgn}(x-y) \delta_{\sigma, \sigma^{\prime}}$.
Note: To obtain full fermionic anti-commutations, also between different spins $\sigma \neq \sigma^{\prime}$, one needs to include additional zero-modes in the representation (11). For simplicity we discard them now.
(1.e) You may now identify the fermionic operators $\hat{s}_{\sigma}(0) \equiv \hat{\psi}_{\sigma}(0)$. Using this relation, express the J_{\perp}-part of the Kondo interaction in Eq. (10) by the bosonic fields \hat{a}_{k} and \hat{b}_{k}. Show that the interaction decouples from the \hat{b}_{k} operators - i.e. only the spin channel described by \hat{a}_{k} couples to the Kondo impurity.
Hint: The result is:

$$
\begin{equation*}
J_{\perp} \hat{S}^{+} \hat{s}_{-}^{\dagger}(0) \hat{s}_{+}(0)=\frac{J_{\perp}}{2 \pi a} \hat{S}^{+} e^{\hat{\xi}}, \quad \hat{\xi}=\int_{0}^{\infty} d k e^{-a k / 2} 2 C_{k}\left(\hat{a}_{k}-\hat{a}_{k}^{\dagger}\right) . \tag{14}
\end{equation*}
$$

(1.f) Show that the resulting Kondo Hamiltonian $\hat{\mathcal{H}}_{\mathrm{K}}^{a}$ for the interacting modes \hat{a}_{k} is equivalent to a spin-boson model, by applying the unitary transformation: $\hat{U}=\exp \left[\hat{S}^{z} \hat{\xi}\right]$, i.e. show that:

$$
\begin{equation*}
\hat{U}^{\dagger} \hat{\mathcal{H}}_{\mathrm{K}}^{a} \hat{U}=\text { spin-boson model. } \tag{15}
\end{equation*}
$$

Derive the resulting spin-boson Hamiltonian explicitly.

