LUDWIG-

Sheet 7:

Hand-out: Tuesday, Dec. 05, 2023; Solutions: Tuesday, Dec. 12, 2023

Problem 1 Topological charge of a Dirac cone
Consider the following Hamiltonian describing a Dirac cone:

$$
\begin{equation*}
\hat{\mathcal{H}}(\boldsymbol{k})=\boldsymbol{k} \cdot \boldsymbol{\sigma}, \tag{1}
\end{equation*}
$$

where $\boldsymbol{\sigma}$ is a vector of Pauli matrices. This two-band Hamiltonian is gapped everywhere except at $\boldsymbol{k}=0$, where the fully linear dispersion realizes a Dirac cone.
(1.a) Consider a loop $\mathcal{C}\left(k_{z}\right)$ in the parameter space, on the surface of a sphere or radius $k_{0}>0$, defined as follows:

$$
\begin{equation*}
\mathcal{C}\left(k_{z}\right)=\left\{\boldsymbol{k} \mid \boldsymbol{k} \cdot \boldsymbol{e}_{z}=k_{z}, \boldsymbol{k}^{2}=k_{0}\right\} . \tag{2}
\end{equation*}
$$

Show that the corresponding Berry phase vanishes when $k_{z}= \pm k_{0}$:

$$
\begin{equation*}
\varphi_{\mathrm{B}}\left(k_{z}= \pm k_{0}\right) \equiv 0 \bmod 2 \pi . \tag{3}
\end{equation*}
$$

(1.b) For $-k_{0}<k_{z}<k_{0}$, calculate the Berry phase φ_{B} corresponding to $\mathcal{C}\left(k_{z}\right)$. Hint: Write the eigenfunctions of $\hat{\mathcal{H}}(\boldsymbol{k})$ as a function of \boldsymbol{k} in cylindrical coordinates $\boldsymbol{k}=\left(k_{r} \cos (\phi), k_{r} \sin (\phi), k_{z}\right)$ with $k_{r}^{2}+k_{z}^{2}=k_{0}^{2}$.
(1.c) The family of curves $\mathcal{M}=\left\{\mathcal{C}\left(k_{z}\right) \mid k_{z}=-k_{0} \ldots k_{0}\right\}$ define a manifold in parameter-space: A sphere of radius k_{0} around the Dirac cone. Using your result in (2.b), show by an explicit calculation that the topological invariant $C_{\mathcal{M}}$ associated with \mathcal{M} is

$$
\begin{equation*}
C_{\mathcal{M}}=1 . \tag{4}
\end{equation*}
$$

I.e. the Dirac cone is associated with a unit topological charge $C_{\mathcal{M}}=1$.
(1.d) In (2.b) you will find in the equatorial plane that:

$$
\begin{equation*}
\varphi_{B}\left(k_{z}=0\right) \equiv \pm \pi \quad \bmod 2 \pi . \tag{5}
\end{equation*}
$$

Derive this result from symmetry considerations alone. Show that from inversion $\boldsymbol{k} \rightarrow-\boldsymbol{k}$ it follows that

$$
\begin{equation*}
\varphi_{\mathrm{B}}\left(-k_{z}\right) \equiv-\varphi_{\mathrm{B}}\left(k_{z}\right) \bmod 2 \pi, \tag{6}
\end{equation*}
$$

and combine this with $C_{\mathcal{M}}=1$ from (2.c).

Problem 2 Edge states in the non-interacting SSH model
Consider the non-interacting SSH dimer chain described by the Hamiltonian (L even):

$$
\begin{equation*}
\hat{H}=-t_{1} \sum_{j=1}^{L / 2}\left(\hat{a}_{j}^{\dagger} \hat{b}_{j}+\text { h.c. }\right)-t_{2} \sum_{j=1}^{L / 2-1}\left(\hat{a}_{j+1}^{\dagger} \hat{b}_{j}+\text { h.c. }\right) \tag{7}
\end{equation*}
$$

with open boundary conditions.
Remark: This problem closely follows [Delplace et al., PRB 84, 195452 (2011)].
(2.a) For periodic boundary conditions, the bulk wavefunctions are Bloch waves. Introduce

$$
\begin{equation*}
\hat{\Psi}_{k}=\left(\hat{\psi}_{A, k}, \hat{\psi}_{B, k}\right)^{T}=(L / 2)^{-1 / 2} \sum_{j=1}^{L / 2} e^{-i j k}\left(\hat{a}_{j}, \hat{b}_{j}\right)^{T} \tag{8}
\end{equation*}
$$

and show that that

$$
\begin{equation*}
\hat{H}=\sum_{k_{n}=n 2 \pi / M} \hat{\Psi}_{k}^{\dagger} \hat{\mathcal{H}}\left(k_{n}\right) \hat{\Psi}_{k}, \quad n=1, \ldots, L / 2 \tag{9}
\end{equation*}
$$

where the Bloch Hamiltonian is

$$
\begin{equation*}
\hat{\mathcal{H}}(k)=t_{2} \boldsymbol{g}(k) \cdot \hat{\boldsymbol{\sigma}}, \quad \boldsymbol{g}(k)=(\operatorname{Re} \rho(k), \operatorname{Im} \rho(k))^{T} \tag{10}
\end{equation*}
$$

where $\hat{\boldsymbol{\sigma}}=\left(\hat{\sigma}^{x}, \hat{\sigma}^{y}\right)$ and $\rho(k)=t_{1} / t_{2}+e^{-i k}$.
(2.b) You may write $\boldsymbol{g}(k)$ from (3.a) as:

$$
\begin{equation*}
\boldsymbol{g}(k)=|\rho(k)|(\cos \phi(k), \sin \phi(k))^{T}, \quad \cot \phi(k)=\frac{t_{1}}{t_{2} \sin k}+\cot k . \tag{11}
\end{equation*}
$$

Use this result to show that the cell-periodic Bloch functions are

$$
\begin{equation*}
\left|u_{k}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\left(e^{-i \phi(k)}, \pm 1\right)^{T} \tag{12}
\end{equation*}
$$

Further, show that the corresponding Zak phase is $\varphi_{\mathrm{Zak}}=0\left(\varphi_{\mathrm{Zak}}=\pi\right)$ for $t_{1}>t_{2}\left(t_{1}<t_{2}\right)$. Sketch the line parameterized by $\boldsymbol{g}(k)$ in the two-dimensional plane and show that its topology changes at $t_{1}=t_{2}$ - note that $\boldsymbol{g}(k)=0$ is special because it corresponds to a closing of the band gap.
(2.c) Now we consider open boundary conditions. The bulk wavefunctions $\left|v_{k}^{\mu}\right\rangle$ are standing waves ($k \geq 0$) and can be constructed as superpositions of $\left|u_{k}^{\mu}\right\rangle$ and $\left|u_{-k}^{\mu}\right\rangle$, with $\mu= \pm$ the band index. Explain why the following boundary conditions must be satisfied,

$$
\begin{equation*}
\left\langle j=0, B \mid v_{k}^{\mu}\right\rangle=0, \quad\left\langle j=L / 2+1, A \mid v_{k}^{\mu}\right\rangle=0, \tag{13}
\end{equation*}
$$

where $|j, \alpha\rangle$ denotes site $\alpha=A, B$ in the unit-cell at position $j=1 \ldots L / 2$.
(2.d) Using $\phi(-k)=-\phi(k)$, show that the bulk eigenfunctions $\left|v_{k}^{\mu}\right\rangle$ may be written as

$$
\begin{equation*}
\left|v_{k}^{\mu}\right\rangle=\frac{i}{\sqrt{L / 2}} \sum_{j=1}^{L / 2}[\sin (k j-\phi(k))|j, A\rangle+\mu \sin (k j)|j, B\rangle] \tag{14}
\end{equation*}
$$

and derive the quantization condition for $0<k<\pi$:

$$
\begin{equation*}
k\left(\frac{L}{2}+1\right)-\phi(k)=n \pi, \quad n \in \mathbb{Z} \tag{15}
\end{equation*}
$$

(2.e) Sketch the functions $\phi(k)$ and $k(L / 2+1)-n \pi$ - their intersections correspond to solutions of the quantization condition in (3.d). Use the different topology of $\boldsymbol{g}(k)$ [and, correspondingly, of $\phi(k)$] to show that the number of solutions depends on the ratio of t_{1} / t_{2}. Specifically, show that $L / 2$ solutions exist when $t_{1}>\lambda_{c} t_{2}$ and $L / 2-1$ solutions exist when $t_{1}<\lambda_{c} t_{2}$, where

$$
\begin{equation*}
\lambda_{c}=\left(\frac{t_{1}}{t_{2}}\right)_{c}=1-\frac{1}{L / 2+1} \rightarrow 1 \quad \text { for } L \rightarrow \infty \tag{16}
\end{equation*}
$$

I.e. a bulk state is missing in the case when the Zak phase is $\phi_{\text {Zak }}=\pi$.
(2.f) For $t_{1}<\lambda_{c} t_{2}$ [i.e. when the Zak phase is $\phi_{\mathrm{Zak}}=\pi$] one can similarly construct edge states. This is achieved by looking for solutions as in Eq. (14) but with a wavevector: $k=\pi+i \kappa$, where $1 / \kappa=\xi$ is the localization length at the edge. The solution (no derivation is necessary!) is given by:

$$
\begin{equation*}
\left|e_{\kappa}^{\mu}\right\rangle=\frac{1}{\sqrt{L / 2}} \sum_{j=1}^{L / 2}(-1)^{j+1}\left[a_{\kappa, j}^{\mu}|j, A\rangle+b_{\kappa, j}^{\mu}|j, B\rangle\right] \tag{17}
\end{equation*}
$$

with eigenenergies $\varepsilon_{\kappa}^{\mu}=\mu t_{2}|\rho(i \kappa)|$ where:

$$
\begin{equation*}
\binom{a_{\kappa, j}^{\mu}}{b_{\kappa, j}^{\mu}}=\binom{\sinh (\kappa(L / 2+1-j))}{\mu \sinh (\kappa j)} \tag{18}
\end{equation*}
$$

and κ satisfies the following quantization condition:

$$
\begin{equation*}
t_{1} \sinh (\kappa(L / 2+1))=t_{2} \sinh (\kappa L / 2) \tag{19}
\end{equation*}
$$

Use these results to show for large $L \gg 1$ that

$$
\begin{equation*}
t_{1} / t_{2} \simeq \exp (-\kappa) \tag{20}
\end{equation*}
$$

which leads to:

$$
\begin{equation*}
\varepsilon_{\kappa}^{\mu} \simeq \mu \exp (-\kappa L / 2) \tag{21}
\end{equation*}
$$

Discuss the physical meaning of these results!

