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Problem 1 Topological charge of a Dirac cone

Consider the following Hamiltonian describing a Dirac cone:

Ĥ(k) = k · σ, (1)

where σ is a vector of Pauli matrices. This two-band Hamiltonian is gapped everywhere except at
k = 0, where the fully linear dispersion realizes a Dirac cone.

(1.a) Consider a loop C(kz) in the parameter space, on the surface of a sphere or radius k0 > 0,
defined as follows:

C(kz) = {k|k · ez = kz,k
2 = k0}. (2)

Show that the corresponding Berry phase vanishes when kz = ±k0:

φB(kz = ±k0) ≡ 0 mod 2π. (3)

(1.b) For −k0 < kz < k0, calculate the Berry phase φB corresponding to C(kz). Hint: Write the ei-
genfunctions of Ĥ(k) as a function of k in cylindrical coordinates k = (kr cos(ϕ), kr sin(ϕ), kz)
with k2r + k2z = k20.

(1.c) The family of curves M = {C(kz)|kz = −k0...k0} define a manifold in parameter-space: A
sphere of radius k0 around the Dirac cone. Using your result in (2.b), show by an explicit
calculation that the topological invariant CM associated with M is

CM = 1. (4)

I.e. the Dirac cone is associated with a unit topological charge CM = 1.

(1.d) In (2.b) you will find in the equatorial plane that:

φB(kz = 0) ≡ ±π mod 2π. (5)

Derive this result from symmetry considerations alone. Show that from inversion k → −k it
follows that

φB(−kz) ≡ −φB(kz) mod 2π, (6)

and combine this with CM = 1 from (2.c).
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Problem 2 Edge states in the non-interacting SSH model

Consider the non-interacting SSH dimer chain described by the Hamiltonian (L even):

Ĥ = −t1
L/2∑
j=1

(
â†j b̂j + h.c.

)
− t2

L/2−1∑
j=1

(
â†j+1b̂j + h.c.

)
, (7)

with open boundary conditions.
Remark: This problem closely follows [Delplace et al., PRB 84, 195452 (2011)].

(2.a) For periodic boundary conditions, the bulk wavefunctions are Bloch waves. Introduce

Ψ̂k =
(
ψ̂A,k, ψ̂B,k

)T

= (L/2)−1/2

L/2∑
j=1

e−ijk
(
âj, b̂j

)T

(8)

and show that that

Ĥ =
∑

kn=n2π/M

Ψ̂†
kĤ(kn)Ψ̂k, n = 1, ..., L/2, (9)

where the Bloch Hamiltonian is

Ĥ(k) = t2 g(k) · σ̂, g(k) = (Reρ(k), Imρ(k))T , (10)

where σ̂ = (σ̂x, σ̂y) and ρ(k) = t1/t2 + e−ik.

(2.b) You may write g(k) from (3.a) as:

g(k) = |ρ(k)| (cosϕ(k), sinϕ(k))T , cotϕ(k) =
t1

t2 sin k
+ cot k. (11)

Use this result to show that the cell-periodic Bloch functions are

|u±k ⟩ =
1√
2

(
e−iϕ(k),±1

)T
. (12)

Further, show that the corresponding Zak phase is φZak = 0 (φZak = π) for t1 > t2 (t1 < t2).
Sketch the line parameterized by g(k) in the two-dimensional plane and show that its topology
changes at t1 = t2 – note that g(k) = 0 is special because it corresponds to a closing of the
band gap.

(2.c) Now we consider open boundary conditions. The bulk wavefunctions |vµk ⟩ are standing waves
(k ≥ 0) and can be constructed as superpositions of |uµk⟩ and |uµ−k⟩, with µ = ± the band
index. Explain why the following boundary conditions must be satisfied,

⟨j = 0, B|vµk ⟩ = 0, ⟨j = L/2 + 1, A|vµk ⟩ = 0, (13)

where |j, α⟩ denotes site α = A,B in the unit-cell at position j = 1...L/2.
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(2.d) Using ϕ(−k) = −ϕ(k), show that the bulk eigenfunctions |vµk ⟩ may be written as

|vµk ⟩ =
i√
L/2

L/2∑
j=1

[
sin (kj − ϕ(k)) |j, A⟩+ µ sin (kj) |j, B⟩

]
, (14)

and derive the quantization condition for 0 < k < π:

k

(
L

2
+ 1

)
− ϕ(k) = nπ, n ∈ Z. (15)

(2.e) Sketch the functions ϕ(k) and k(L/2+1)−nπ – their intersections correspond to solutions of
the quantization condition in (3.d). Use the different topology of g(k) [and, correspondingly,
of ϕ(k)] to show that the number of solutions depends on the ratio of t1/t2. Specifically,
show that L/2 solutions exist when t1 > λct2 and L/2− 1 solutions exist when t1 < λct2,
where

λc =

(
t1
t2

)
c

= 1− 1

L/2 + 1
→ 1 for L→ ∞. (16)

I.e. a bulk state is missing in the case when the Zak phase is ϕZak = π.

(2.f) For t1 < λct2 [i.e. when the Zak phase is ϕZak = π] one can similarly construct edge states.
This is achieved by looking for solutions as in Eq. (14) but with a wavevector: k = π + iκ,
where 1/κ = ξ is the localization length at the edge. The solution (no derivation is necessary!)
is given by:

|eµκ⟩ =
1√
L/2

L/2∑
j=1

(−1)j+1
[
aµκ,j|j, A⟩+ bµκ,j|j, B⟩

]
, (17)

with eigenenergies εµκ = µt2|ρ(iκ)| where:(
aµκ,j
bµκ,j

)
=

(
sinh

(
κ(L/2 + 1− j)

)
µ sinh (κj)

)
(18)

and κ satisfies the following quantization condition:

t1 sinh
(
κ(L/2 + 1)

)
= t2 sinh (κL/2) . (19)

Use these results to show for large L≫ 1 that

t1/t2 ≃ exp (−κ) , (20)

which leads to:
εµκ ≃ µ exp (−κL/2) . (21)

Discuss the physical meaning of these results!
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