

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/wise_23_24/TMP-TA4/index.html

Sheet 4:

Hand-out: Tuesday, Nov. 14, 2023; Solutions: Tuesday, Nov. 21, 2023

Problem 1 Hubbard-Stratonovich for anisotropic pairing

In the lecture, we have discussed the Hubbard-Stratonovich approach for isotropic s-wave pairing, where we have introduced the isotropic pairing field

$$\hat{A} = \sum_{\mathbf{k}} \hat{c}_{-\mathbf{k},\downarrow} \hat{c}_{\mathbf{k},\uparrow}.$$
(1)

By condensing the field $\Delta = \langle \hat{A} \rangle$, we have found the BCS mean-field solution – fluctuation of the order parameters can be included systematically.

Now, we consider a case of unconventional superconductivity with momentum-dependent, anisotropic pairing. In Problem 2, we find that such anisotropic pairing channels can arise in strongly-correlated electrons. Here, we start from the empirical Hamiltonian given by

$$\hat{H} = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} \hat{c}_{-\mathbf{k}'\downarrow} \hat{c}_{\mathbf{k}'\uparrow}$$
(2)

with a factorizable pairing potential $V_{\mathbf{k},\mathbf{k}'} = \frac{-g}{L^d} \gamma_{\mathbf{k}} \gamma_{\mathbf{k}'}$; $\epsilon(\mathbf{k})$ is the dispersion relation, L^d is the volume of the system in d dimensions, g_0 is the interaction strength.

- (1.a) Write down the Hamiltonian in terms of an anisotropic pairing field operator \hat{A} .
- (1.b) Perform a Hubbard-Stratonovich transformation by coupling the pairing field to a bosonic field Δ . Show that we obtain the same expression as for *s*-wave pairing but with momentum dependent field $\Delta \rightarrow \Delta_{\mathbf{k}} = \Delta \gamma_{\mathbf{k}}$.
- (1.c) Derive that gap equation for a general γ_k . Now, assume d = 2 and $\gamma_k = \cos(k_x) \cos(k_y)$. Sketch the pairing gap.

Problem 2 RPA derivation of d-wave pairing near a spin-density-wave instability

In this problem, we derive the effective electron interaction due to paramagnon exchange using RPA for the Fermi-Hubbard model. The effective interactions in the singlet and triplet channels, denoted by V_s and V_t are given in Fig. 1. The first set of diagrams for V_s describes electron-hole scattering, while the second set describes interaction mediated by even number of bubbles. In V_t , the diagrams include an odd number of bubbles.

Note: This exercise is based on Scalapino, et al., 1986, "D-wave pairing near a spin-density-wave instability". Physical Review B, 34(11), p.8190.

Abbildung 1: Diagrams included in the effective electron-electron interaction for the Hubbard model.

- (2.a) From the diagrams in Fig. 1, obtain expressions for $V_s(\boldsymbol{p}, \boldsymbol{p}')$ and $V_t(\boldsymbol{p}, \boldsymbol{p}')$ in terms of U and $\chi_0(\boldsymbol{q}, \omega = 0)$.
- (2.b) Show that a generic interaction $V(\mathbf{p}, \mathbf{p}') = V(p, p', \hat{\Omega}, \hat{\Omega}')$ over a spherically symmetric Fermi surface $(p = p' = p_F)$ can be decoupled into s, p, d, \cdots wave as

$$\frac{1}{\int d^2\Omega \, g_{\alpha}^2(\hat{\Omega})} \int d^2\Omega \int d^2\Omega' \, g_{\alpha}(\hat{\Omega}) V(p_F, p_F, \hat{\Omega}, \hat{\Omega}') g_{\alpha}(\hat{\Omega}') \tag{3}$$

where $g_{\alpha}(\hat{\Omega})$ is a suitable *l*-wave function defined on the unit sphere, for $l = s, p, d, \cdots$. For instance, some *d*-wave functions are $g_{x^2-y^2} = \cos(\Omega_x) - \cos(\Omega_y)$, $g_{xy} = \sin(\Omega_x) \sin(\Omega_y)$. Hint: do not take any integrals!

(2.c) What is the condition to have d-wave pairing in the $d_{x^2-y^2}$ channel?