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Problem 1 (8 points)

Simplify the following expressions as much as possible without using any representation
of the γ matrices. The Minkowski metric convention is ηµν = diag(1,−1,−1,−1). You may

use the definitions PL
R
=

1

2
(1∓ γ5) as well as the identities and relations you encountered

during the course.

a) tr[γµγνPLγµPRγ
ν ]

Solution [2 P]

tr[γµγνPLγµPRγ
ν ] = tr[γνγµγνγµPR] = −2tr[γµγµPR] = −8tr[PR] = −16

b) tr[(γµ)†γσγνPRγργ
5PLγ

νγµ]

Solution [2 P]

tr[(γµ)†γσγνPRγργ
5PLγ

νγµ] = tr[γµγ
0γµγ0γσγνγρPLγ

5PLγ
ν ] =

= tr[γµ(2η
µ0 − γµγ0)γ0γσγνγργ

5γνPR] = −tr[γµ(2η
µ0γ0 − γµ)γσγνγργ

νγ5PR] =

= −tr[(2− 4)γσ(2ηνρ − γργν)γ
νPR] = 2tr[γσ(2γρ − 4γρ)PR] =

= −4tr[γσγρ
1

2
(1 + γ5)] = −2tr[γσγρ] = −8ηρσ

c) tr[ηµνγ
ργσ]

Solution [2 P]

tr[ηµνγ
ργσ] = ηµνtr[γ

ργαηασ] = 4ηµνη
ραηασ = 4ηµνδ

ρ
σ

d) exp
[
i
π

2
γ5
]

Solution [2 P]

exp
[
i
π

2
γ5
]
= cos

(π
2

)
+ iγ5 sin

(π
2

)
= iγ5

Problem 2 (15 points)

Consider the following Lagrangian capturing the dynamics of a real scalar field ϕ in 4
space-time dimensions (we use units c = ℏ = 1)

L =
1

2
(∂µϕ)(∂

µϕ)− cϕ6 ,
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with c a constant. The signature of Minkowski metric is mostly minus, i.e. ηµν = diag(1,−1,−1,−1).
Derive the corresponding interaction-picture Hamiltonian in terms of creation and anni-
hilation operators.

Hint: The interaction-picture creation and annihilation operators α̂†
k and α̂k are related

to â†k and âk as

α̂†
k = â†ke

iωkt , α̂k = âke
−iωkt .

Solution [5 (free part)+10(interaction part) P]
The Hamiltonian for the ϕ6 theory given above can be found in a straightforward

manner by writing the field in terms of creation and annihilation operators. Schematically,
we find (box normalization, omitting δ-functions, and normal ordering)

H =
∑
k

∫
d3x⃗

[
ωkα̂

†
kα̂k + c

(
90α̂†

kα̂k + 60α̂†
kα̂

3
k + 6α̂†

kα̂
5
k + 90α̂†2

k α̂
2
k + 15α̂†2

k α̂
4
k

+ 60α̂†3
k α̂k + 20α̂†3

k α̂
3
k + 15α̂†4

k α̂
2
k + 6α̂†5

k α̂k

)]
.

Problem 3 (25 points)

Consider a theory given by the following Lagrangian density in 4 space-time dimensions
(we use units c = ℏ = 1)

L = Lφ + Lψ + LBµ + Lint ,

with

Lφ =
1

2
(∂µφ)(∂

µφ)− 1

2
M2φ2 ,

Lψ = ψ̄(i/∂ −m)ψ ,

LBµ = −1

4
GµνG

µν +
µ2

2
BµB

µ ,

Lint = −λφψ̄ψ − g

2
φBµB

µ ,

where φ is a massive real scalar field of mass M , ψ is a spinor of mass m with ψ̄ ≡ ψ†γ0,
Bµ is a massive vector field of mass µ, with its field strength-tensor given by Gµν =
∂µBν − ∂νBµ, and λ and g are constants.

a) What are the mass dimensions of the following entities?

i) φ

ii) ψ

iii) M

iv) m

v) Bµ

vi) µ
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vii) λ

viii) g

Solution [1 P]

[S]
!
=M0 ⇔ [L] =M4

i) [φ] =M ii) [ψ] =M3/2 iii) [M ] =M iv) [m] =M

v) [Bµ] =M vi) [µ] =M vii) [λ] =M0 viii) [g] =M

b) Find the equations of motion.

Solution [3 P]

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0 ⇔ (□+M2)φ+ λψ̄ψ +
g

2
BµB

µ = 0

∂µ
∂L

∂(∂µψ)
− ∂L
∂ψ

= 0 ⇔ i∂µψ̄γ
µ +mψ̄ + λφψ̄ = 0

∂µ
∂L

∂(∂µψ̄)
− ∂L
∂ψ̄

= 0 ⇔ iγµ∂µψ −mψ − λφψ = 0

∂ν
∂L

∂(∂νBµ)
− ∂L
∂Bµ

= 0 ⇔ ∂νG
νµ + µ2Bµ − gφBµ = 0

c) State the Feynman rules for all of the propagators and vertices of this theory. No
derivation is necessary.

Solution [5 P]

Propagators:

φ
=

i

p2 −M2 + iε

ψ
=

i

/p−m+ iε

B =
−iηµν

p2 − µ2 + iε

Vertices:

= −iλ

µ

ν

= −igηµν
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d) Consider the process BB → ψψ̄. Draw and label the Feynman diagram(s) contribut-
ing to this process to leading order in λ and g.

Solution [1 P]

µ

ν

ψ

ψ̄

p1

p2

p1 + p2

φ

p3

p4

e) Under what conditions is the above process kinematically allowed?

Solution [1 P]

2µ > 2m ⇔ µ > m

f) How many physical polarizations does the massive vector boson Bµ have? Explain.

Solution [1 P]

3 physical polarizations; a massive vector boson in 4 space-time dimensions has 3
degrees of freedom.

g) Derive the spin-averaged amplitude squared for the above process in terms of the
Mandelstam variables.

Hint: Take the polarization vectors ε
(i)
µ to be real and use the fact that the sum

over the physical polarization states of a spin-1 particle of mass µ ̸= 0 is
∑
i

ε
(i)
µ ε

(i)
ν =

−ηµν +
kµkν
µ2

.

Solution [6 P]

For simplicity we abbreviate:

ui ≡ u(pi, si), vi ≡ v(pi, si) and ε
µ(p1, i1) ≡ εµ1 , ε

ν(p2, i2) ≡ εν2.

Below we will use
∑
si

uiūi = /pi+m and
∑
si

viv̄i = /pi−m, as well as the Mandelstam

variable s = (p1 + p2)
2 = (p3 + p4)

2.

iM = εµ1(−igηµν)εν2
i

s−M2
ū3(−iλ)v4

⇔ M = − gλ

s−M2
εµ1ε

ν
2ηµν ū3v4 ⇒ M† = − gλ

s−M2
ερ1ε

σ
2ηρσv̄4u3

⇒ |M|2 = 1

9

∑
i1,i2,s3,s4

(
gλ

s−M2

)2

εµ1ε
ν
2ηµνε

ρ
1ε
σ
2ηρσū3v4v̄4u3 =

=

(
gλ

3(s−M2)

)2(
−ηµρ + pµ1p

ρ
1

µ2

)
ηµν

(
−ηνσ + pν2p

σ
2

µ2

)
ηρσtr[(/p3 +m)(/p4 −m)] =

=

(
gλ

3(s−M2)

)2(
−ηµρ + pµ1p

ρ
1

µ2

)(
−ηµρ +

p2,µp2,ρ
µ2

)
4(p3 · p4 −m2) =

=

(
2gλ

3(s−M2)

)2

(p3 · p4 −m2)

(
4− p22

µ2
− p21
µ2

+
(p1 · p2)2

µ4

)
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Expressing p1 · p2 and p3 · p4 in terms of the Mandelstam variable s

p1 · p2 =
1

2
(s− p21 − p22) =

s

2
− µ2 , p3 · p4 =

1

2
(s− p23 − p24) =

s

2
−m2 ,

we obtain:

|M|2 =
(

2gλ

3(s−M2)

)2 (s
2
− 2m2

)(
2 +

( s
2
− µ2)2

µ4

)
h) Calculate the differential cross section of the process. Use the following general

expression for the differential cross section of a 2-to-2 scattering process AB → CD
in the center-of-mass (CM) frame:(

dσ

dΩ

)
CM

=
1

2EA2EB|v⃗A − v⃗B|
|p⃗C |

(2π)24ECM

|M(pA, pB → pC , pD)|2 ,

where EA, EB and ECM are the energies of A, B and the total initial energy, re-

spectively. Also, v⃗X =
p⃗X
EX

for X = A,B. Finally, |M(pA, pB → pC , pD)|2 is the

spin-averaged amplitude squared you found in g).

Solution [5 P]

Let E =
ECM

2
=

√
s

2
In the CM frame let

pA = p1 = (E, 0, 0, |p⃗1|)
pB = p2 = (E, 0, 0,−|p⃗1|)
pC = p3 = (E, |p⃗3|sθ, 0, |p⃗3|cθ)
pD = p4 = (E,−|p⃗3|sθ, 0,−|p⃗3|cθ)

with |p⃗1| =
√
E2 − µ2 and |p⃗3| =

√
E2 −m2.

(
dσ

dΩ

)
CM

=
1

4E22
√
E2 − µ2/E

·
√
E2 −m2

(2π)24 · 2E
· |M|2 =

=

√
E2 −m2

E2 − µ2

|M|2
43(2π)2E2

=

√
s/4−m2

s/4− µ2

|M|2
(8π)2s

i) Calculate the total cross section σ =
1

N

∫ (
dσ

dΩ

)
CM

dΩ. What is the normalization

factor N? Explain briefly.

Solution [2 P]

N = 1 as the particles in the final state are not identical.

σ =

∫ (
dσ

dΩ

)
CM

dΩ =

2π∫
0

π∫
0

(
dσ

dΩ

)
CM

sθ dθ dϕ = 4π

(
dσ

dΩ

)
CM

=

√
s/4−m2

s/4− µ2

|M|2
16πs
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Problem 4 (15 points)

Consider the following action of a massless scalar field in d > 2 space-time dimensions

S =

∫
ddx

[
1

2
(∂µφ)(∂

µφ)− λφ
2d
d−2

]
,

with λ a real constant. The signature of Minkowski metric is mostly minus, i.e. ηµν =
diag(1,−1,−1, . . .).

a) What is the mass dimension of φ?

Solution [1 P]

[S]
!
=M0 ⇔ [L] =Md ⇒ [φ] =M

d
2
−1

b) Find the equations of motion.

Solution [2 P]

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0 ⇔ □φ+ λ
2d

d− 2
φ

d+2
d−2 = 0

c) Consider the following transformation

φ(x) → φ′(x) = α∆φ(αx) .

Determine ∆ such that the action be invariant under this. What do you observe?

Solution [3 P]

S → S ′ =

∫
ddx

[
1

2

(
∂

∂xµ
φ′(x)

)2

− λφ′ 2d
d−2

]
=

=

∫
ddx

[
1

2
α2(∆+1)

(
∂

∂(αxµ)
φ(αx)

)2

− λα
2d∆
d−2φ(αx)

2d
d−2

]
y≡αx
=

=

∫
ddy

[
1

2
α2(∆+1)−d (∂µφ(y))

2 − λα
2d∆
d−2

−dφ(y)
2d
d−2

]
!
= S

⇔

2(∆ + 1)− d = 0
2d∆

d− 2
− d = 0

⇔ ∆ =
d

2
− 1

∆ is d-dependent. Invariance of kinetic and potential terms independently of each
other gives ∆ = d

2
− 1.

d) Find the corresponding Noether current. Show that it is conserved on the equations
of motion.

Solution [9 P]
Let α = 1 + ε, ε≪ 1
Then

φ′(x) = (1 + ε)∆φ ((1 + ε)x) =

=
(
1 + ε∆+O(ε2)

) (
φ(x) + εxµ∂µφ(x) +O(ε2)

)
=

= φ(x) + εxµ∂µφ(x) + ε∆φ(x) +O(ε2)
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⇒ δφ = φ′(x)− φ(x) = ε (xµ∂µφ(x) + ∆φ(x)) ≡ εQ[φ]
From Noether’s theorem:

jµ =

(
∂L

∂(∂µφ)

)
Q[φ]− xµL =

= (∂µφ)

(
xν∂νφ+ (

d

2
− 1)φ

)
− xµ

1

2
(∂νφ)(∂

νφ) + xµλφ
2d
d−2

∂µj
µ = (□φ)

(
xν∂νφ+ (

d

2
− 1)φ

)
+ (∂µφ)

(
δνµ∂νφ+ xν∂µ∂νφ+ (

d

2
− 1)∂µφ

)
− d

2
(∂νφ)(∂

νφ)− xµ(∂µ∂νφ)(∂
νφ) + dλφ

2d
d−2 + xµλ

2d

d− 2
φ

d+2
d−2 (∂µφ) =

= (□φ)

(
xν∂νφ+ (

d

2
− 1)φ

)
+

(
xν∂νφ+ (

d

2
− 1)φ

)
λ

2d

d− 2
φ

d+2
d−2 =

= Q[φ]

(
□φ+ λ

2d

d− 2
φ

d+2
d−2

)
︸ ︷︷ ︸

=0 by EOM

= 0 ✓

Problem 5 (25 points)

a) A Dirac spinor transforms under Lorentz transformation as ψ(x) 7→ ψ′(x′) =
S(Λ)ψ(x). Using the Lorentz invariance of the Dirac equation, show that

S(Λ) = exp

(
− i

4
ωµνσ

µν

)
.

Under infinitesimal Lorentz transformation the spacetime coordinates transform as

xµ 7→ x′µ = Λµνx
ν = (δµν + ωµν )x

ν .

Recall that σµν is defined by σµν = i
2
[γµ, γν ].

Hint 1: Note that ωµν is anti-symmetric.
Hint 2: You will need to prove

[
γλ, σµν

]
= 2i

[
ηλµγν − ηλνγµ

]
.

Solution [5 P]

Let us start with the proof of Hint 2. Using the identity [A,BC] = {A,B}C −
B{A,C} and the anti-commutation relation for the gamma matrices gives:

[γλ, σµν ] =
i

2
[γλ, γµγν − γνγµ]

=
i

2

(
{γλ, γµ}γν − γµ{γλ, γν} − {γλ, γν}γµ + γν{γλ, γµ}

)
= 2i

(
ηλµγν − ηλνγµ

)
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If we Lorentz transform the Dirac equation we obtain(
iγµ

∂

∂x′µ
−m

)
ψ′(x′) = 0(

iγµΛ ν
µ

∂

∂xν
−m

)
S(Λ)ψ(x) = 0(

iS−1(Λ)γµS(Λ)Λ ν
µ

∂

∂xν
−m

)
ψ(x) = 0

where in the last line we multiplied from left with S−1(Λ). To retain the original
form of the Dirac equation, we should have

S−1(Λ)γµS(Λ) = γν(Λ−1) µ
ν (1)

For infinitesimal Lorentz transformations we have

γν(Λ−1) µ
ν = γν(δ µ

ν − ω µ
ν )

= γµ − 1

2
(γλω µ

λ − γνωµν )

= γµ − 1

2
ωλν(γ

ληνµ − γνηλµ)

= γµ +
i

4
ωλν [σ

λν , γµ] (2)

Note that in the last step we used the hint. In the infinitesimal case, S(Λ) can be
written as

S(Λ) = 1− ωλν
∂S(Λ)

∂Λµν

∣∣∣∣
Λµ

ν

= δµν

≡ 1− ωλνG
λν

Inserting this into equation (1) gives up to the lowest order in ω

S−1(Λ)γµS(Λ) = γµ + ωλν [G
λν , γµ]

Comparing with (2) we can identify Gλν = i
4
σλν . Therefore we obtain

S(Λ) = 1− i

4
ωµνσ

µν (3)

for infinitesimal transformations and for finite transformation we get finally

S(Λ) = e−
i
4
ωµνσµν

(4)

b) Since the Dirac Lagrangian

L = ψ̄ (iγµ∂µ −m)ψ ,

is Lorentz invariant, there is a corresponding conserved Noether current. Using
Noether’s theorem show that the current can be written as

Jλ = AµνJ
λ,µν ,
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where

Jλ,µν = iψ̄γλ
(
− i

4
σµν + xµ∂ν

)
ψ ,

and Aµν is an arbitrary anti-symmetric tensor.

Solution [3 P]

The infinitesimal transformation for ψ is

δψ(x) = ψ′(x)− ψ(x)

= ψ′(x′ − δx)− ψ(x)

= ψ′(x′)− (∂µψ
′(x′))δxµ − ψ(x)

With δxµ = ωµνx
ν and ψ′(x′) − ψ(x) = − i

4
ωµνσ

µνψ(x) we obtain up to the first
order in ω the following

δψ(x) =

(
− i

4
ωµνσ

µν − ωµνx
ν∂µ

)
ψ(x)

Inserting this into the formula for the Noether current gives

Jλ =
∂L
∂∂λψ

δψ = iAµνψ̄γ
λ

(
− i

4
σµν + xµ∂ν

)
ψ

where Aµν = ωµν . Note that the Lagrangian is not completely invariant under
Lorentz transformations, because the transformation yields a total divergence which
gives to the current an additional term of the form Aλµx

µL. However, we can ignore
this term in this exercise, because it is not relevant for the conservation of the
current, because Aµν is anti-symmetric. (To obtain the full points, both currents are
correct)

c) Show that the current is conserved on the equations of motion.

Solution [3 P]

∂λJ
λ =Aµνi(∂λψ̄)γ

λ

(
− i

4
σµν + xµ∂ν

)
ψ

+ Aµνiψ̄γ
µ∂νψ

+ Aµνiψ̄

(
− i

4
σµν + xµ∂ν

)
γλ∂λψ

+ Aµνψ̄
1

4
[γλ, σµν ]∂λψ

Using the Dirac equation iγµ∂µψ = mψ and i(∂µψ̄)γ
µ = −mψ̄ one can show that

the first and the third terms cancel. With the hint of part a) we obtain

∂λJ
λ = Aµνiψ̄γ

µ∂νψ + Aµν

(
i

2
ψ̄γν∂µψ − i

2
ψ̄γµ∂νψ

)
= 0

where we used the anti-symmetry of Aµν .
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d) Show that
Jλk = εkijJ

λ,ij = ψ̄γλ (Sk + Lk)ψ ,

where
Sk =

σk
2
, Lk = −iεkijxi∂j .

Hint: Use the Dirac representation of the γ-matrices.

Solution [2 P]

Using the Dirac representation of the γ-matrices(
0 σj

−σj 0

)
it is straightforward to show

εkijσ
ij = 2σk

With that we have

Jλk = εkijJ
λ,ij = iψ̄γλ

(
− i

4
εkijσ

ij + εkijx
i∂j

)
ψ

= ψ̄γλ
(σk
2

− iεkijx
i∂j

)
= ψ̄γλ(Sk + Lk)ψ

e) The corresponding charge is given by

Qk =

∫
d3x ψ†(x⃗) (Sk + Lk)ψ(x⃗) .

Show that it satisfies the following equation

[Qi, Qj] = iεijkQk .

Solution [5 P]

One can show explicitly that [Si, Sj] = iεijkSk and [Li, Lj] = iεijkLk. However, to
get the full points it is not necessary to show this, because this is a well-known
relation in quantum mechanics. To show the commutation relation, we will need the
following commutator[

ψ†
a(x⃗)ψb(x⃗), ψ

†
c(y⃗)ψd(y⃗)

]
= ψ†

c(y⃗)
[
ψ†
a(x⃗)ψb(x⃗), ψd(y⃗)

]
+
[
ψ†
a(x⃗)ψb(x⃗), ψ

†
c(y⃗)

]
ψd(y⃗)

= −ψ†
c(y⃗){ψ†

a(x⃗), ψd(y⃗)}ψb(x⃗) + ψ†
a(x⃗){ψb(x⃗), ψ†

c(y⃗)}ψd(y⃗)
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where in the last equality we used that {ψ, ψ} = 0 = {ψ†, ψ†}. For the other non-
trivial anti-commutators we can use the Fourier-mode expansion

{ψa(x⃗), ψ†
b(y⃗)} =

∫
d3p

(2π)32ωp

∫
d3k

(2π)32ωk

∑
i

∑
j

{
(
uai (p⃗)ai(p⃗)e

−ipx + vai (p⃗)b
†
i (p⃗)e

ipx
)
,
(
ub†j (k⃗)a

†
j(k⃗)e

iky + vb†j (k⃗)bj(k⃗)e
−iky

)
}

=

∫
d3p

(2π)32ωp

∫
d3k

(2π)32ωk

∑
i

∑
j(

uai (p⃗)u
b†
j (k⃗)(2π)

32ωkδijδ
(3)(p⃗− k⃗)e−ipx+iky

+vai (p⃗)v
b†
j (k⃗)(2π)

32ωkδijδ
(3)(p⃗− k⃗)eipx−iky

)
=

∫
d3p

(2π)32ωp

∑
i

(
uai (p⃗)u

b†
i e

ip⃗·(x⃗−y⃗) + vai (p⃗)v
b†
i (p⃗)e

−ip⃗·(x⃗−y⃗)
)

In the first step we used the anti-commutation relations for the creation and an-
nihilation operators and in the second step we integrated over k and summed over
j. Using the relations for the spinors from problem sheet 7, the sum over i can be
evaluated

{ψa(x⃗), ψ†
b(y⃗)} =

∫
d3p

(2π)32ωp

(
((/p+m)γ0)abeip⃗·(x⃗−y⃗) + ((/p−m)γ0)abe−ip⃗·(x⃗−y⃗)

)
=

∫
d3p

(2π)32ωp

(
((γ0p0 − γipi +m)γ0)ab + ((γ0p0 + γipi −m)γ0)ab

)
eip⃗·(x⃗−y⃗)

=

∫
d3p

(2π)32ωp
2p0δabeip⃗·(x⃗−y⃗)

= δabδ(3)(x⃗− y⃗)

Plugging this relation into the equation for the commutator from above give the
following commutation relation[

ψ†
a(x⃗)ψb(x⃗), ψ

†
c(y⃗)ψd(y⃗)

]
= ψ†

a(x⃗)ψd(y⃗)δbcδ
(3)(x⃗− y⃗)− ψ†

c(y⃗)ψb(x⃗)δadδ
(3)(x⃗− y⃗)

(5)

Using this we can analyse the commutation relation for Qi:

[Qi, Qj] =

∫
d3x

∫
d3y

[
ψ†ab(x⃗)Dab

i ψ
b(x⃗), ψ†c(y⃗)Dcd

j ψ
d(y⃗)

]
=

∫
d3x

∫
d3y Dab

i D
cd
j

[
ψ†ab(x⃗)ψb(x⃗), ψ†c(y⃗)ψd(y⃗)

]
where Di = Si + Li. With (5) we get after integration

[Qi, Qj] =

∫
d3x Dab

i D
cd
j

(
ψ†
a(x⃗)ψd(x⃗)δbc − ψ†

c(x⃗)ψb(x⃗)δad
)

=

∫
d3x ψ†(x⃗)[Di, Dj]ψ(x⃗)

= iεijk

∫
d3x ψ†(x⃗)Dkψ(x⃗)

= iεijkQk
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f) Instead of a Dirac field, consider now a real scalar field ϕ with Lagrangian density

L =
1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2 .

Show that the current Jλk for ϕ is

Jλk = −i
(
∂λϕ

)
Lkϕ .

Solution [4 P]

The infinitesimal variation of the scalar field is

δϕ(x) = ϕ′(x)− ϕ(x)

= ϕ′(x′)− (∂µϕ
′(x′))δxµ − ϕ(x)

= −(∂µϕ(x)) ω
µ
νx

ν

where in the last equality we used the fact that for the scalar field ϕ′(x′) = ϕ(x).
Plugging this expression into the formula for the Noether current gives

Jλ = ∂λϕ ωµνx
µ∂νϕ

which leads to

Jλk = −i∂λϕLkϕ

Note again that we ignored the total divergence term for the same reason as in b).

g) Interpret the above results. Compare the current associated with the spinor field to
the corresponding scalar field current found in the previous point.

Solution [3 P]

The current/charge corresponds to angular momentum, which makes sense, because
the spatial components of the Lorentz transformation matrix Λ describe rotations.
Furthermore, we can observe that for the angular momentum of the Dirac field we
have an additional spin contribution which is not there for the scalar field. Also this
makes sense, because fermions described by ψ have spin1

2
and scalar bosons have

spin 0.

Problem 6 (15 points)

Consider the theory

L = −1

4
FµνF

µν + ψ̄ (iγµ∂µ −m)ψ + Ψ̄ (iγµ∂µ −M)Ψ + gψ̄γµΨA
µ .

Calculate the decay rate for the process Ψ → ψγ.
What are the conditions for this process to be kinematically allowed?

Solution [15 P]
Using the Feynman rules, the Feynman diagram for this decay and the corresponding

amplitude are, in a self-explanatory notation, [3pt]
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Ψ

ψ

ν

p1
p2

p3

= −igū2γµū′1ε3µ .

Then, we can calculate the squared amplitude and sum over the spins [5pt]

⇒ |M|2 = −g2
(
ū2γ

µu
′3
1 ε3µ

)
(ε3ν ū′1γ

νu2)

⇒ 1

2

∑
s1,s2,s3

|M|2 = 1

2

∑
s1,s2

u2ū2γ
µu

′3
1

∑
s3

ε3µε3ν ū′1γ
ν

= −1

2
g2Tr

{
( /p2 +m)γµ( /p1 +M)γν

}
= −1

2
g2 (−4p1 · p2 + 4mM)

= g2(M −m)2

Finally, we calculate the decay rate [6pt]

Γ =
1

ωp⃗1

∑
s1,s2

∫
d3p⃗2

(2π)32ωp⃗2

∫
d3p⃗3

(2π)32ωp⃗3
(2π)4δ(4) (p2 + p3 − p1)

= πg2
(m−M)2

M

∫
d3p⃗2

(2π)22ωp⃗2

1

2ωp⃗3
δ (ωp⃗2 + ωp⃗3 −M)

Working in the rest frame of Ψ and using the fact that d|p⃗||p⃗| = dωω, we are left with

⇒ Γ =
1

8π
g2

(m−M)2

M

∫
dωp⃗2ωp⃗2
ωp0

δ (ωp2 + |p⃗2| −M)

Now we can switch coordinates to u = ωp2 + |p⃗2| to perform the integral

dωp⃗2 =
1

2

(
1− m2

µ2

)
du

⇒ Γ =
1

16π
g2

(m−M)2

M

∫
duδ(u−M)

(
1− m2

u2

)
=

1

16π
g2

(m−M)2

M

M2 −m2

M2
= g2

(
M −m

M

)3
M +m

16π

In order for the process to be kinematically allowed, we must have M > m [1pt]

Problem 7 (20 points)

Consider the following action

S =
1

2

∫
d4x

[
(∂µφ1)(∂

µφ1) + (∂µφ2)(∂
µφ2) +

2φ2

λ
(∂µφ1)(∂

µφ2) +
φ2
2

λ2
(∂µφ2)(∂

µφ2)

]
,

where φ1 and φ2 are two real massless scalar fields.
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a) What is the mass dimension of λ?

Solution [5 P]

[λ] =M .

b) Write down the Feynman rules.

Solution [5 P]

Propagators:

φ1 =
i

p2 + iε

φ2 =
i

p2 + iε

Vertices:

p1

p2

p3
∝ p2 · (p1 + p3)

λ

Note that in the process in c) you can use for the momenta of the off-shell particles
the momentum conservation, such that this vertex factor is proportional to p22.

p1

p2

p3

p4

∝ p21 + p22 + p23 + p1p2 + p1p3 + p2p3
λ2

c) Calculate the lowest order (in 1/λ2) Feynman amplitude for the process φ1φ1 →
φ2φ2.

Hint: You have to consider two Feynman diagrams.

Solution [5 P]

The amplitude for this process involves two Feynman diagrams—one in the t and
the other in the u channel–both with a φ2 internal line:

Using the Feynman rules, we find easily that the diagrams sum up to

M = 0 .

d) Use the redefinition

χ1 = φ1 +
φ2
2

2λ
, χ2 = φ2 ,
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to rewrite the action.

What do you observe? With this new insight, interpret the result of point c).

Solution [5 P]

First we invert the above relations to express φ1,2 in terms of χ1,2; we easily find

φ1 = χ1 −
χ2
2

2λ
, φ2 = χ2 . (6)

Plugging this into the action we find

S =
1

2

∫
d4x [(∂µχ1)(∂

µχ1) + (∂µχ2)(∂
µχ2)] , (7)

which is nothing more than two massless, completely decoupled real scalars. There-
fore, the fact that the amplitude is zero is of course expected — using the χ1,2 fields
we wrote down a simple action in a complicated manner.
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