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Guidelines:

e The exam consists of 7 problems.

The duration of the exam is 96 hours.

Please write your name or matriculation number on every sheet that you hand in.

e Your answers should be comprehensible and readable.
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Problem 1 (8 points)

Simplify the following expressions as much as possible without using any representation
of the 7 matrices. The Minkowski metric convention is 7, = diag(1, —1, —1, —1). You may

1
use the definitions P = 5(1 F+°) as well as the identities and relations you encountered
R
during the course.

a) tr[y"y, Py, Pry"]
Solution [2 P]

tr[y*y, Py, Pry”] = tr[y" "7, Pr] = —2tr[y"y,Pr] = —8tr[Pg] =| —16

b) tr[(VM)T/VGVVPR%JVSPL’YV'YM]
Solution [2 P]

o [(7) Yo Prypy Py v = e[y " v 1070 Pry Pry’] =
= tr[7, (20" — Y*Y° )V 10,7 Pr] = —tr[v.(20"°v° — )17 Y Pr] =
= —tr[(2 — 4)70 (200, — Y1)V Pr] = 2tr[76 (27, — 47,) Pr] =

1 -
= —41;1‘[%%5(1 + )] = —2tr[v,7,] =

¢) {17 o]
Solution [2 P]

pa

tr[mﬂp%] = H;Lutf[“/”vaﬁm] = 477;1,y77 Naoc = 477/1,1/523

™

T 5
d) exp [zzv }
Solution [2 P]

ex [z’i 5} —cos(z) +1 5sin<z> = [i~°
p 27 = Co8(5 Y 5) = 2

Problem 2 (15 points)

Consider the following Lagrangian capturing the dynamics of a real scalar field ¢ in 4
space-time dimensions (we use units ¢ = h = 1)

L= 30:0)0"6) — e
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with ¢ a constant. The signature of Minkowski metric is mostly minus, i.e. n,,, = diag(1, -1, —1,
Derive the corresponding interaction-picture Hamiltonian in terms of creation and anni-
hilation operators.

Hint: The interaction-picture creation and annihilation operators d; and ¢y, are related

to &L and a; as
af = aje™st | Ay = age
Solution [5 (free part)+10(interaction part) P]
The Hamiltonian for the ¢% theory given above can be found in a straightforward
manner by writing the field in terms of creation and annihilation operators. Schematically,

we find (box normalization, omitting d-functions, and normal ordering)

H=>" / d*z lwk&,t@k + (:(90@,1(3% + 60a)a3 + 66147 + 9041747 + 15a[ 4;
k

+606]%y, + 204243 + 15a]1a2 + 6@,5@)

Problem 3 (25 points)

Consider a theory given by the following Lagrangian density in 4 space-time dimensions
(we use units ¢ = h = 1)

L=L,+Ly+Lp, + Lint »
with

—_

1
L, = 5(0up)(0"0) — oM 20,
Ly =0(id —m)y

1 L2
Ly, = —1GuG" + ' B,B"

“w

Lo = ~Np0t =SB, B"

\)

where ¢ is a massive real scalar field of mass M, v is a spinor of mass m with 1) = ¢4?,
B,, is a massive vector field of mass u, with its field strength-tensor given by G, =
0,B, — 0,B,, and X and g are constants.

a) What are the mass dimensions of the following entities?
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vii) A

viii) g

Solution [1 P]

S]=M° < [£]= M

i) [p]=M i) [y] =M*>? i) [M]=M iv) [m] =
VB =M i) [ = M vil) [\ = MO viil) [g] =
Find the equations of motion.

Solution [3 P]

oL _BE_ 5 - g L
5 0) _&p_ (D+M)<,0+)\¢¢—I—QBMB =0

oL oL = = —
=T ; I _
“8((%1&) 90 0 & |0, +mY+ g =0

oL oL
= 0 e [0 — mt — how =0
B0 0% WOy —mip — Ay

5 oL oL
Y0(0,B,) 0B,

0 < [0,G" +>B" — gpB"* =0

State the Feynman rules for all of the propagators and vertices of this theory. No
derivation is necessary.

Solution [5 P]

Propagators:
) . 2
77777 p? — M? +ie
(G i
+ f— -
p —m + 1€
B _ _inul/
p? — u? +ie
Vertices:
- = —I\
1
:} :_ign,uu
v
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d) Consider the process BB — v1). Draw and label the Feynman diagram(s) contribut-
ing to this process to leading order in A and g.

Solution [1 P]
p ¥

e) Under what conditions is the above process kinematically allowed?
Solution [1 P]

2u>2m &

f) How many physical polarizations does the massive vector boson B, have? Explain.
Solution [1 P]
3 physical polarizations; a massive vector boson in 4 space-time dimensions has 3
degrees of freedom.

g) Derive the spin-averaged amplitude squared for the above process in terms of the
Mandelstam variables.
Hint: Take the polarization vectors sg to be real and use the fact that the sum
over the physical polarization states of a spin-1 particle of mass p # 0 is > 5M ed =
ok Z
_77 v _.I_ .
M ,LL2

Solution [6 P]
For simplicity we abbreviate:
w; = u(pi, i), vi = v(pi, 8;) and e#(py,iq) = &Y, €”(pa, iz) = 5.

Below we will use > u;u; = p,+m and Y v;0; = P, —m, as well as the Mandelstam

variable s = (p; +p2)2 = (p3 +p4)2~

. - v ' 7 )
iM = el (—ignu)es mui%(_”\)m

gA v 9N oean o
&S M= —mgﬁigznmﬂﬁw‘ = M= T s M2 £125 7)po Valy

1 g\ o
= ‘M|2 = § Z <S—]\42) 5!;5277/1,1/5?5277;)0“3”4@4“3 =

11,12,83,84

L pp’pp Vo pl/pg
(5 2m) (e + B8 s (o B8 i, + iy, ) =

2

pp Pipt p2,up2,p A pa-pa — m2) =
(é_M2)<77 +M —MNup + N (pdp4 m)
2 2 2
2 s pi, (pop2)
(6237 oo (1 2+ )
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Expressing p; - p2 and p3 - py in terms of the Mandelstam variable s

1 S 1 S
prop=g(s—pl—p)) =5 —p' ps-pa=g(s—pi—pi) =5 —-m’,
we obtain:

- (52m) ) 5

Calculate the differential cross section of the process. Use the following general
expression for the differential cross section of a 2-to-2 scattering process AB — C'D
in the center-of-mass (CM) frame:

do B 1 [pc| 2
(dQ) © 2E2Eg|va — V| (27)24Ecm M{pa,pe = po.po)l”

where F,, EFg and ECMﬁare the energies of A, B and the total initial energy, re-
spectively. Also, vx = Z,—X for X = A, B. Finally, |/M(pa,ps — pc,pp)|? is the
spin-averaged amplitude squared you found in g).

Solution [5 P]

Eom Vs
2 2
In the CM frame let

Let F =

pa=p1=(E,0,0,[pi])

pp =p2 = (£,0,0, —[p1])

pc = ps = (E,[Ps]se, 0, [P3]co)
pp = pa = (E, —|Psse, 0, —|p5|co)

with [p)| = \/E? — p? and |p5] = VE? — m?.

(da) 1 E2—m2 TME =
dQ) oy 4E22,/E? — /E (2m)%4 -
B2 =—m* M2 | [s/A—m? [M[?
o\ B2 — 2 8302m)2E% |\ s/4 — p? (87)2s

1
Calculate the total cross section o = N f (j—g) d). What is the normalization

factor N7 Explain briefly.
Solution [2 P]

N =1 as the particles in the final state are not identical.

do s/4 —m?* | M|?
= 10 = 10d¢ =4 =
- /(dQ)CM //<dQ>CMS€( ’ 7T((?m)(:M s/4 — p? 16ms
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Problem 4 (15 points)

Consider the following action of a massless scalar field in d > 2 space-time dimensions

S = /W [ ©)(0p) — Api=2

with A a real constant. The signature of Minkowski metric is mostly minus, i.e. 17, =
diag(1,—1,—1,...).

a) What is the mass dimension of ¢?
Solution [1 P]

SIEM e =M = [[g] = M

b) Find the equations of motion.
Solution [2 P]

8[, a£ 2d d+2
I e 0 e
o) ap 0 T |He A T

=0

c¢) Consider the following transformation

p(z) = ¢'(z) = a®p(az) .
Determine A such that the action be invariant under this. What do you observe?

Solution [3 P]

/ d 1 0 / ’ 124
S—85=[d% 3 arugp(;p) — iz | =

:/ddx

(A%l) d=0 d
d—2

A is d-dependent. Invariance of kinetic and potential terms independently of each
other gives A = g —1.

d) Find the corresponding Noether current. Show that it is conserved on the equations
of motion.

Solution [9 P]
Leta=1+¢exK1
Then

¢ (x)

(1+¢)? ((1+€);1:) =
(1+eA+ 0(£%)) (p(x) + cx*dup(z) + O(e?)) =
() + eaup(2) + eAp(a) + O(e?)
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= 0p = ¢'(z) — p(x) = € (2" 0up(x) + Ap(z)) = Q]
From Noether’s theorem:

= (s

1 X
= (0" (1’ Oup + (5 = 1)99) — #5(0,9)(9"p) + A2

, y d v v d
9,5" = (Op) (20,0 + (5 — 1)gp> + (8*) (5M31,<p +270,0,¢ + (5 - 1)8;#7)
d d a+2

— L0R)09) — T (0,0,0)(0"9) + dApTE 4 1A 0,0) =
d 2d  a+2
= @) (w0 + G~ 100 + (000 + (§ ~ 1) a2 =

—0 by EOM

Problem 5 (25 points)

a) A Dirac spinor transforms under Lorentz transformation as ¢(x) — ¢'(2') =
S(A)y(z). Using the Lorentz invariance of the Dirac equation, show that

7; 174
S(A) = exp (—waa“ > :
Under infinitesimal Lorentz transformation the spacetime coordinates transform as
ot 2t = A Y = (60 + Wt a” .

Recall that o is defined by o = £ [y, ~"].

Hint 1: Note that w*” is anti-symmetric.
Hint 2: You will need to prove [fy’\, a‘“’] =2 [n’\“fy” — 77)‘”7“}.

Solution [5 P]

Let us start with the proof of Hint 2. Using the identity [A, BC] = {A, B}C —
B{A,C} and the anti-commutation relation for the gamma matrices gives:

/1: 14 v L
o) = S Ay =
Ii v v v 4
=5 (7 = = Y )

— 92 (nA/L,yV n)\l/,yu)
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If we Lorentz transform the Dirac equation we obtain

0
(2’7“ B m) P'(2") =0

where in the last line we multiplied from left with S™'(A). To retain the original
form of the Dirac equation, we should have

STHAWS(A) =7 (A7), (1)
For infinitesimal Lorentz transformations we have
ﬂyV(Ail)V“ - ,-)/V((SV;U' - wuu)

1 4
=" = (VW =Wk

2
1 1 v

=" = e (0 =)
i

=7+ a2 (2)

4

Note that in the last step we used the hint. In the infinitesimal case, S(A) can be
written as

8S(A)
S(A) =1 Wiy aA“V v = (SMV
=1—w, GV

Inserting this into equation (1) gives up to the lowest order in w
STHANS(A) = 7" + wn |G, 7]
Comparing with (2) we can identify G = +6*. Therefore we obtain
S(A)=1- ﬁwuya“” (3)
for infinitesimal transformations and for finite transformation we get finally

S(A) = e~ oo (4)

b) Since the Dirac Lagrangian
‘C:QZ(Z’Y”aM_m)@Z} )

is Lorentz invariant, there is a corresponding conserved Noether current. Using
Noether’s theorem show that the current can be written as

I = A I
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where .
JMHY = japy? <—40’“’ x“@”) U,
and A, is an arbitrary anti-symmetric tensor.

Solution [3 P]

The infinitesimal transformation for v is

() = ¢'(x) — ¥(z)

= /(2" — bx) — ¥()
= ¥(2") = (O () 02" — 1(x)
With dz# = wh,z” and ¢/(z') — ¢(z) = —tw,,0" Y (z) we obtain up to the first

order in w the following

Inserting this into the formula for the Noether current gives

J)\

o gy
aaw¢ ZA#,,wy < 40 —i—x@)z/J

where A, = w,,. Note that the Lagrangian is not completely invariant under
Lorentz transformations, because the transformation yields a total divergence which
gives to the current an additional term of the form A’\Mx“ﬁ. However, we can ignore
this term in this exercise, because it is not relevant for the conservation of the
current, because A, is anti-symmetric. (To obtain the full points, both currents are
correct,)

¢) Show that the current is conserved on the equations of motion.
Solution [3 P]

OhJ* :Aw,i(a)ﬂ)’y)‘ (—ia’w + m”@”) P
+ Ayt
+ AWW <_ZLUW + :1:“8”) O\
-1
+ A,uyq/}Zh/)\; Uuy]az\w

Using the Dirac equation iv*0,1 = m and i(@u@)”y“ = —ma) one can show that
the first and the third terms cancel. With the hint of part a) we obtain

- i i
I = AL ipy 0" + A, (§¢7”5“w - 5@&7’”0%) =0

where we used the anti-symmetry of A,,.
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d)

Show that o
Jo = enij I =y (Sp+ L) ¥,

where
. %
Sk = -, Lk = U T 8j .

Hint: Use the Dirac representation of the y-matrices.
Solution [2 P]

Using the Dirac representation of the y-matrices
0 o’
—07 0

EkijU” = 2Uk

it is straightforward to show

With that we have
J,j = ekijJ)"ij = i@'y’\ (—ie;ﬂjaij + ekijxi8j> Y

1; ( — 1€k X 9 )
Uy (Sk + Li)yp

The corresponding charge is given by

= [ & 0@ (St Loy vi@)
Show that it satisfies the following equation
[Qu@j] = ié?ijk@k .

Solution [5 P]

One can show explicitly that [S;,S;| = ig;xSk and [L;, L;] = ig;jxLi. However, to
get the full points it is not necessary to show this, because this is a well-known
relation in quantum mechanics. To show the commutation relation, we will need the
following commutator

(1@ (Z), v () va(@)]
= L) [WE@)0(E), va()] + [5E)06(T), 01(7)] Ya(D)
DD DL(T), a(@) Y0(E) + 05 @) (0(), D1 () }ba(F)
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where in the last equality we used that {1,9} = 0 = {47, }. For the other non-
trivial anti-commutators we can use the Fourier-mode expansion

k) - [ G [ e S
{@?@%@e‘im For @) (u! (Bal (B + o (Rp,(Fle ™))
B / (2:)31;%9/ 2r 32wk ZZ

<u‘.‘(ﬁ)u§T<E)(2ﬂ') 2eop, 8 — Fye—va iy

2

o ()0 (B) (2m) 200 (5 — ) 6ipx—iky>

d’p a i (F—F a — i (T—7
:/WZ(%(ﬁ)ufTep( D 4o (Pl (p)e P y))
Py

In the first step we used the anti-commutation relations for the creation and an-
nihilation operators and in the second step we integrated over k and summed over
j. Using the relations for the spinors from problem sheet 7, the sum over i can be
evaluated

wala). el = [ %(«pmmabew” (p = m)®)re )

d’p i a i ab\ ip (7
= / 2o ((7°p" = +'p" + m)A°)™ + (Y°° + +'p" — m)7°)*) P E9)
p

d3p RO
_ 7 9 O(Sab ip-(Z—7)
/ 2m)32w, T °
= §"60)(7 — 7))

Plugging this relation into the equation for the commutator from above give the
following commutation relation

[W3(@)0(2), VEDa(D)] = V5@ a6 (T — §) — DHG)(T)02a6D (T — 37)( |
5

Using this we can analyse the commutation relation for Q;:
@)= [ & [ & [ @D E). @D )]
= [ @ [ @ty DDg [t @), v )]
where D; = S; + L;. With (5) we get after integration
@) = [ &% DD; (V@)@ — 1))
— [ @ vl@IDi Do)
= igijk / A3z Y1 (Z) Dypap (F)

= i1 Qx
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f) Instead of a Dirac field, consider now a real scalar field ¢ with Lagrangian density

L= L(0,0)0"0) — sm*6?

Show that the current J for ¢ is
Jp = —i(0¢) Lo .

Solution [4 P]

The infinitesimal variation of the scalar field is

0(x) = ¢'(x) — ¢(x)
= ¢'(2') — (0u¢ (2)) 02" — ()
= —(Ouo(x)) W, 2"

where in the last equality we used the fact that for the scalar field ¢'(z') = ¢(x).
Plugging this expression into the formula for the Noether current gives

= ¢ Wt ¢
which leads to
Jpy = —i0*pLio
Note again that we ignored the total divergence term for the same reason as in b).

g) Interpret the above results. Compare the current associated with the spinor field to
the corresponding scalar field current found in the previous point.

Solution [3 P]

The current/charge corresponds to angular momentum, which makes sense, because
the spatial components of the Lorentz transformation matrix A describe rotations.
Furthermore, we can observe that for the angular momentum of the Dirac field we
have an additional spin contribution which is not there for the scalar field. Also this
makes sense, because fermions described by v have spin% and scalar bosons have
spin 0.

Problem 6 (15 points)

Consider the theory
1 - - _
L= 1Ful" + ("0, —m) ¥ + W (19" 0, — M) ¥ + gy, VA" .

Calculate the decay rate for the process U — 1)7.
What are the conditions for this process to be kinematically allowed?

Solution [15 P]

Using the Feynman rules, the Feynman diagram for this decay and the corresponding
amplitude are, in a self-explanatory notation, [3pt]
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P2
p1 /

E——

N

Then, we can calculate the squared amplitude and sum over the spins [5pt]

Y

.o —/
= —iguay'ues), .

= [M]* = —¢* (%7““1353”) (e3,u'17"uz)
1
=35 Z IMJ* = Z Uslin Y Z€3u63uu 17"
51,552,583 51 52
1 14
= —592 Te{(gh +m)y" (h + M)y"}
1
= —=9° (—4p1 - p2 + 4mM)

2
2 ( M — )2
Finally, we calculate the decay rate [6pt]

dPQ d?’ﬁ}, 4
E 27)45@ _
w4 /27r i | Ty 0 n =)
m — M

:7r2( — M)” / > ! 5 (wpa + wyz, — M)
g M (271')22(4)103 20.)}3‘3 b2 P

Working in the rest frame of U and using the fact that d|p]|p] = dww, we are left with

1 ,(m—M)?* [ dwsws
= F _ 2 P2 p25
s7d M /

(wpy + [P2] — M)

Wpo

Now we can switch coordinates to u = wy, + |p2| to perform the integral

:r:lg“m_Mf/mmhwnO—Ts

167 M u?

1, (m—=M2M2—m?2 ,(M—m\>M+m
= g =g

167 M M?2 M 167

In order for the process to be kinematically allowed, we must have M > m [1pt]

Problem 7 (20 points)

Consider the following action

2

S = % / d'z {(@901)(3‘%01) + (0up2) (9" p2) + %(@ml)(a"w) + %(%02)(3“902) )

where ¢ and @, are two real massless scalar fields.
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a) What is the mass dimension of A7
Solution [5 P]
A = M.

b) Write down the Feynman rules.
Solution [5 P]

Propagators:
v !
77777 p? +ic
p2 1
p?+ic
Vertices:

\pi

P2 - (p1 + p3)
, x
D3 A
L P2
Note that in the process in ¢) you can use for the momenta of the off-shell particles
the momentum conservation, such that this vertex factor is proportional to p3.

P+ p3+ 05+ pip2 + pips + paps
o 32

c¢) Calculate the lowest order (in 1/A?) Feynman amplitude for the process pip; —
P2p2-

Hint: You have to consider two Feynman diagrams.

Solution [5 P]

The amplitude for this process involves two Feynman diagrams—one in the ¢ and
the other in the v channel-both with a ¢, internal line:

Using the Feynman rules, we find easily that the diagrams sum up to

M=0.
d) Use the redefinition

X12901+ﬁ, X2 = ¥2 ,
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to rewrite the action.

What do you observe? With this new insight, interpret the result of point c).
Solution [5 P]
First we invert the above relations to express ¢; o in terms of x; 2; we easily find
2
X2
Y1 = X1 2)\,%02 X2 (6)

Plugging this into the action we find

=7 / a4 [(8,30) (0"x1) + (Buxa) (0"x2)] (7)

which is nothing more than two massless, completely decoupled real scalars. There-
fore, the fact that the amplitude is zero is of course expected — using the x; » fields
we wrote down a simple action in a complicated manner.
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