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Guidelines:

The exam consists of 6 problems.

The duration of the exam is 48 hours.

Please write your name or matriculation number on every sheet that you hand in.

e Your answers should be comprehensible and readable.

GOOD LUCK!

Exercise 1 | 10 P
Exercise 2 | 15 P
Exercise 3 | 30 P
Exercise 4 | 20 P
Exercise 5 | 20 P
Exercise 6 | 20 P

| Total [ 115 P |
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Problem 1 (10 points)

How many independent real scalar fields enter the following Lagrangians? Justify your
answers by explicit computations. Assume ¢ and x to be real scalar fields.
Hint: You may find the non-zero eigenvalues of the kinetic and mass matrices.

a)
L= 3(000)° +20,0)* + 200,00(P")

Solution [5 P]

The kinetic matrix of the above reads

1
5 1
1 2]

whose determinant is zero. This means that there is only one field.

1 3
Ly = L1+ 5(0ux)" + 5(0u9)” + (0ux) (9"p) = m*x* — 2m*¢” .

Solution [5 P]

The kinetic matrix of the above reads

k1)

whose determinant is not zero. This means that there are two fields.

[NSIEN (V] [V

Problem 2 (15 points)

a) Take the following Lagrangian

1
L= 5 0up)" +ap+bg” +cp’ +dp"

with ¢ a real scalar field and a, b, ¢, d constants. Assume invariance under the discrete
transformation ¢ — —p. What can you say about the parameters a, b, c,d?
Solution [5 P]

Invariance under ¢ — —¢ dictates that

b) Take the following Lagrangian

1
L= 5(0up")(0") + alp +¢7) + b(©* + ™) + c(¢® + ™) + d(pp*)? |
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with ¢ a complex scalar field and a, b, ¢, d constants. Assume invariance under the
2w N .
discrete transformation ¢ — e 3 ¢, N = integer. What can you say about the

parameters a, b, c,d?

Solution [5 P]

Invariance under ¢ — eﬂrLchp dictates that

¢) The Lagrangian describing fermions interacting with photons is
=/ 1 .. - _
L =i —m)p — ZF“ Fu + exhy p A + exhy, 1 A
where ¢ is a fermion field, ¥ = ¢™y° and F,, = d,A, — 0, A4,. If A" is a vector

under parity and parity is a symmetry of the Lagrangian, what can you say about
the coeflicients e; and ey?

Solution [5 P]

Requiring that the Lagrangian is invariant under parity, dictates that
es =0.
This is aftermath of the fact that the quantity
VY
is a pseudo-vector. At the same time,
L

18 a vector.

Problem 3 (30 points)

Consider a theory given by the following Lagrangian in 4 space-time dimensions (we
use units ¢ = h = 1)

_ A -
£ = S(0,0)(0"0) — s MG + (i) —m)y — S50

where ¢ is a real scalar field of mass M, 1) is a Dirac spinor of mass m with ¢ = 1f4?,
and A is a coupling constant.

a) What are the mass dimensions of the following entities?
i) ¢
i) ¢
ii) A
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Solution [3 P]

Find the equations of motion.
Solution [3 P]

oL oL . N
e ; M Z A2 —
8”8(8#1&) 90 0 10,0y + ma + 2g0¢ 0

oL oL A
0, ———— —= =0 ~HO ) — — % =0
oL oL =
o0 0o 0.0" 0 + M + Mppyp = 0
o

Check explicitly whether the theory is invariant under the following transformations

i) - = e,
i) ¥ = ¥ = ey,

with «, 8 constants. If yes, derive the corresponding Noether currents and show that

they are conserved on the equations of motion.
Solution [8 P]
i) U =e = const

DY = (U)yUy = PtUT Uy = ¢ly @zﬂ =y v = invariant

=1

V(i —m)y' = (U)o (id — m)Uy = Y Ui — m)Uy =

=i @(2@ —m)y =i —m)yy v = invariant
=1

Y= = e T (1 i) = — i =Y+ ady & 0= —iy)

oL o o [T

Noether current: J#* =

8w]u = (@J})V“@D + 1/77#(8#1/’) i "
= (ima) + i%(p%z)w + (—imap — i%ﬁpzl/}) =0 v = conserved

ii) U =e 5 = const
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First, consider

= o (85)" ey
Uty 52566757022( J Yo =

o =" (cos B + iyssin 5)yg =
n=0
Dozt Yo(cos B — i sin B) = ype P = U
and
UU =e 285 £ [
Then
PP = (U ygUnp = T U Ty Uy = @DT%Q’U/@& £4n) = not invariant

A1
Therefore, there is also no corresponding Noether current.

State the Feynman rules for all of the propagators and vertices of this theory. No
derivation is necessary.
Solution [3 P]

The required Feynman rules in momentum space:

Vertex:
(5 2
N = —IA

P @
Real scalar propagator:

© o 7

77777 p? — M? +ie
Spinor propagator:
WY i
— = -
p —m + e

Consider the process ¥1) — ¢¢. Draw and label the Feynman diagram(s) contribut-
ing to this process to leading order in .

Solution [3 P]
(& Rz

P2 R P4

N P3

z

0 @
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)

Bonus

Under what conditions is the above process kinematically allowed?
Solution [1 P]

2m >2M &

Derive the spin-averaged amplitude squared for the above process in terms of the
Mandelstam variables.

Solution [9 P]
For simplicity we abbreviate u; = u(p;, s;) and v; = v(p;, s;).
M = ’52(—)\)’&1 = MT = —\U V7

Below we will use > w;u; = p, +m and Y v;v; = p, —m
i

Si

1 \? o \?
) ; IM|? = " Z Vol Uq Vg = Ztr[(gél + m)(gb2 —m)] = \(p1 - pr — m?)

51,52

1 :
Using Mandelstam variables: p; - po = 5(5 —p?—p3) = % —m?

SIS e = M)
— = — (S —4m
4{} 2

(extra 5 pts): Draw and label an example of a tree-level Feynman diagram that is
second order in A describing the process 1) — pppep.

Solution [5 P (Bonus)]

(G ©
—
P4
P1— D3 — Pa
b5
T

Problem 4 (20 points)

Consider a theory given by the following Lagrangian in 4 space-time dimensions (we
use units ¢ = h = 1)
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_ _ 1 T . *
L =i —m)p — ey B — 7 GG+ %BHB“ + (Dup)* (Do) — M2 p

where 1) is a Dirac spinor of mass m with ¢ = 1f~°, B,, a massive vector field of mass p,
with its field strength-tensor given by G, = 0, B, —0,B,,, and ¢ a massive complex scalar
field of mass M. Also, D, is defined as D,, = 0, + ¢gB,,. Finally, e and ¢ are constants.

a) Find the equations of motion.
Solution [6 P]

oL oL = = -
o= T ; Iz LB —
“0(8,@) 90 10, YY" + map + ey B, = 0
oL oL
0)y———— — = ~AHRO ) — — e~v*B =0

LD (Dup) (DFp) = (0u9" —igBLp*)(0"p +igB,p) =
= (0,9 )(0"¢) + igB,[p(0,¢%) — (0"9)¢™] + ¢* BB ¢*¢

e oc_
"(0up) Oy
& [(0,0" + M?)p* =igd,(B"*) +igB,(0"¢*) + ¢°B,B"p*
5 oL oL _0

"0(0upr) O
g (auau + ]MQ)QO = figau(B“gO) - Z'gBﬂ(aMQO) + 92B;LBM99

oL oL
a”(?(@VBM) 9B, v

& | 0,G™ + 1B — ey +ig[p(9Fp*) — (0Mp)p*] + 29> B o =0

b) State the Feynman rules for all of the propagators and vertices of the theory. No
derivation is necessary.

Solution [6 P]

Propagators:
%) 1
- = —
p? — M? +ic
B _ _ TUw
p? — u? +ic
(0 i
+:7‘
p—m+e
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Vertices:
Shiper = ig [ d'z B,[p(0"¢*) — (0"p) "]

Fourier-transform the fields:

o) = [ (e o0

Therefore

. d*k . - d*p dt' .
in . 4 —ikx —ipx ip'x
SB;@* = Zg/d x/ (27T)4e Bﬂ(k)/ (277-)4 / (27T)4e PTSWP T,

~k

@) (™)™ (p') — (—ip")p(p)@™ (¥')] =

=9 / (gjf; / ((;Zp);éu(p’—p)@(p)é*(p/)(p+p’)”’

. . jgint . . .
Due to the expansion of e"”Be¢* the vertex acquires an extra i factor. Therefore

N v\p
\‘\

< = —ig(p+p)"
.7 /p/

For the quartic vertex we obtain

i v

YR

where the factor 2 comes from the two possible contractions of B,,.

= 2ig*n"

Finally, the other cubic vertex is identical to that in QED

= —jenyt

Let 1 transform under a local U(1) symmetry: ¢ — ¢/ = e~} where a = «a(z).
Derive explicitly how the other fields have to transform, and what conditions the
parameters m, M, u, e, g have to satisfy, so that the theory be invariant under this
transformation.

Hint: Consider first the invariance of ¥(i@ — m)y — GQZ’}/‘“BM@D, then the invariance
of (Dup)*(DFp) — M?*p*p, and finally the invariance of the remaining terms.

Solution [6 P]
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(i —m) — ey B = (i) — m) + i (—ibuo)p — eyt Blap =
= V(idd = m)y — ey Byyp 7
& Yy (0ua) — ey Bib = —epy" By

1
& BL = BM -+ gaua

For the covariant derivative D, to transform under some local U(1) symmetry,
D, and ¢ have to transform in the same way: p — ¢’ = e~ for some local U(1)
transformation .

DLgo/ L e_ifBDugo

& [0 +ig(By+ -0u0))e %0 = e V0, +igBle
& Pi@,8) + 0+ igB, + i (0u0)le = e P[0, +igB,Je
& —i(0,8) + ig(@ua) —0
& fB= goz
p
& | =exp [—z—a] ©

* ) % g o g K

oY = prexp |iZalexp |—iTa|l p =¢Tp
e e
1 1

G;W = 0,8, — &,BIL = 0,B, + ga,ﬁ,,a - 0,B, — 28,,8#04 =Gu vV

2 2
7 7 1 1
TBLBMI = ?(BN + gaMOé)(BM + Eaﬂa) =

s w2 o 1 10 N 17

e
-

d) Draw and label an example of a Feynman diagram describing the process ¥ — @@*.
Solution [2 P]

2
P1 p3
\\ h
B P
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Problem 5 (20 points)

a)

Show that for the scattering of an electron e (p) — e (p') off an external static
potential A,(0,Z)

(IS = 1]i) = iM2r8(E' — E) = ie 218(E' — E) a(p' )y u(p) A, (q) ,

where ¢ = p/ —p and A,(7) = [dPze @74, (%) is the Fourier transform of the
potential.

Hint: A" is an external classical c-number, so it is not involved in any contractions.
Solution [6 P]

At first order in e, we have
Az (f | ()1 () A*(Z) i)
d'z(0]a(p' ) () () A*(F)a’ (p)|0)

d'wu(p' ), u(p) A*(&)e' @)

(1S — 1) = e
= e

= e

\\\\

dze P =B g (pf )7“71(]))/dsz“(.f)ei(ﬁ_mz

= ie2n6(E' — E)a(p')y,u(p)AM(q) -

Next derive the following expression for the cross section (/5 is the velocity of the
incoming electron)
1 d3p/
do = 2975(F — B)—— ———— .
o = M| 2mo( )3EG r)oE

Solution [6 P]
We start from the definition of the differential cross section

V IS —1p)*  Vdy

do = — .
T TR 2BV (20)2EV

Plugging what we found from point a) and after some straightforward massaging
we obtain the desired result.

With the above equation calculate

do a? 0
— — = (1-=8%4n%2Z
a0 4|]5]2ﬁ281n4g( psin 2) ’

for an electron scattering off the following potential A, (%) = (57,0,0,0). In the
above a = €2 /4 is the fine-structure constant and 6 is the angle between p and p'.

Solution [8 P]
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Using the explicit form of the gauge potential, we compute the spin-averaged am-
plitude squared to find
4

- 1 e .
M|* = 3 > IMP = Iptsind(6)2) (B® —p*sin®(0/2))
{s}

meaning that the cross section is given by

do a? 0
R 1 — 2 027 )
a0 4|m252sin4g< frsin 2)

Problem 6 (20 points)

Consider a theory given by the following Lagrangian in 3 space-time dimensions (¢ =
h=1)
2 A2 2 3 3
L= (0u9")(0"p) =m7p'p — - (9"0)" = w7 (¢"9)"
where ¢ is a complex scalar field, and m > 0, A > 0, k > 0 are constants.

a) What are the mass dimensions of the following entities?

i) ¢
i) m
i) A
iv) K

Solution [4 P]

i) [p] = M2
i) [m] =M
i) [\ = M2
iv) [x] = M°

b) Find the equations of motion.

Solution [4 P]

oL oL :
"O(0up) Oy ’ e e
oL oL ; e
—2— =0 & |Gio+mio+N(¢"0)p + 3630 p)p =0

a(a;ﬁp*) Dp*
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c) State the Feynman rules for all of the propagators and vertices of this theory. No
derivation is necessary.

Solution [5 P]

The required Feynman rules in momentum space:

Vertex \:
©* ®
, /X\ = —2i)\?
. , . .
Vertex k:
2 ©*

) p*

Scalar propagator:

Consider the process
Pp1 SO;;Q - Pa (10:;2@%9024 )

where p; (i = 1,2), and ¢; (j = 1,2,3,4) are the incoming and outgoing momenta,
respectively. We define the following variables

s = (pl +p2>2 )

ti = (m+p2—q),
wj = (P —a—qn)°,
for j =1,2,3,4 and ¢5 = ¢;.
d) Show that
4
Dty —2s=4m®.
j=1

Solution [5 P]

th = m+p—a)+Pi+p— @)+ P+ — @)+ P+ — @)

= 4pr+p)? =21 +pe) G+ @+ata)+aG+a+at+aq.
]0?:(]7;2:7712 Vi,

Page 12 of 13



as well as energy & momentum conservation

PrL+pPe=q +q+q+qs,

we find
4

th = 2(py + p2)? + 4m? = 25 + 4m? |

Jj=1

meaning that
4

th—25:4m2 .

J=1

Draw and label a Feynman diagram contributing to this process at tree level.
Solution [2 P]

There are many, so any reasonable diagram is OK.
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