# Ludwig-Maximilians-Universität München

# Quantum Field Theory (Quantum Electrodynamics)

Prof. Dr. Georgi Dvali

Assistants: Oleg Kaikov, Dr. Georgios Karananas, Juan Sebastián Valbuena Bermúdez

14 February 2022

#### **Guidelines:**

- The exam consists of 6 problems.
- The duration of the exam is 48 hours.
- Please write your name or matriculation number on every sheet that you hand in.
- Your answers should be comprehensible and readable.

GOOD LUCK!

| Exercise 1 | 10 P |
|------------|------|
| Exercise 2 | 15 P |
| Exercise 3 | 30 P |
| Exercise 4 | 20 P |
| Exercise 5 | 20 P |
| Exercise 6 | 20 P |

Total 115 P

## Problem 1 (10 points)

How many independent real scalar fields enter the following Lagrangians? Justify your answers by explicit computations. Assume  $\varphi$  and  $\chi$  to be real scalar fields.

Hint: You may find the non-zero eigenvalues of the kinetic and mass matrices.

a) 
$$\mathcal{L}_1 = \frac{1}{2} (\partial_\mu \chi)^2 + 2(\partial_\mu \varphi)^2 + 2(\partial_\mu \chi)(\partial^\mu \varphi) .$$

#### Solution [5 P]

The kinetic matrix of the above reads

$$\begin{pmatrix} \frac{1}{2} & 1 \\ 1 & 2 \end{pmatrix} ,$$

whose determinant is zero. This means that there is only one field.

b) 
$$\mathcal{L}_2 = \mathcal{L}_1 + \frac{1}{2}(\partial_\mu \chi)^2 + \frac{3}{2}(\partial_\mu \varphi)^2 + (\partial_\mu \chi)(\partial^\mu \varphi) - m^2 \chi^2 - 2m^2 \varphi^2 .$$

#### Solution [5 P]

The kinetic matrix of the above reads

$$\begin{pmatrix} 1 & \frac{3}{2} \\ \frac{3}{2} & \frac{7}{2} \end{pmatrix} ,$$

whose determinant is not zero. This means that there are two fields.

## Problem 2 (15 points)

a) Take the following Lagrangian

$$\mathcal{L} = \frac{1}{2}(\partial_{\mu}\varphi)^{2} + a\varphi + b\varphi^{2} + c\varphi^{3} + d\varphi^{4} ,$$

with  $\varphi$  a real scalar field and a, b, c, d constants. Assume invariance under the discrete transformation  $\varphi \to -\varphi$ . What can you say about the parameters a, b, c, d?

#### Solution [5 P]

Invariance under  $\varphi \to -\varphi$  dictates that

$$a = 0$$
,  $c = 0$ .

b) Take the following Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \varphi^*)(\partial^{\mu} \varphi) + a(\varphi + \varphi^*) + b(\varphi^2 + \varphi^{*2}) + c(\varphi^3 + \varphi^{*3}) + d(\varphi \varphi^*)^2 ,$$

with  $\varphi$  a complex scalar field and a,b,c,d constants. Assume invariance under the discrete transformation  $\varphi \to e^{\frac{i2\pi N}{3}}\varphi, N = \text{integer}$ . What can you say about the parameters a,b,c,d?

#### Solution [5 P]

Invariance under  $\varphi \to e^{\frac{i2\pi N}{3}}\varphi$  dictates that

$$a = 0$$
,  $b = 0$ .

c) The Lagrangian describing fermions interacting with photons is

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + e_1\bar{\psi}\gamma_{\mu}\psi A^{\mu} + e_2\bar{\psi}\gamma_{\mu}\gamma^5\psi A^{\mu} ,$$

where  $\psi$  is a fermion field,  $\bar{\psi} = \psi^{\dagger} \gamma^0$  and  $F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$ . If  $A^{\mu}$  is a vector under parity and parity is a symmetry of the Lagrangian, what can you say about the coefficients  $e_1$  and  $e_2$ ?

### Solution [5 P]

Requiring that the Lagrangian is invariant under parity, dictates that

$$e_2 = 0$$
.

This is aftermath of the fact that the quantity

$$\bar{\psi}\gamma_{\mu}\gamma^5\psi$$
 ,

is a pseudo-vector. At the same time,

$$\bar{\psi}\gamma_{\mu}\psi$$
 ,

is a vector.

## Problem 3 (30 points)

Consider a theory given by the following Lagrangian in 4 space-time dimensions (we use units  $c = \hbar = 1$ )

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \varphi) (\partial^{\mu} \varphi) - \frac{1}{2} M^{2} \varphi^{2} + \bar{\psi} (i \partial \!\!\!/ - m) \psi - \frac{\lambda}{2} \varphi^{2} \bar{\psi} \psi ,$$

where  $\varphi$  is a real scalar field of mass M,  $\psi$  is a Dirac spinor of mass m with  $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$ , and  $\lambda$  is a coupling constant.

- a) What are the mass dimensions of the following entities?
  - i)  $\psi$
  - ii)  $\varphi$
  - iii)  $\lambda$

#### Solution [3 P]

$$[\mathcal{L}] \stackrel{!}{=} M^4$$

i) 
$$[\mathcal{L}] = M[\psi]^2 \quad \Leftrightarrow \quad \boxed{[\psi] = M^{3/2}}$$

ii) 
$$[\mathcal{L}] = M^2[\varphi]^2 \quad \Leftrightarrow \quad \boxed{[\varphi] = M}$$

iii) 
$$[\mathcal{L}] = [\lambda][\varphi]^2[\psi]^2 \quad \Leftrightarrow \quad \overline{[\lambda] = M^{-1}}$$

b) Find the equations of motion.

#### Solution [3 P]

$$\begin{split} \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} - \frac{\partial \mathcal{L}}{\partial \psi} &= 0 \quad \Leftrightarrow \quad \boxed{i \partial_{\mu} \bar{\psi} \gamma^{\mu} + m \bar{\psi} + \frac{\lambda}{2} \varphi^{2} \bar{\psi} = 0} \\ \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \bar{\psi})} - \frac{\partial \mathcal{L}}{\partial \bar{\psi}} &= 0 \quad \Leftrightarrow \quad \boxed{i \gamma^{\mu} \partial_{\mu} \psi - m \psi - \frac{\lambda}{2} \varphi^{2} \psi = 0} \\ \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} - \frac{\partial \mathcal{L}}{\partial \varphi} &= 0 \quad \Leftrightarrow \quad \boxed{\partial_{\mu} \partial^{\mu} \varphi + M^{2} \varphi + \lambda \varphi \bar{\psi} \psi = 0} \end{split}$$

c) Check explicitly whether the theory is invariant under the following transformations

i) 
$$\psi \to \psi' = e^{-i\alpha}\psi$$
,

ii) 
$$\psi \to \psi'' = e^{-i\beta\gamma_5}\psi$$
,

with  $\alpha, \beta$  constants. If yes, derive the corresponding Noether currents and show that they are conserved on the equations of motion.

### Solution [8 P]

i) 
$$U \equiv e^{-i\alpha} = const$$

$$\bar{\psi}'\psi' = (U\psi)^{\dagger}\gamma_0 U\psi = \psi^{\dagger}U^{\dagger}\gamma_0 U\psi = \psi^{\dagger}\gamma_0 \underbrace{U^{\dagger}U}_{=I}\psi = \bar{\psi}\psi \quad \checkmark \quad \Rightarrow \quad \text{invariant}$$

$$\bar{\psi}'(i\partial \!\!\!/ - m)\psi' = (U\psi)^{\dagger}\gamma_0(i\partial \!\!\!/ - m)U\psi = \psi^{\dagger}U^{\dagger}\gamma_0(i\partial \!\!\!/ - m)U\psi =$$

$$= \psi^{\dagger}\gamma_0\underbrace{U^{\dagger}U}_{=I}(i\partial \!\!\!/ - m)\psi = \bar{\psi}(i\partial \!\!\!/ - m)\psi \quad \checkmark \quad \Rightarrow \quad \text{invariant}$$

$$\psi \to \psi' = e^{-i\alpha} \psi \stackrel{\alpha \leq 1}{=} (1 - i\alpha) \psi = \psi - i\alpha \psi \stackrel{!}{=} \psi + \alpha \delta \psi \quad \Leftrightarrow \quad \delta \psi = -i\psi$$
Noether current: 
$$J^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \delta \psi = i \bar{\psi} \gamma^{\mu} (-i\psi) = \boxed{\bar{\psi} \gamma^{\mu} \psi}$$

$$\begin{split} \partial_{\mu}J^{\mu} &= (\partial_{\mu}\bar{\psi})\gamma^{\mu}\psi + \bar{\psi}\gamma^{\mu}(\partial_{\mu}\psi) \stackrel{e.o.m.\ in\ b)}{=} \\ &= (im\bar{\psi} + i\frac{\lambda}{2}\varphi^{2}\bar{\psi})\psi + \bar{\psi}(-im\psi - i\frac{\lambda}{2}\varphi^{2}\psi) = 0 \quad \checkmark \quad \Rightarrow \quad \text{conserved} \end{split}$$

ii) 
$$U \equiv e^{-i\beta\gamma_5} = const$$

First, consider

$$U^{\dagger} \gamma_0 \stackrel{\gamma_5^{\dagger} = \gamma_5}{=} e^{i\beta\gamma_5} \gamma_0 = \sum_{n=0}^{\infty} \frac{(i\beta\gamma_5)^n}{n!} \gamma_0 \stackrel{(\gamma_5)^2 = 1}{=} (\cos\beta + i\gamma_5 \sin\beta) \gamma_0 = \frac{\{\gamma_0, \gamma_5\} = 1}{=} \gamma_0 (\cos\beta - i\gamma_5 \sin\beta) = \gamma_0 e^{-i\beta\gamma_5} = \gamma_0 U$$

and

$$UU = e^{-2i\beta\gamma_5} \neq I$$

Then

$$\bar{\psi}''\psi'' = (U\psi)^\dagger \gamma_0 U\psi = \psi^\dagger U^\dagger \gamma_0 U\psi = \psi^\dagger \gamma_0 \underbrace{UU}_{\neq I} \psi \neq \bar{\psi}\psi \quad \Rightarrow \quad \text{not invariant}$$

Therefore, there is also no corresponding Noether current.

d) State the Feynman rules for all of the propagators and vertices of this theory. No derivation is necessary.

#### Solution [3 P]

The required Feynman rules in momentum space:

Vertex:



Real scalar propagator:

$$\underline{\quad \quad } \varphi_{--} = \frac{i}{p^2 - M^2 + i\varepsilon}$$

Spinor propagator:

e) Consider the process  $\psi \bar{\psi} \to \varphi \varphi$ . Draw and label the Feynman diagram(s) contributing to this process to leading order in  $\lambda$ .

#### Solution [3 P]



f) Under what conditions is the above process kinematically allowed?

$$2m > 2M \quad \Leftrightarrow \quad \boxed{m > M}$$

g) Derive the spin-averaged amplitude squared for the above process in terms of the Mandelstam variables.

#### Solution [9 P]

For simplicity we abbreviate  $u_i \equiv u(p_i, s_i)$  and  $v_i \equiv v(p_i, s_i)$ .

$$\mathcal{M} = \bar{v}_2(-\lambda)u_1 \quad \Rightarrow \quad \mathcal{M}^{\dagger} = -\lambda \bar{u}_1 v_2$$

Below we will use  $\sum_{s_i} u_i \bar{u}_i = p_i + m$  and  $\sum_{s_i} v_i \bar{v}_i = p_i - m$ 

$$\frac{1}{4} \sum_{\{s\}} |\mathcal{M}|^2 = \frac{\lambda^2}{4} \sum_{s_1, s_2} \bar{v}_2 u_1 \bar{u}_1 v_2 = \frac{\lambda^2}{4} \text{tr}[(\not p_1 + m)(\not p_2 - m)] = \lambda^2 (p_1 \cdot p_2 - m^2)$$

Using Mandelstam variables:  $p_1 \cdot p_2 = \frac{1}{2}(s - p_1^2 - p_2^2) = \frac{s}{2} - m^2$ 

$$\Rightarrow \frac{1}{4} \sum_{\{s\}} |\mathcal{M}|^2 = \frac{\lambda^2}{2} (s - 4m^2)$$

**Bonus** (extra 5 pts): Draw and label an example of a tree-level Feynman diagram that is second order in  $\lambda$  describing the process  $\psi \bar{\psi} \to \varphi \varphi \varphi \varphi$ .

### Solution [5 P (Bonus)]



## Problem 4 (20 points)

Consider a theory given by the following Lagrangian in 4 space-time dimensions (we use units  $c = \hbar = 1$ )

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi - e\bar{\psi}\gamma^{\mu}B_{\mu}\psi - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{\mu^2}{2}B_{\mu}B^{\mu} + (D_{\mu}\varphi)^*(D^{\mu}\varphi) - M^2\varphi^*\varphi ,$$

where  $\psi$  is a Dirac spinor of mass m with  $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$ ,  $B_{\mu}$  a massive vector field of mass  $\mu$ , with its field strength-tensor given by  $G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$ , and  $\varphi$  a massive complex scalar field of mass M. Also,  $D_{\mu}$  is defined as  $D_{\mu} = \partial_{\mu} + igB_{\mu}$ . Finally, e and g are constants.

a) Find the equations of motion.

#### Solution [6 P]

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)} - \frac{\partial \mathcal{L}}{\partial\psi} = 0 \quad \Leftrightarrow \quad \left[ i\partial_{\mu} \bar{\psi}\gamma^{\mu} + m\bar{\psi} + e\bar{\psi}\gamma^{\mu}B_{\mu} = 0 \right]$$

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\bar{\psi})} - \frac{\partial \mathcal{L}}{\partial\bar{\psi}} = 0 \quad \Leftrightarrow \quad \left[ i\gamma^{\mu}\partial_{\mu}\psi - m\psi - e\gamma^{\mu}B_{\mu}\psi = 0 \right]$$

$$\mathcal{L} \supset (D_{\mu}\varphi)^{*}(D^{\mu}\varphi) = (\partial_{\mu}\varphi^{*} - igB_{\mu}\varphi^{*})(\partial^{\mu}\varphi + igB_{\mu}\varphi) =$$

$$= (\partial_{\mu}\varphi^{*})(\partial^{\mu}\varphi) + igB_{\mu}[\varphi(\partial_{\mu}\varphi^{*}) - (\partial^{\mu}\varphi)\varphi^{*}] + g^{2}B_{\mu}B^{\mu}\varphi^{*}\varphi$$

$$\begin{split} \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} - \frac{\partial \mathcal{L}}{\partial \varphi} &= 0 \\ \Leftrightarrow \quad \left[ (\partial_{\mu} \partial^{\mu} + M^{2}) \varphi^{*} = ig \partial_{\mu} (B^{\mu} \varphi^{*}) + ig B_{\mu} (\partial^{\mu} \varphi^{*}) + g^{2} B_{\mu} B^{\mu} \varphi^{*} \right] \\ \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi^{*})} - \frac{\partial \mathcal{L}}{\partial \varphi^{*}} &= 0 \\ \Leftrightarrow \quad \left[ (\partial_{\mu} \partial^{\mu} + M^{2}) \varphi = -ig \partial_{\mu} (B^{\mu} \varphi) - ig B_{\mu} (\partial^{\mu} \varphi) + g^{2} B_{\mu} B^{\mu} \varphi \right] \\ \partial_{\nu} \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} B_{\mu})} - \frac{\partial \mathcal{L}}{\partial B_{\mu}} &= 0 \\ \Leftrightarrow \quad \left[ \partial_{\nu} G^{\nu\mu} + \mu^{2} B^{\mu} - e \bar{\psi} \gamma^{\mu} \psi + ig [\varphi (\partial^{\mu} \varphi^{*}) - (\partial^{\mu} \varphi) \varphi^{*}] + 2g^{2} B^{\mu} \varphi^{*} \varphi = 0 \right] \end{split}$$

b) State the Feynman rules for all of the propagators and vertices of the theory. No derivation is necessary.

#### Solution [6 P]

Propagators:

$$\begin{array}{c}
\varphi \\
- - \bullet \\
- - \bullet \\
- = \frac{i}{p^2 - M^2 + i\varepsilon}
\end{array}$$

$$\begin{array}{c}
B \\
\sim \sim \\
- i\eta_{\mu\nu} \\
p^2 - \mu^2 + i\varepsilon
\end{array}$$

$$\begin{array}{c}
\psi \\
- \bullet \\
\bullet \\
- \bullet \\$$

Page 7 of 13

Vertices:

$$S^{int}_{B\varphi\varphi^*} = ig \int \mathrm{d}^4x \, B_{\mu} [\varphi(\partial^{\mu}\varphi^*) - (\partial^{\mu}\varphi)\varphi^*]$$

Fourier-transform the fields:

$$B^{\mu}(x) = \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \mathrm{e}^{-ikx} \tilde{B}^{\mu}(k)$$
$$\varphi(x) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \mathrm{e}^{-ipx} \tilde{\varphi}(p)$$

Therefore

$$S_{B\varphi\varphi^*}^{int} = ig \int d^4x \int \frac{d^4k}{(2\pi)^4} e^{-ikx} \tilde{B}_{\mu}(k) \int \frac{d^4p}{(2\pi)^4} \int \frac{d^4p'}{(2\pi)^4} e^{-ipx} e^{ip'x} \cdot [\tilde{\varphi}(p)(ip'^{\mu})\tilde{\varphi}^*(p') - (-ip^{\mu})\tilde{\varphi}(p)\tilde{\varphi}^*(p')] =$$

$$= -g \int \frac{d^4p}{(2\pi)^4} \int \frac{d^4p'}{(2\pi)^4} \tilde{B}_{\mu}(p'-p)\tilde{\varphi}(p)\tilde{\varphi}^*(p')(p+p')^{\mu}$$

Due to the expansion of  $e^{iS_{B\varphi\varphi^*}^{int}}$  the vertex acquires an extra i factor. Therefore

$$\begin{array}{ccc}
p \\
& \\
& \\
p'
\end{array} = -ig(p+p')^{\mu}$$

For the quartic vertex we obtain



where the factor 2 comes from the two possible contractions of  $B_{\mu}$ .

Finally, the other cubic vertex is identical to that in QED

$$=-ie\gamma^{\mu}$$

c) Let  $\psi$  transform under a local U(1) symmetry:  $\psi \to \psi' = e^{-i\alpha}\psi$ , where  $\alpha = \alpha(x)$ . Derive explicitly how the other fields have to transform, and what conditions the parameters  $m, M, \mu, e, g$  have to satisfy, so that the theory be invariant under this transformation.

Hint: Consider first the invariance of  $\bar{\psi}(i\partial \!\!\!/ - m)\psi - e\bar{\psi}\gamma^{\mu}B_{\mu}\psi$ , then the invariance of  $(D_{\mu}\varphi)^*(D^{\mu}\varphi) - M^2\varphi^*\varphi$ , and finally the invariance of the remaining terms.

Solution [6 P]

$$\bar{\psi}'(i\partial \!\!\!/ - m)\psi' - e\bar{\psi}'\gamma^{\mu}B'_{\mu}\psi' = \bar{\psi}(i\partial \!\!\!/ - m)\psi + \bar{\psi}i\gamma^{\mu}(-i\partial_{\mu}\alpha)\psi - e\bar{\psi}\gamma^{\mu}B'_{\mu}\psi =$$

$$\stackrel{!}{=} \bar{\psi}(i\partial \!\!\!/ - m)\psi - e\bar{\psi}\gamma^{\mu}B_{\mu}\psi$$

$$\Leftrightarrow \bar{\psi}\gamma^{\mu}(\partial_{\mu}\alpha)\psi - e\bar{\psi}\gamma^{\mu}B'_{\mu}\psi = -e\bar{\psi}\gamma^{\mu}B_{\mu}\psi$$

$$\Leftrightarrow B'_{\mu} = B_{\mu} + \frac{1}{e}\partial_{\mu}\alpha$$

For the covariant derivative  $D_{\mu}\varphi$  to transform under some local U(1) symmetry,  $D_{\mu}\varphi$  and  $\varphi$  have to transform in the same way:  $\varphi \to \varphi' = e^{-i\beta}\varphi$  for some local U(1) transformation  $\beta$ .

$$\Leftrightarrow \left[\partial_{\mu} + ig(B_{\mu} + \frac{1}{e}\partial_{\mu}\alpha)\right] e^{-i\beta}\varphi \stackrel{!}{=} e^{-i\beta} \left[\partial_{\mu} + igB_{\mu}\right] \varphi$$

$$\Leftrightarrow e^{-i\beta} \left[-i(\partial_{\mu}\beta) + \partial_{\mu} + igB_{\mu} + i\frac{g}{e}(\partial_{\mu}\alpha)\right] \varphi \stackrel{!}{=} e^{-i\beta} \left[\partial_{\mu} + igB_{\mu}\right] \varphi$$

$$\Leftrightarrow -i(\partial_{\mu}\beta) + i\frac{g}{e}(\partial_{\mu}\alpha) = 0$$

$$\Leftrightarrow \beta = \frac{g}{e}\alpha$$

$$\Leftrightarrow \left[\varphi' = \exp\left[-i\frac{g}{e}\alpha\right] \varphi\right]$$

$$\varphi^{*\prime}\varphi' = \varphi^{*} \exp\left[i\frac{g}{e}\alpha\right] \exp\left[-i\frac{g}{e}\alpha\right] \varphi = \varphi^{*}\varphi \quad \checkmark$$

$$G'_{\mu\nu} = \partial_{\mu}B'_{\nu} - \partial_{\nu}B'_{\mu} = \partial_{\mu}B_{\nu} + \frac{1}{e}\partial_{\mu}\partial_{\nu}\alpha - \partial_{\nu}B_{\mu} - \frac{1}{e}\partial_{\nu}\partial_{\mu}\alpha = G_{\mu\nu} \quad \checkmark$$

$$\frac{\mu^{2}}{2}B'_{\mu}B^{\mu\prime} = \frac{\mu^{2}}{2}(B_{\mu} + \frac{1}{e}\partial_{\mu}\alpha)(B^{\mu} + \frac{1}{e}\partial^{\mu}\alpha) =$$

$$= \frac{\mu^{2}}{2}[B_{\mu}B^{\mu} + \frac{2}{e}B_{\mu}(\partial^{\mu}\alpha) + \frac{1}{e^{2}}(\partial_{\mu}\alpha)(\partial^{\mu}\alpha)] \stackrel{!}{=} \frac{\mu^{2}}{2}B_{\mu}B^{\mu}$$

$$\Leftrightarrow \overline{\mu = 0}$$

 $D'_{\cdot\cdot}\varphi'\stackrel{!}{=} e^{-i\beta}D_{\cdot\cdot}\varphi$ 

d) Draw and label an example of a Feynman diagram describing the process  $\psi \bar{\psi} \to \varphi \varphi^*$ .

Solution [2 P]



### Problem 5 (20 points)

a) Show that for the scattering of an electron  $e^-(p) \to e^-(p')$  off an external static potential  $A_{\mu}(0, \vec{x})$ 

$$\langle f|S-1|i\rangle = i\mathcal{M} \, 2\pi\delta(E'-E) \equiv ie \, 2\pi\delta(E'-E) \, \bar{u}(p')\gamma^{\mu}u(p)\tilde{A}_{\mu}(\vec{q}) \; ,$$

where q=p'-p and  $\tilde{A}_{\mu}(\vec{q})=\int \mathrm{d}^3x\,\mathrm{e}^{-i\vec{q}\cdot\vec{x}}A_{\mu}(\vec{x})$  is the Fourier transform of the potential.

Hint:  $A^{\mu}$  is an external classical c-number, so it is not involved in any contractions.

#### Solution [6 P]

At first order in e, we have

$$\langle f|S-1|i\rangle = ie \int d^4x \langle f|\bar{\psi}(x)\gamma_{\mu}\psi(x)A^{\mu}(\vec{x})|i\rangle$$

$$= ie \int d^4x \langle 0|a(p')\bar{\psi}(x)\gamma_{\mu}\psi(x)A^{\mu}(\vec{x})a^{\dagger}(p)|0\rangle$$

$$= ie \int d^4x \bar{u}(p')\gamma_{\mu}u(p)A^{\mu}(\vec{x})e^{i(p'-p)x}$$

$$= ie \int dx^0 e^{i(E'-E)x^0}\bar{u}(p')\gamma_{\mu}u(p) \int d^3\vec{x}A^{\mu}(\vec{x})e^{i(\vec{p'}-\vec{p})\vec{x}}$$

$$= ie2\pi\delta(E'-E)\bar{u}(p')\gamma_{\mu}u(p)\tilde{A}^{\mu}(\vec{q}).$$

b) Next derive the following expression for the cross section ( $\beta$  is the velocity of the incoming electron)

$$d\sigma = |\mathcal{M}|^2 2\pi \delta(E' - E) \frac{1}{2E\beta} \frac{d^3 p'}{(2\pi)^3 2E'}.$$

#### Solution [6 P]

We start from the definition of the differential cross section

$$d\sigma = \frac{V}{T\beta} \frac{|\langle f|S-1|i\rangle|^2}{2EV} \frac{Vd^3\vec{p}'}{(2\pi)^3 2E'V} .$$

Plugging what we found from point a) and after some straightforward massaging we obtain the desired result.

c) With the above equation calculate

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4|\vec{p}|^2\beta^2\sin^4\frac{\theta}{2}} \left(1 - \beta^2\sin^2\frac{\theta}{2}\right) ,$$

for an electron scattering off the following potential  $A_{\mu}(\vec{x}) = (\frac{e}{4\pi |\vec{x}|}, 0, 0, 0)$ . In the above  $\alpha = e^2/4\pi$  is the fine-structure constant and  $\theta$  is the angle between  $\vec{p}$  and  $\vec{p}'$ .

#### Solution [8 P]

Using the explicit form of the gauge potential, we compute the spin-averaged amplitude squared to find

$$|\bar{\mathcal{M}}|^2 = \frac{1}{2} \sum_{\{s\}} |\mathcal{M}|^2 = \frac{e^4}{4p^4 \sin^4(\theta/2)} \left( E^2 - p^2 \sin^2(\theta/2) \right) ,$$

meaning that the cross section is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4|\vec{p}|^2\beta^2\sin^4\frac{\theta}{2}} \left(1 - \beta^2\sin^2\frac{\theta}{2}\right) .$$

## Problem 6 (20 points)

Consider a theory given by the following Lagrangian in 3 space-time dimensions ( $c = \hbar = 1$ )

$$\mathcal{L} = (\partial_{\mu}\varphi^*)(\partial^{\mu}\varphi) - m^2\varphi^*\varphi - \frac{\lambda^2}{2}(\varphi^*\varphi)^2 - \kappa^3(\varphi^*\varphi)^3 ,$$

where  $\varphi$  is a complex scalar field, and m > 0,  $\lambda > 0$ ,  $\kappa > 0$  are constants.

- a) What are the mass dimensions of the following entities?
  - i)  $\varphi$
  - ii) m
  - iii)  $\lambda$
  - iv)  $\kappa$

## Solution [4 P]

i) 
$$[\varphi] = M^{1/2}$$

ii) 
$$[m] = M$$

iii) 
$$[\lambda] = M^{1/2}$$

iv) 
$$[\kappa] = M^0$$

b) Find the equations of motion.

## Solution [4 P]

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\varphi)} - \frac{\partial \mathcal{L}}{\partial\varphi} = 0 \quad \Leftrightarrow \quad \left[ \partial_{\mu}^{2}\varphi^{*} + m^{2}\varphi^{*} + \lambda^{2}(\varphi^{*}\varphi)\varphi^{*} + 3\kappa^{3}(\varphi^{*}\varphi)^{2}\varphi^{*} = 0 \right]$$

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\varphi^{*})} - \frac{\partial \mathcal{L}}{\partial\varphi^{*}} = 0 \quad \Leftrightarrow \quad \left[ \partial_{\mu}^{2}\varphi + m^{2}\varphi + \lambda^{2}(\varphi^{*}\varphi)\varphi + 3\kappa^{3}(\varphi^{*}\varphi)^{2}\varphi = 0 \right]$$

c) State the Feynman rules for all of the propagators and vertices of this theory. No derivation is necessary.

#### Solution [5 P]

The required Feynman rules in momentum space:

Vertex  $\lambda$ :



Vertex  $\kappa$ :



Scalar propagator:

$$\dots = \frac{i}{p^2 - m^2 + i\varepsilon}$$

Consider the process

$$\varphi_{p_1}\varphi_{p_2}^* \to \varphi_{q_1}\varphi_{q_2}^*\varphi_{q_3}\varphi_{q_4}^*$$
,

where  $p_i$  (i = 1, 2), and  $q_j$  (j = 1, 2, 3, 4) are the incoming and outgoing momenta, respectively. We define the following variables

$$s = (p_1 + p_2)^2,$$
  
 $t_j = (p_1 + p_2 - q_j)^2,$   
 $u_i = (p_1 - q_i - q_{i+1})^2$ 

for j = 1, 2, 3, 4 and  $q_5 \equiv q_1$ .

d) Show that

$$\sum_{j=1}^{4} t_j - 2s = 4m^2.$$

Solution [5 P]

$$\sum_{j=1}^{4} t_j = (p_1 + p_2 - q_1)^2 + (p_1 + p_2 - q_2)^2 + (p_1 + p_2 - q_3)^2 + (p_1 + p_2 - q_4)^2$$

$$= 4(p_1 + p_2)^2 - 2(p_1 + p_2) \cdot (q_1 + q_2 + q_3 + q_4) + q_1^2 + q_2^2 + q_3^2 + q_4^2.$$

Using

$$p_i^2 = q_i^2 = m^2 \quad \forall i \ ,$$

as well as energy & momentum conservation

$$p_1 + p_2 = q_1 + q_2 + q_3 + q_4 ,$$

we find

$$\sum_{j=1}^{4} t_j = 2(p_1 + p_2)^2 + 4m^2 = 2s + 4m^2 ,$$

meaning that

$$\sum_{j=1}^{4} t_j - 2s = 4m^2 \ .$$

- e) Draw and label a Feynman diagram contributing to this process at tree level.
  - Solution [2 P]

There are many, so any reasonable diagram is OK.