Ludwig-Maximilians-Universität München

Quantum Field Theory (Quantum Electrodynamics)

Prof. Dr. Georgi Dvali

Assistants: Ana Alexandre, Maximilian Bachmaier, Oleg Kaikov, Dr. Georgios Karananas

13 February 2023

Guidelines:

- The exam consists of 7 problems.
- The duration of the exam is 96 hours.
- Please write your name or matriculation number on every sheet that you hand in.
- Your answers should be comprehensible and readable.

GOOD LUCK!

Exercise 1	8 P
Exercise 2	15 P
Exercise 3	25 P
Exercise 4	15 P
Exercise 5	25 P
Exercise 6	15 P
Exercise 7	20 P

Total	123 P

Problem 1 (8 points)

Simplify the following expressions as much as possible without using any representation of the γ matrices. The Minkowski metric convention is $\eta_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$. You may use the definitions $P_{R}=\frac{1}{2}\left(1 \mp \gamma^{5}\right)$ as well as the identities and relations you encountered during the course.
a) $\operatorname{tr}\left[\gamma^{\mu} \gamma_{\nu} P_{L} \gamma_{\mu} P_{R} \gamma^{\nu}\right]$
b) $\operatorname{tr}\left[\left(\gamma^{\mu}\right)^{\dagger} \gamma_{\sigma} \gamma_{\nu} P_{R} \gamma_{\rho} \gamma^{5} P_{L} \gamma^{\nu} \gamma_{\mu}\right]$
c) $\operatorname{tr}\left[\eta_{\mu \nu} \gamma^{\rho} \gamma_{\sigma}\right]$
d) $\exp \left[i \frac{\pi}{2} \gamma^{5}\right]$

Problem 2 (15 points)

Consider the following Lagrangian capturing the dynamics of a real scalar field ϕ in 4 space-time dimensions (we use units $c=\hbar=1$)

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-c \phi^{6},
$$

with c a constant. The signature of Minkowski metric is mostly minus, i.e. $\eta_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$. Derive the corresponding interaction-picture Hamiltonian in terms of creation and annihilation operators.

Hint: The interaction-picture creation and annihilation operators $\hat{\alpha}_{k}^{\dagger}$ and $\hat{\alpha}_{k}$ are related to \hat{a}_{k}^{\dagger} and \hat{a}_{k} as

$$
\hat{\alpha}_{k}^{\dagger}=\hat{a}_{k}^{\dagger} e^{i \omega_{k} t}, \quad \hat{\alpha}_{k}=\hat{a}_{k} e^{-i \omega_{k} t} .
$$

Problem 3 (25 points)

Consider a theory given by the following Lagrangian density in 4 space-time dimensions (we use units $c=\hbar=1$)

$$
\mathcal{L}=\mathcal{L}_{\varphi}+\mathcal{L}_{\psi}+\mathcal{L}_{B_{\mu}}+\mathcal{L}_{\text {int }}
$$

with

$$
\begin{aligned}
\mathcal{L}_{\varphi} & =\frac{1}{2}\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)-\frac{1}{2} M^{2} \varphi^{2} \\
\mathcal{L}_{\psi} & =\bar{\psi}(i \not \partial-m) \psi \\
\mathcal{L}_{B_{\mu}} & =-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}+\frac{\mu^{2}}{2} B_{\mu} B^{\mu}, \\
\mathcal{L}_{\text {int }} & =-\lambda \varphi \bar{\psi} \psi-\frac{g}{2} \varphi B_{\mu} B^{\mu},
\end{aligned}
$$

where φ is a massive real scalar field of mass M, ψ is a spinor of mass m with $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$, B_{μ} is a massive vector field of mass μ, with its field strength-tensor given by $G_{\mu \nu}=$ $\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}$, and λ and g are constants.
a) What are the mass dimensions of the following entities?
i) φ
ii) ψ
iii) M
iv) m
v) B_{μ}
vi) μ
vii) λ
viii) g
b) Find the equations of motion.
c) State the Feynman rules for all of the propagators and vertices of this theory. No derivation is necessary.
d) Consider the process $B B \rightarrow \psi \bar{\psi}$. Draw and label the Feynman diagram(s) contributing to this process to leading order in λ and g.
e) Under what conditions is the above process kinematically allowed?
f) How many physical polarizations does the massive vector boson B_{μ} have? Explain.
g) Derive the spin-averaged amplitude squared for the above process in terms of the Mandelstam variables.
Hint: Take the polarization vectors $\varepsilon_{\mu}^{(i)}$ to be real and use the fact that the sum over the physical polarization states of a spin-1 particle of mass $\mu \neq 0$ is $\sum_{i} \varepsilon_{\mu}^{(i)} \varepsilon_{\nu}^{(i)}=$ $-\eta_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{\mu^{2}}$.
h) Calculate the differential cross section of the process. Use the following general expression for the differential cross section of a 2-to-2 scattering process $A B \rightarrow C D$ in the center-of-mass (CM) frame:

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{CM}}=\frac{1}{2 E_{A} 2 E_{B}\left|\vec{v}_{A}-\vec{v}_{B}\right|} \frac{\left|\vec{p}_{C}\right|}{(2 \pi)^{2} 4 E_{\mathrm{CM}}}\left|\mathcal{M}\left(p_{A}, p_{B} \rightarrow p_{C}, p_{D}\right)\right|^{2},
$$

where E_{A}, E_{B} and E_{CM} are the energies of A, B and the total initial energy, respectively. Also, $\vec{v}_{X}=\frac{\vec{p}_{X}}{E_{X}}$ for $X=A, B$. Finally, $\left|\mathcal{M}\left(p_{A}, p_{B} \rightarrow p_{C}, p_{D}\right)\right|^{2}$ is the spin-averaged amplitude squared you found in g).
i) Calculate the total cross section $\sigma=\frac{1}{N} \int\left(\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{CM}} \mathrm{d} \Omega$. What is the normalization factor N ? Explain briefly.

Problem 4 (15 points)

Consider the following action of a massless scalar field in $d>2$ space-time dimensions

$$
S=\int \mathrm{d}^{d} x\left[\frac{1}{2}\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)-\lambda \varphi^{\frac{2 d}{d-2}}\right],
$$

with λ a real constant. The signature of Minkowski metric is mostly minus, i.e. $\eta_{\mu \nu}=$ $\operatorname{diag}(1,-1,-1, \ldots)$.
a) What is the mass dimension of φ ?
b) Find the equations of motion.
c) Consider the following transformation

$$
\varphi(x) \rightarrow \varphi^{\prime}(x)=\alpha^{\Delta} \varphi(\alpha x) .
$$

Determine Δ such that the action be invariant under this. What do you observe?
d) Find the corresponding Noether current. Show that it is conserved on the equations of motion.

Problem 5 (25 points)

a) A Dirac spinor transforms under Lorentz transformation as $\psi(x) \mapsto \psi^{\prime}\left(x^{\prime}\right)=$ $S(\Lambda) \psi(x)$. Using the Lorentz invariance of the Dirac equation, show that

$$
S(\Lambda)=\exp \left(-\frac{i}{4} \omega_{\mu \nu} \sigma^{\mu \nu}\right)
$$

Under infinitesimal Lorentz transformation the spacetime coordinates transform as

$$
x^{\mu} \mapsto x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}=\left(\delta_{\nu}^{\mu}+\omega_{\nu}^{\mu}\right) x^{\nu} .
$$

Recall that $\sigma^{\mu \nu}$ is defined by $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

Hint 1: Note that $\omega^{\mu \nu}$ is anti-symmetric.
Hint 2: You will need to prove $\left[\gamma^{\lambda}, \sigma^{\mu \nu}\right]=2 i\left[\eta^{\lambda \mu} \gamma^{\nu}-\eta^{\lambda \nu} \gamma^{\mu}\right]$.
b) Since the Dirac Lagrangian

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

is Lorentz invariant, there is a corresponding conserved Noether current. Using Noether's theorem show that the current can be written as

$$
J^{\lambda}=A_{\mu \nu} J^{\lambda, \mu \nu}
$$

where

$$
J^{\lambda, \mu \nu}=i \bar{\psi} \gamma^{\lambda}\left(-\frac{i}{4} \sigma^{\mu \nu}+x^{\mu} \partial^{\nu}\right) \psi
$$

and $A_{\mu \nu}$ is an arbitrary anti-symmetric tensor.
c) Show that the current is conserved on the equations of motion.
d) Show that

$$
J_{k}^{\lambda}=\varepsilon_{k i j} J^{\lambda, i j}=\bar{\psi} \gamma^{\lambda}\left(S_{k}+L_{k}\right) \psi,
$$

where

$$
S_{k}=\frac{\sigma_{k}}{2}, \quad \quad L_{k}=-i \varepsilon_{k i j} x^{i} \partial_{j}
$$

Hint: Use the Dirac representation of the γ-matrices.
e) The corresponding charge is given by

$$
Q_{k}=\int \mathrm{d}^{3} x \psi^{\dagger}(\vec{x})\left(S_{k}+L_{k}\right) \psi(\vec{x})
$$

Show that it satisfies the following equation

$$
\left[Q_{i}, Q_{j}\right]=i \varepsilon_{i j k} Q_{k}
$$

f) Instead of a Dirac field, consider now a real scalar field ϕ with Lagrangian density

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} .
$$

Show that the current J_{k}^{λ} for ϕ is

$$
J_{k}^{\lambda}=-i\left(\partial^{\lambda} \phi\right) L_{k} \phi .
$$

g) Interpret the above results. Compare the current associated with the spinor field to the corresponding scalar field current found in the previous point.

Problem 6 (15 points)

Consider the theory

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi+\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-M\right) \Psi+g \bar{\psi} \gamma_{\mu} \Psi A^{\mu} .
$$

Calculate the decay rate for the process $\Psi \rightarrow \psi \gamma$.
What are the conditions for this process to be kinematically allowed?

Problem 7 (20 points)

Consider the following action

$$
S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(\partial_{\mu} \varphi_{1}\right)\left(\partial^{\mu} \varphi_{1}\right)+\left(\partial_{\mu} \varphi_{2}\right)\left(\partial^{\mu} \varphi_{2}\right)+\frac{2 \varphi_{2}}{\lambda}\left(\partial_{\mu} \varphi_{1}\right)\left(\partial^{\mu} \varphi_{2}\right)+\frac{\varphi_{2}^{2}}{\lambda^{2}}\left(\partial_{\mu} \varphi_{2}\right)\left(\partial^{\mu} \varphi_{2}\right)\right]
$$

where φ_{1} and φ_{2} are two real massless scalar fields.
a) What is the mass dimension of λ ?
b) Write down the Feynman rules.
c) Calculate the lowest order (in $1 / \lambda^{2}$) Feynman amplitude for the process $\varphi_{1} \varphi_{1} \rightarrow$ $\varphi_{2} \varphi_{2}$.

Hint: You have to consider two Feynman diagrams.
d) Use the redefinition

$$
\chi_{1}=\varphi_{1}+\frac{\varphi_{2}^{2}}{2 \lambda}, \quad \chi_{2}=\varphi_{2}
$$

to rewrite the action.
What do you observe? With this new insight, interpret the result of point c).

