Quantum Field Theory (Quantum Electrodynamics)

1. Interaction Picture

Consider a theory with the following Hamiltonian in the Schrödinger Picture (S.P.)

$$
H^{S}=H_{0}^{S}+H_{\mathrm{int}}^{S}
$$

where H_{0}^{S} is the free part and H_{int}^{S} contains interaction terms.
In the Interaction Picture (I.P.), both the operators and states are time-dependent and are related to the ones of the S.P. as follows

$$
\mathcal{O}_{I}(t)=U_{0}^{+}(t) \mathcal{O}_{S} U_{0}(t) \quad|A, t\rangle_{I}=U_{0}^{+}(t)|A, t\rangle_{S}
$$

with

$$
U_{0}(t)=e^{-i H_{0}\left(t-t_{0}\right)},
$$

the evolution operator depending only on the free part of the Hamiltonian.

1. Show that the free part of the Hamiltonian in the I.P. satisfies

$$
H_{0}^{I}=H_{0}^{S} \equiv H_{0}
$$

2. Find how the interacting part of the Hamiltonian in the I.P. H_{int}^{I} is related to H_{int}^{S}.
3. Find the I.P. equations of motion for the operators and states.
4. Show that $\mathcal{O}_{I}(t)$ and $|A, t\rangle_{I}$ are related to the operators and states in the Heisenberg picture, $\mathcal{O}_{H}(t)$ and $|A\rangle_{H}$ respectively, as

$$
\mathcal{O}_{I}(t)=U\left(t, t_{0}\right) O_{H}(t) U^{+}\left(t, t_{0}\right), \quad|A, t\rangle_{I}=U\left(t, t_{0}\right)|A\rangle_{H},
$$

where $U\left(t, t_{0}\right)=e^{i H_{0}\left(t-t_{0}\right)} e^{-i H\left(t-t_{0}\right)}$ is the time-evolution operator in the I.P.
5. Show that $U\left(t, t_{0}\right)$ is the unique solution to the following differential equation with a suitable initial condition (which one?)

$$
i \frac{\partial}{\partial t} U\left(t, t_{0}\right)=H_{\mathrm{int}}^{I}(t) U\left(t, t_{0}\right) .
$$

6. Show that the solution of this differential equation can be written as

$$
\begin{aligned}
U\left(t, t_{0}\right) & =T \exp \left[-i \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} H_{\mathrm{int}}^{I}\left(t^{\prime}\right)\right] \\
& \equiv 1+(-i) \int_{t_{0}}^{t} \mathrm{~d} t_{1} H_{\mathrm{int}}^{I}\left(t_{1}\right)+\frac{(-i)^{2}}{2!} \int_{t_{0}}^{t} \mathrm{~d} t_{1} \mathrm{~d} t_{2} T\left\{H_{\mathrm{int}}^{I}\left(t_{1}\right) H_{\mathrm{int}}^{I}\left(t_{2}\right)\right\}+\ldots
\end{aligned}
$$

Why is time-ordering essential? What is the appropriate generalization for a time t^{\prime} other than the reference time t_{0}. Show that for $t_{1} \geq t_{2} \geq t_{3}$ we have

$$
U\left(t_{1}, t_{2}\right) U\left(t_{2}, t_{3}\right)=U\left(t_{1}, t_{3}\right), \quad U\left(t_{1}, t_{3}\right)\left[U\left(t_{2}, t_{3}\right)\right]^{+}=U\left(t_{1}, t_{2}\right) .
$$

Is $U\left(t_{1}, t_{2}\right)$ unitary?

2. Discrete symmetries : Parity \& Charge conjugation

a) The parity transformation of the Hermitian Klein-Gordon field $\phi(x)$ is defined as

$$
\begin{equation*}
\phi(t, \vec{x}) \rightarrow \mathcal{P} \phi(t, \vec{x}) \mathcal{P}^{-1}=\eta_{\mathcal{P}} \phi(t,-\vec{x}), \tag{1}
\end{equation*}
$$

where the parity operator \mathcal{P} is a unitary operator that leaves the vacuum invariant, $\mathcal{P}|0\rangle=|0\rangle$, and $\eta_{\mathcal{P}}= \pm 1$ is called the intrinsic parity of the field.

1. Show that the parity transformation leaves the Lagrangian of the free massive scalar field invariant.
2. Show that for an arbitrary n-particle state

$$
\mathcal{P}\left|\vec{p}_{1}, \vec{p}_{2}, \ldots, \vec{p}_{n}\right\rangle=\eta_{\mathcal{P}}^{n}\left|-\vec{p}_{1},-\vec{p}_{2}, \ldots,-\vec{p}_{n}\right\rangle .
$$

3. Working with the box normalization, prove that

$$
\mathcal{P}_{1} \hat{a}(\vec{p}) \mathcal{P}_{1}^{-1}=i \hat{a}(\vec{p}), \quad \mathcal{P}_{2} \hat{a}(\vec{p}) \mathcal{P}_{2}^{-1}=-i \eta_{P} \hat{a}(-\vec{p}),
$$

where $\hat{a}(\vec{p})$ are the anihhilation operators of the field, and \mathcal{P}_{1} and \mathcal{P}_{2} are given by

$$
\mathcal{P}_{1}=\exp \left(-i \frac{\pi}{2} \sum_{\vec{p}} \hat{a}^{+}(\vec{p}) \hat{a}(\vec{p})\right), \quad \mathcal{P}_{2}=\exp \left(i \frac{\pi}{2} \eta_{P} \sum_{\vec{p}} \hat{a}^{+}(\vec{p}) \hat{a}(-\vec{p})\right) .
$$

4. Show that the operator $\mathcal{P}=\mathcal{P}_{1} \mathcal{P}_{2}$ is unitary and satisfies eq. (1).
5. Find the form of \mathcal{P}_{1} and \mathcal{P}_{2} in the continuum normalization.
b) Charge conjugation for the complex Klein-Gordon field $\chi(x)$ is defined by

$$
\begin{equation*}
\chi(x) \rightarrow \mathcal{C} \chi(x) \mathcal{C}^{-1}=\eta_{\mathcal{C}} \chi^{+}(x), \tag{2}
\end{equation*}
$$

where \mathcal{C} is a unitary operator which leaves the vacuum invariant, $\mathcal{C}|0\rangle=|0\rangle$, and is called the charge conjugation operator ; $\eta_{\mathcal{C}}$ is a phase factor.

1. How does the (normal-ordered) Lagrangian density

$$
\mathcal{L}=:\left|\partial_{\mu} \chi\right|^{2}-m^{2}|\chi|^{2}:,
$$

transform under charge conjugation? What about the Noether current j_{μ} associated with the global $U(1)$ symmetry?
2. Find how the ladder operators $\hat{a}(\vec{p}), \hat{b}(\vec{p})$ and their conjugates transform under (2).
3. Show that the charge conjugation operator interchanges particles and antiparticles, i.e.

$$
\mathcal{C}|a, \vec{p}\rangle=\eta_{\mathcal{C}}^{*}|b, \vec{p}\rangle, \quad \mathcal{C}|b, \vec{p}\rangle=\eta_{\mathcal{C}}|a, \vec{p}\rangle,
$$

where $|i, \vec{p}\rangle$ denotes the state with a single i-particle of momentum \vec{p}.

3. Box normalization

Like in statistical mechanics, it is sometimes useful to put a field theory inside a box. An infinitesimal volume $\mathrm{d}^{3} \vec{p}$ in momentum space contains $V \mathrm{~d}^{3} \vec{p} /(2 \pi)^{3}$ states, therefore
when passing from the continuum to the box normalization we have to make the following replacement

$$
\int \frac{\mathrm{d}^{3} \vec{p}}{(2 \pi)^{3}} f(\vec{p}) \leftrightarrow \frac{1}{V} \sum_{\vec{p}} f(\vec{p}),
$$

where V is the volume of the box. The above relation implies that the correspondence between the delta function and Kronecker delta reads

$$
\delta^{(3)}(\vec{p}-\vec{q}) \leftrightarrow \frac{V}{(2 \pi)^{3}} \delta_{\vec{p}, \vec{q}} .
$$

Let us start with the familiar expression for the complex scalar field

$$
\chi(x)=\int \frac{\mathrm{d}^{3} \vec{p}}{(2 \pi)^{3} 2 \omega_{\vec{p}}}\left(\hat{a}_{\vec{p}} e^{-i p x}+\hat{b}_{\vec{p}}^{+} e^{i p x}\right),
$$

with the shorthand notation $\hat{a}_{\vec{p}}=\hat{a}(\vec{p})$ and similarly $\hat{b}_{\vec{p}}=\hat{b}(\vec{p})$.

1. Redefine appropriately the operators $\hat{a}_{\vec{p}}$ and $\hat{a}_{\overrightarrow{\hat{~}}}+$, such that their commutation relation becomes $\left[\hat{a}_{\vec{p}}, \hat{a}_{\vec{q}}^{+}\right]=\delta_{\vec{p}, \vec{q}}$. Do the same for $\hat{b}_{\vec{p}}$ and $\hat{b}_{\vec{p}}^{+}$. With this normalization, the state $|\vec{p}\rangle \equiv \hat{a}_{\vec{p}}^{+}|0\rangle$ is normalized to one.
2. Show that in terms of the new ladder operators the scalar field decomposition reads

$$
\chi(x)=\sum_{\vec{p}} \frac{1}{\sqrt{2 V \omega_{\vec{p}}}}\left(\hat{a}_{\vec{p}} e^{-i p x}+\hat{b}_{\vec{p}}^{+} e^{i p x}\right) .
$$

