Quantum Field Theory (Quantum Electrodynamics)

Problem Set 6
 27 \& 29 November 2023

1. The Poincaré group, continued

The commutation relations of the Poincaré group generators in a manifestly covariant form read as (see also Problem Set 5)

$$
\begin{align*}
& {\left[M_{\mu \nu}, M_{\rho \sigma}\right]=i \eta_{\mu \rho} M_{\nu \sigma}+i \eta_{\nu \sigma} M_{\mu \rho}-i \eta_{\mu \sigma} M_{\nu \rho}-i \eta_{\nu \rho} M_{\mu \sigma},} \\
& {\left[M_{\mu \nu}, P_{\rho}\right]=i \eta_{\mu \rho} P_{\nu}-i \eta_{\nu \rho} P_{\mu},} \tag{1}\\
& {\left[P_{\mu}, P_{\nu}\right]=0 .}
\end{align*}
$$

Define

$$
J_{i}=\frac{1}{2} \epsilon_{i j k} M_{j k}, \quad K_{i}=M_{0 i},
$$

which correspond to the generators of spatial rotations and Lorentz boosts, respectively. Rewrite (1) in terms of J_{i} and K_{i}.

2. Gamma matrices in 4 spacetime dimensions

The γ-matrices satisfy

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathcal{I}_{4} \tag{2}
\end{equation*}
$$

where $\{a, b\}=[a, b]_{+}=a b+b a$ is the anticommutator, and $\mathcal{I}_{4}=\operatorname{diag}(1,1,1,1)$ is the 4×4 identity matrix. In what follows we will not be writing \mathcal{I}_{4} explicitly, although its presence will be tacitly assumed.

1. In the Dirac representation, the form of the gamma matrices is

$$
\gamma_{D}^{0}=\left(\begin{array}{cc}
\mathcal{I}_{2} & 0 \\
0 & -\mathcal{I}_{2}
\end{array}\right), \quad \gamma_{D}^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right),
$$

with $\sigma^{i}, i=1,2,3$ the Pauli matrices, and $\mathcal{I}_{2}=\operatorname{diag}(1,1)$ the 2×2 identity matrix. Show that γ_{D}^{μ} satisfy (2).

In the Weyl or chiral representation, the γ-matrices read

$$
\gamma_{W}^{0}=\left(\begin{array}{cc}
0 & \mathcal{I}_{2} \\
\mathcal{I}_{2} & 0
\end{array}\right), \quad \gamma_{W}^{i}=\gamma_{D}^{i} .
$$

Show that $\gamma_{W}^{\mu}=U \gamma_{D}^{\mu} U^{+}$, with

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathcal{I}_{2} & -\mathcal{I}_{2} \\
\mathcal{I}_{2} & \mathcal{I}_{2}
\end{array}\right) .
$$

Compute $\left\{\gamma_{W}^{\mu}, \gamma_{W}^{\nu}\right\}$.
Hint : The matrix U is unitary, i.e. $U^{+}=U^{-1}$.
2. Prove the following identities without using any representation of the γ matrices

$$
\begin{gathered}
\gamma^{\mu} \gamma_{\mu}=4, \quad \gamma^{\mu} \gamma^{\alpha} \gamma_{\mu}=-2 \gamma^{\alpha}, \quad \gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma_{\mu}=4 \eta^{\alpha \beta} \\
\gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma} \gamma_{\mu}=-2 \gamma^{\gamma} \gamma^{\beta} \gamma^{\alpha}, \\
\left\{\gamma^{\mu}, \gamma_{5}\right\}=0, \quad\left(\gamma_{5}\right)^{2}=1, \quad \gamma_{5}^{+}=\gamma_{5}, \quad \text { with } \quad \gamma_{5}=i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}=\eta^{\mu \nu} \gamma^{\rho}+\eta^{\nu \rho} \gamma^{\mu}-\eta^{\mu \rho} \gamma^{\nu}+i \epsilon^{\mu \nu \rho \sigma} \gamma^{5} \gamma_{\sigma}, \quad \text { with } \quad \epsilon_{0123}=-\epsilon^{0123}=1 .
\end{gathered}
$$

3. Prove the following trace identities without using any representation of the γ matrices

$$
\begin{gathered}
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu}, \quad \operatorname{tr}\left(\gamma_{5}\right)=\operatorname{tr}\left(\gamma_{5} \gamma^{\mu} \gamma^{\nu}\right)=0, \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}\right)=4\left(\eta^{\mu \nu} \eta^{\alpha \beta}+\eta^{\mu \beta} \eta^{\nu \alpha}-\eta^{\mu \alpha} \eta^{\nu \beta}\right), \\
\operatorname{tr}\left(\gamma_{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}\right)=4 i \epsilon^{\mu \nu \alpha \beta} \\
\operatorname{tr}\left(\text { odd number of } \gamma^{\prime} \mathrm{s}\right)=0 .
\end{gathered}
$$

2. The Dirac field

Consider

$$
\begin{equation*}
S=\int \mathrm{d}^{4} x\left(i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi\right) \tag{3}
\end{equation*}
$$

where $\bar{\psi}=\psi^{\dagger} \gamma^{0}$, and m is the (real) mass of the field.

1. What is the dimension of ψ ?
2. Check that the action is Hermitian up to a total derivative.

Useful formulas : $\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0},\left(\gamma^{0}\right)^{\dagger}=\gamma^{0},\left(\gamma^{0}\right)^{2}=1$.
3. Find the equations of motion for ψ and $\bar{\psi}$.
4. Check that the action is invariant under

$$
\psi \rightarrow \psi^{\prime}=e^{i \alpha} \psi
$$

with α a constant. Derive the corresponding Noether current. Is it conserved on the equations of motion?
5. Find the energy-momentum tensor and verify its conservation.
6. Compute the canonical momenta π and $\bar{\pi}$.
7. Find the Hamiltonian and the three-momentum \vec{P}.

