Quantum Field Theory (Quantum Electrodynamics)

Problem Set 4

 $13\ \&\ 15$ November 2023

1. Canonical quantization of the real scalar field

We have already seen that the action of the (free) real massive scalar field in four spacetime dimensions is

$$S = \int \mathrm{d}^4 x \left[\frac{1}{2} (\partial_\mu \phi)^2 - \frac{m^2}{2} \phi^2 \right] \; .$$

In the problem set 2 we showed that the solution to the Klein-Gordon equation reads

$$\phi(\vec{x},t) = \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3 2\omega(\vec{p})} \left[a(\vec{p}) e^{i\vec{p}\cdot\vec{x}-i\omega_{\vec{p}}t} + a(-\vec{p})^* e^{i\vec{p}\cdot\vec{x}+i\omega_{\vec{p}}t} \right] \;.$$

- 1. Find the canonical momentum $\pi(t, \vec{x})$ in terms of a and a^* .
- 2. Promote a and a^* to the ladder operators \hat{a} and \hat{a}^+ . Requiring that the field and its conjugate momentum satisfy the equal time canonical commutation relations, derive the commutation relations for \hat{a} and \hat{a}^+ .
- 3. Starting from $\hat{P}^{\mu} = \int d^3x \hat{T}^{0\mu}$, find the exact form of the energy and momentum operators \hat{P}^0 and \hat{P}^i , respectively. Simplify the expressions by using the commutation relations from the previous point.

Hint : Remember that P^0 is the Hamiltonian, so you can use the expression from Problem Set 2, Exercise 1. You may get rid of divergent terms by redefining the vacuum energy.

- 4. Compute $e^{i\hat{H}t}\hat{\phi}(0,\vec{x})e^{-i\hat{H}t}$, where \hat{H} is the Hamiltonian of the system.
- 5. Compute $e^{i\hat{P}_iy^i}\hat{\phi}(0,\vec{x})e^{-i\hat{P}_iy^i}$, with y^i a constant three-vector. Hint : You may not do the computation, just argue qualitatively.
- 6. Create a two-particles state $|\vec{p_1}, \vec{p_2}\rangle$. What statistics does this state obey?
- 7. Show that $|\vec{p_1}, \vec{p_2}\rangle$ is an eigenstate of the energy and momentum operators. Find the corresponding eigenvalues.
- 8. Construct an operator that counts the number of particles in the states. Does this operator have any similarities with the energy and momentum ones?
- 9. What will be different if we compute the energy and momentum classically in terms of a and a^* quantities and then replace them by the \hat{a} and \hat{a}^+ operators?