Quantum Field Theory (Quantum Electrodynamics)

Problem Set 3

6~&~8 November 2023

1. Liouville theory

The action capturing the dynamics of the Liouville model in two spacetime dimensions reads

$$S = \int \mathrm{d}^2 x \left[\frac{1}{2} (\partial_\mu \phi)^2 - a e^{b\phi} \right] \;,$$

with $\mu = 0, 1, \phi$ a real scalar field, and a, b constants.

- 1. Find the equations of motion.
- 2. Find the analog of scale symmetry for this model.
- 3. Construct the conserved Noether current.

2. Maxwell theory

Consider the action of a vector field coupled to a source in a four-dimensional spacetime

$$S = \int \mathrm{d}^4 x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + A_\mu j^\mu \right) \;,$$

with $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ the Maxwell field-strength tensor.

- 1. What are the dimensions of A_{μ} and j_{μ} ?
- 2. Derive the equations of motion.
- 3. What is the constraint on j_{μ} such that the action is invariant under the gauge transformation $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} + \partial_{\mu} \alpha$?
- 4. Consider the dual field strength tensor $\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\sigma\rho} F_{\sigma\rho}$, with $\epsilon^{\mu\nu\sigma\rho}$ the fourdimensional totally antisymmetric symbol ($\epsilon^{0123} = 1$). Is this quantity gauge invariant?

Add to the action the following term

$$\delta S = c \int \mathrm{d}^4 x F_{\mu\nu} \tilde{F}^{\mu\nu} \,,$$

with c a constant. Derive the equations of motion for $S + \delta S$. How are they modified due to presence of the new term?

3. Chern-Simons theory

Consider a real vector field B_{μ} in a three-dimensional spacetime with action

$$S = \int \mathrm{d}^3 x \left(-\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + g \epsilon^{\mu\nu\rho} B_{\mu} \partial_{\nu} B_{\rho} \right),$$

where $\epsilon^{\mu\nu\rho}$ is the three-dimensional totally antisymmetric symbol ($\epsilon^{012} = 1$), g a real constant, and $G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$ its field-strength tensor.

- 1. Find the dimensions of B_{μ} and g.
- 2. Is the action invariant under the gauge transformation $B_{\mu} \rightarrow B'_{\mu} = B_{\mu} + \partial_{\mu} \alpha$?
- 3. Compute the equations of motion. Are they gauge invariant?
- 4. Express the equations of motion in terms of the dual field $\tilde{G}^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho} G_{\nu\rho}$. Do you recognize their form? Explain.
- 5. What is the number of the propagating degrees of freedom in this theory? *Hint : The dual field satisfies*

$$\partial_{\mu}G^{\mu} = 0$$
.