Quantum Field Theory (Quantum Electrodynamics)

Problem Set 1

 $23\\&\ 25$ October 2023

1. Planck units

- a) Derive the following elementary quantities : the Planck length $l_{\rm Pl}$ in cm, the Planck time $t_{\rm Pl}$ in s, the Planck mass $m_{\rm Pl}$ in g and the Planck temperature $T_{\rm Pl}$ in K. *Hint* : Write the dimensions of c, \hbar , $G_{\rm N}$, $k_{\rm B}$ in terms of length L, time T, mass Mand temperature Θ . Substitute with the basic Planck units $l_{\rm Pl}$, $t_{\rm Pl}$, $m_{\rm Pl}$, $T_{\rm Pl}$.
- b) From those basic Planck units derive the Planck acceleration $a_{\rm Pl}$ in g (take g = 9.81 m/s²) and Planck energy $E_{\rm Pl}$ in GeV.
- c) In Planckian units we set $c = \hbar = G_{\rm N} = k_{\rm B} = 1$, so that any quantity expressed in these units is dimensionless. Calculate the Compton wavelength of the electron in Planckian units, in cm and in eV⁻¹.

2. Fun with indices

1. The scalar product of a vector field $A^{\mu} = (A^0, A^1, A^2, A^3)$ with itself is defined as

$$A_{\mu}A^{\mu} \equiv \eta_{\mu\nu}A^{\mu}A^{\nu} ,$$

with $\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$ the 4 dimensional Minkowski metric. Write the above expression in terms of the vector components.

- 2. Give some examples of tensor equations consistent and inconsistent with the Einstein's summation convention.
- 3. Which is the value of δ^{μ}_{μ} in 4 dimensions? And in *n* dimensions?
- 4. Completely symmetric and antisymmetric rank-2 tensors satisfy $T_{\mu\nu} = \pm T_{\nu\mu}$, where the plus sign stands for the symmetric and the minus sign for the antisymmetric one. Show that, if $S_{\mu\nu}$ is a rank-2 symmetric tensor and $A_{\mu\nu}$ is a rank-2 antisymmetric tensor, then $S_{\mu\nu}A^{\mu\nu} = 0$.
- 5. Show that, if $S_{\mu\nu}$ is symmetric and $B_{\mu\nu}$ is arbitrary, $S_{\mu\nu}B^{\mu\nu} = \frac{1}{2}S_{\mu\nu}(B^{\mu\nu} + B^{\nu\mu})$.
- 6. Show that, if $A_{\mu\nu}$ is antisymmetric and $B_{\mu\nu}$ is arbitrary, $A_{\mu\nu}B^{\mu\nu} = \frac{1}{2}A_{\mu\nu}(B^{\mu\nu} B^{\nu\mu})$.

3. The totally antisymmetric symbol

The generalization of the three-dimensional totally antisymmetric symbol in Minkowski spacetime is $\epsilon^{\kappa\lambda\mu\nu}$ and satisfies

$$\epsilon^{\kappa\lambda\mu\nu} = \begin{cases} +1 & \text{if } \kappa\lambda\mu\nu\text{ is an even permutation of } 0123 \ , \\ -1 & \text{if } \kappa\lambda\mu\nu\text{ is an odd permutation of } 0123 \ , \\ 0 & \text{otherwise } , \end{cases}$$

- 1. Show that if $\epsilon_{0123} = -1$, then $\epsilon^{0123} = 1$.
- 2. Show that $\epsilon_{\alpha\beta\gamma\delta}\epsilon^{\kappa\lambda\gamma\delta} = -2(\delta^{\kappa}_{\alpha}\delta^{\lambda}_{\beta} \delta^{\lambda}_{\alpha}\delta^{\kappa}_{\beta})$. *Hint:* Contractions of the totally antisymmetric tensor can be expressed in terms of products of delta functions as :

$$\epsilon_{\alpha_1\alpha_2\dots\alpha_m\mu_1\mu_2\dots\mu_n}\epsilon^{\alpha_1\alpha_2\dots\alpha_m\nu_1\nu_2\dots\nu_n} = (-1)^s m! n! \delta^{[\nu_1}_{[\mu_1}\cdots\delta^{\nu_n]}_{\mu_n]},$$

where s is the number of negative eigenvalues of the metric and $\delta^{[\nu_1 \cdots \nu_n]}$ denotes a fully anti-symmetrized tensor $\delta^{\nu_1 \cdots \nu_n}$ (and the same for lower indices).

3. Prove that $\epsilon_{\kappa\lambda\mu\nu}\epsilon^{\kappa\lambda\mu\nu} = -4!$.

4. Equations of motion

1. Consider the action of a self-interacting real massive scalar field ϕ

$$S_{\phi} = \int d^4x \left[\frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4} \phi^4 \right] ,$$

with m and λ constants. Derive the equations of motion for ϕ .

2. Consider the action of the electromagnetic field A_{μ} coupled to a source j_{μ}

$$S_A = \int d^4x \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} j^{\mu} \right] ,$$

with $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, the Maxwell field-strength tensor. Derive the equations of motion for A_{μ} .

3. Consider the action of a massive vector field B_{μ}

$$S_B = \int d^4x \left[-\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \frac{m^2}{2} B_{\mu} B^{\mu} \right] \;,$$

with $G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$. Derive the equations of motion for B_{μ} .