Quantum Field Theory (Quantum Electrodynamics)

Problem Set 11 15 & 17 January 2024

1. Fermion Scattering in Yukawa theory

Let us consider the following Lagrangian
L = ("0, — 18 2—1]\422— )
= U0, = m)w + 3(06) = S M — o

where ¢ is a real scalar field, g > 0 and m, M are the fermionic and scalar masses,
respectively.

Part A

Let us study the scattering process 1) — 1) in the context of the Yukawa theory. This
means that the initial and final states are chosen as

i) = ot (F)ak, (32) [0) . 1f) = at, (F)ad (7r) [0) -
Starting from
(I (Temto= e 1) i)
with
Hus =g [ €7 0(2)0(2)6(0)

we find that the matrix element between the initial and final states at the lowest non-
vanishing order in ¢ is quadratic in the coupling constant and reads

9 4 4 ’ bz No(a") Y i
4 / s / A (f| T {d(x)d(@)o(@)d (@) (@)d(a’) i)

where T is the time-ordered product.

1. Convince yourselves that the term linear in g is zero.

2. Argue that the transition amplitude for the ¥ — 1) process reads

(275 +pi—pr—p)iM =~ / dts / dh (f] - Py (@) B yp(@) : i) De(a, o)

with Dp(x,z") the Feynman propagator for the scalar field.

3. Evaluate the above and find the amplitude M.
Hint : You should get two different contributions.
4. Compute
-2 1
M= 30 IMP
spins

where the factor of }1 accounts for the fact that there are 4 different initial spin
configurations. Rewrite the above in terms of the Mandelstam variables.
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5. Working in the center-of-mass frame, compute the differential cross-section for the
process under consideration.

Hint : Some relevant formulas may be found in the previous Problem Sets.
Part B

Take now the following Lagrangian

L =y(iv"0, —m) + %(aé)Q - %M2¢2 — goysY

with v5 = iy9717273. Repeat Part B.

2. Maxwell Theory

Part A : Classical solutions of Maxwell equations
The Maxwell equations read
oMF, uy — _jz/ )

where F),, = 0,A, — 0, A, is the electromagnetic field-strength tensor and j, a conserved
current.

1. Show that the Maxwell equations in momentum space read
P A" (k) = —j (k) (1)
where the (transverse) wave operator P, is
P = —nuk*+kuk, , with k*=k,k" .

2. Write P, as a 4 x 4 matrix and show that it is not invertible.

3. In order to solve equation (1), we need to restrict ourselves to specific gauges. Wor-
king in the Lorentz (k,A* = 0) and Coulomb (k; A* = 0) gauges, solve equation (1).

Part B : Mode decomposition of the electromagnetic field

In what follows we will be working in the Lorenz gauge 9,A4* = 0. The vector field can
be decomposed as
dSE 5 7 N —ikx TN (T ik
ww) = [ G S (eﬁ(k)aT(k)e + e (R)a(k)e ) ,

27)32w;;

r=0

where the a’s are (complex) coefficients and €’s are four polarization vectors.

1. For simplicity, let’s work in the reference frame where &* = wy(1,0,0,1). In this
case, we can choose the polarization vectors to be

o = (1,0,0,0) , €' =(0,1,0,0), € =(0,0,1,0), € =(0,0,0,1).

Show that 9, A* = 0 corresponds to ag(k) = as(k).
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2. Show that the polarization vectors satisfy

3
v __ v __ v
77/w€¢f€s = —(s0ps, E Crﬁq%r = —nt,
r=0

with (o = —1 and (323 = 1. Note that the above properties hold also for a general
set of polarization vectors.

3. Compute the energy-momentum tensor of the Maxwell theory. Write the Hamilto-
nian in terms of a’s.

4. Using again the above polarization vectors, discuss which polarizations contribute
to the Hamiltonian.



