Quantum Field Theory (Quantum Electrodynamics)

Problem Set 11

15 \& 17 January 2024

1. Fermion Scattering in Yukawa theory

Let us consider the following Lagrangian

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi+\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} M^{2} \phi^{2}-g \phi \bar{\psi} \psi
$$

where ϕ is a real scalar field, $g>0$ and m, M are the fermionic and scalar masses, respectively.

Part A

Let us study the scattering process $\psi \psi \rightarrow \psi \psi$ in the context of the Yukawa theory. This means that the initial and final states are chosen as

$$
|i\rangle=a_{s_{1}}^{+}\left(\vec{p}_{1}\right) a_{s_{2}}^{+}\left(\vec{p}_{2}\right)|0\rangle, \quad|f\rangle=a_{s_{3}}^{+}\left(\vec{p}_{3}\right) a_{s_{4}}^{+}\left(\vec{p}_{4}\right)|0\rangle
$$

Starting from

$$
\langle f|\left(T e^{-i \int_{-\infty}^{+\infty} \mathrm{d} t H_{\text {int }}}-1\right)|i\rangle
$$

with

$$
H_{\text {int }}=g \int \mathrm{~d}^{3} \vec{x} \bar{\psi}(x) \psi(x) \phi(x)
$$

we find that the matrix element between the initial and final states at the lowest nonvanishing order in g is quadratic in the coupling constant and reads

$$
-\frac{g^{2}}{2} \int \mathrm{~d}^{4} x \int \mathrm{~d}^{4} x^{\prime}\langle f| T\left\{\bar{\psi}(x) \psi(x) \phi(x) \bar{\psi}\left(x^{\prime}\right) \psi\left(x^{\prime}\right) \phi\left(x^{\prime}\right)\right\}|i\rangle,
$$

where T is the time-ordered product.

1. Convince yourselves that the term linear in g is zero.
2. Argue that the transition amplitude for the $\psi \psi \rightarrow \psi \psi$ process reads

$$
(2 \pi)^{4} \delta^{(4)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right) i \mathcal{M}=-\frac{g^{2}}{2} \int \mathrm{~d}^{4} x \int \mathrm{~d}^{4} x^{\prime}\langle f|: \bar{\psi}(x) \psi(x) \bar{\psi}\left(x^{\prime}\right) \psi\left(x^{\prime}\right):|i\rangle \mathcal{D}_{F}\left(x, x^{\prime}\right),
$$

with $\mathcal{D}_{F}\left(x, x^{\prime}\right)$ the Feynman propagator for the scalar field.
3. Evaluate the above and find the amplitude \mathcal{M}.

Hint : You should get two different contributions.
4. Compute

$$
|\overline{\mathcal{M}}|^{2}=\frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2},
$$

where the factor of $\frac{1}{4}$ accounts for the fact that there are 4 different initial spin configurations. Rewrite the above in terms of the Mandelstam variables.
5. Working in the center-of-mass frame, compute the differential cross-section for the process under consideration.
Hint : Some relevant formulas may be found in the previous Problem Sets.

Part B

Take now the following Lagrangian

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi+\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} M^{2} \phi^{2}-g \phi \bar{\psi} \gamma_{5} \psi
$$

with $\gamma_{5}=i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$. Repeat Part B.

2. Maxwell Theory

Part A : Classical solutions of Maxwell equations

The Maxwell equations read

$$
\partial^{\mu} F_{\mu \nu}=-j_{\nu}
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the electromagnetic field-strength tensor and j_{μ} a conserved current.

1. Show that the Maxwell equations in momentum space read

$$
\begin{equation*}
P_{\mu \nu} A^{\nu}(k)=-j_{\mu}(k), \tag{1}
\end{equation*}
$$

where the (transverse) wave operator $P_{\mu \nu}$ is

$$
P_{\mu \nu}=-\eta_{\mu \nu} k^{2}+k_{\mu} k_{\nu}, \quad \text { with } \quad k^{2}=k_{\mu} k^{\mu}
$$

2. Write $P_{\mu \nu}$ as a 4×4 matrix and show that it is not invertible.
3. In order to solve equation (1), we need to restrict ourselves to specific gauges. Working in the Lorentz $\left(k_{\mu} A^{\mu}=0\right)$ and Coulomb $\left(k_{i} A^{i}=0\right)$ gauges, solve equation (1).

Part B : Mode decomposition of the electromagnetic field

In what follows we will be working in the Lorenz gauge $\partial_{\mu} A^{\mu}=0$. The vector field can be decomposed as

$$
A^{\mu}(x)=\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3} 2 \omega_{\vec{k}}} \sum_{r=0}^{3}\left(\epsilon_{r}^{\mu}(\vec{k}) a_{r}(\vec{k}) e^{-i k x}+\epsilon_{r}^{\mu}(\vec{k}) a_{r}^{*}(\vec{k}) e^{i k x}\right)
$$

where the a 's are (complex) coefficients and ϵ 's are four polarization vectors.

1. For simplicity, let's work in the reference frame where $k^{\mu}=\omega_{\vec{k}}(1,0,0,1)$. In this case, we can choose the polarization vectors to be

$$
\epsilon_{0}^{\mu}=(1,0,0,0), \quad \epsilon_{1}^{\mu}=(0,1,0,0), \quad \epsilon_{2}^{\mu}=(0,0,1,0), \quad \epsilon_{3}^{\mu}=(0,0,0,1)
$$

Show that $\partial_{\mu} A^{\mu}=0$ corresponds to $a_{0}(\vec{k})=a_{3}(\vec{k})$.
2. Show that the polarization vectors satisfy

$$
\eta_{\mu \nu} \epsilon_{r}^{\mu} \epsilon_{s}^{\nu}=-\zeta_{s} \delta_{r s}, \quad \sum_{r=0}^{3} \zeta_{r} \epsilon_{r}^{\mu} \epsilon_{r}^{\nu}=-\eta^{\mu \nu}
$$

with $\zeta_{0}=-1$ and $\zeta_{1,2,3}=1$. Note that the above properties hold also for a general set of polarization vectors.
3. Compute the energy-momentum tensor of the Maxwell theory. Write the Hamiltonian in terms of a 's.
4. Using again the above polarization vectors, discuss which polarizations contribute to the Hamiltonian.

