
Quantum Field Theory (Quantum Electrodynamics)

Problem Set 11 15 & 17 January 2024

1. Fermion Scattering in Yukawa theory

Let us consider the following Lagrangian

L = ψ̄(iγµ∂µ −m)ψ +
1

2
(∂ϕ)2 − 1

2
M2ϕ2 − gϕψ̄ψ

where ϕ is a real scalar field, g > 0 and m, M are the fermionic and scalar masses,
respectively.

Part A

Let us study the scattering process ψψ → ψψ in the context of the Yukawa theory. This
means that the initial and final states are chosen as

|i⟩ = a+s1(p⃗1)a
+
s2
(p⃗2) |0⟩ , |f⟩ = a+s3(p⃗3)a

+
s4
(p⃗4) |0⟩ .

Starting from

⟨f |
(
Te−i

∫+∞
−∞ dtHint − 1

)
|i⟩ ,

with

Hint = g

∫
d3x⃗ ψ̄(x)ψ(x)ϕ(x) ,

we find that the matrix element between the initial and final states at the lowest non-
vanishing order in g is quadratic in the coupling constant and reads

−g
2

2

∫
d4x

∫
d4x′ ⟨f |T

{
ψ̄(x)ψ(x)ϕ(x)ψ̄(x′)ψ(x′)ϕ(x′)

}
|i⟩ ,

where T is the time-ordered product.

1. Convince yourselves that the term linear in g is zero.

2. Argue that the transition amplitude for the ψψ → ψψ process reads

(2π)4δ(4)(p3+p4−p1−p2)iM = −g
2

2

∫
d4x

∫
d4x′ ⟨f | : ψ̄(x)ψ(x)ψ̄(x′)ψ(x′) : |i⟩DF (x, x

′) ,

with DF (x, x
′) the Feynman propagator for the scalar field.

3. Evaluate the above and find the amplitude M.

Hint : You should get two different contributions.

4. Compute

|M̄|2 = 1

4

∑
spins

|M|2 ,

where the factor of 1
4
accounts for the fact that there are 4 different initial spin

configurations. Rewrite the above in terms of the Mandelstam variables.
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5. Working in the center-of-mass frame, compute the differential cross-section for the
process under consideration.

Hint : Some relevant formulas may be found in the previous Problem Sets.

Part B

Take now the following Lagrangian

L = ψ̄(iγµ∂µ −m)ψ +
1

2
(∂ϕ)2 − 1

2
M2ϕ2 − gϕψ̄γ5ψ

with γ5 = iγ0γ1γ2γ3. Repeat Part B.

2. Maxwell Theory

Part A : Classical solutions of Maxwell equations

The Maxwell equations read
∂µFµν = −jν ,

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field-strength tensor and jµ a conserved
current.

1. Show that the Maxwell equations in momentum space read

PµνA
ν(k) = −jµ(k) , (1)

where the (transverse) wave operator Pµν is

Pµν = −ηµνk2 + kµkν , with k2 = kµk
µ .

2. Write Pµν as a 4× 4 matrix and show that it is not invertible.

3. In order to solve equation (1), we need to restrict ourselves to specific gauges. Wor-
king in the Lorentz (kµA

µ = 0) and Coulomb (kiA
i = 0) gauges, solve equation (1).

Part B : Mode decomposition of the electromagnetic field

In what follows we will be working in the Lorenz gauge ∂µA
µ = 0. The vector field can

be decomposed as

Aµ(x) =

∫
d3k⃗

(2π)32ωk⃗

3∑
r=0

(
ϵµr (k⃗)ar(k⃗)e

−ikx + ϵµr (k⃗)a
∗
r(k⃗)e

ikx
)
,

where the a’s are (complex) coefficients and ϵ’s are four polarization vectors.

1. For simplicity, let’s work in the reference frame where kµ = ωk⃗(1, 0, 0, 1). In this
case, we can choose the polarization vectors to be

ϵµ0 = (1, 0, 0, 0) , ϵµ1 = (0, 1, 0, 0) , ϵµ2 = (0, 0, 1, 0) , ϵµ3 = (0, 0, 0, 1) .

Show that ∂µA
µ = 0 corresponds to a0(k⃗) = a3(k⃗).
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2. Show that the polarization vectors satisfy

ηµνϵ
µ
r ϵ

ν
s = −ζsδrs,

3∑
r=0

ζrϵ
µ
r ϵ

ν
r = −ηµν ,

with ζ0 = −1 and ζ1,2,3 = 1. Note that the above properties hold also for a general
set of polarization vectors.

3. Compute the energy-momentum tensor of the Maxwell theory. Write the Hamilto-
nian in terms of a’s.

4. Using again the above polarization vectors, discuss which polarizations contribute
to the Hamiltonian.
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