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Replication: Hen and Egg

4 basic building blocks = Bases

Multiple bases = Sequence

ATGACGGATCAGCCGCAAGCGGAATTGGCGACATAACAA
TACTG TAGTCGGCGTTCG TTAACCGCTGTATTGTT

Information storage
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Replication: Hen and Egg

Proteins

20 building blocks = amino acids
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Proteins

20 building blocks = amino acids\

Sequence of amino acids
= folding into 3D tructur

|

3D Structur = Functionality

Functionality
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RNA Proteins

Information storage Functionality
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Proteins

Central Dogma of molecular biology
- Francis Crick (1958)
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Replication: Hen and Egg

PERSPECTIVES: STRUCTURAL BIOLOGY

The Ribosome Is a Ribozyme

Thomas R. Cech

tion of steak, salmon, or a lettuce

salad are loaded onto transfer RNAs
(tRNAs) and rebuilt into proteins in the ri-
bosome, the cell’s macromolecular pro-
tein-synthesis facto-

Enhanced online at ry. The bacterial ri-
www.sciencemag.org/cgi/ bosome is composed
content/full/289/5481/878 of three RNA mole-
cules and more than

50 proteins. Its key components are so
highly conserved among all of Earth’s
species that a similar entity must have
fueled protein synthesis in the common
ancestor of all extant life. Although the
chemical reaction catalyzed by the ribo-
some is simple—the joining of amino

The amino acids we obtain by diges-

acids through amide (peptide)
linkages—it performs the re-
markable task of choosing the
amino acids to be added to
the growing polypeptide
chain by reading successive
messenger RNA (mRNA)
codons. On page 905 of this
issue, Steitz, Moore, and col-
leagues (/) now provide the
first atomic-resolution view of
the larger of the two subunits of
the ribosome. From this structure they
deduce on page 920 that RNA compo-
nents of the large subunit accomplish the
key peptidyl transferase reaction (2). Thus,
ribosomal RNA (rRNA) does not exist as
a framework to organize catalytic proteins.
Instead, the proteins are the structural
units and they help to organize key ri-
bozyme (catalytic RNA) elements, an idea
long championed by Harry Noller, Carl
Woese, and others.

These landmark publications are but
the latest chapter in a progression of ribo-

from the bacterium Haloarcula marismor-
tui in the 1980s by Ada Yonath and H. G.
Wittmann provided the first rays of hope,
but it is only in the past few years that
crystal structures have been determined
for the large subunit (5 A resolution) (3),
the small subunit (5.5 A resolution) (4),
and the whole ribosome complexed with
tRNAs (7.8 A resolution) (5).

Now, at 2.4 A, almost the entire chain of
the 235 rRNA and its tiny 55 rRNA partner,
totaling 3043 nucleotides, have been fitted

A ribosome’s true colors. (Top) The large
subunit of the ribosome (7) seen from the A
viewpoint of the small subunit, with pro- i o]

teins in purple, 23S rRNA in orange and :eptlde &N/Qfo
white, 55 rRNA (at the top) in burgundy Q H 0

and white, and A-site tRNA (green) and P-
cita $DNIA [vad) Anclkad arcarding +a ()

observer might predict from looking at the
secondary structure diagram.

Where, then, are all of the proteins, and
what is their function? The globular do-
mains of 26 proteins are found largely on
the exterior of the subunit (see the figure).
Twelve of these proteins have unusual
snake-like extensions, devoid of tertiary
structure and in some cases even secondary
structure, and an additional protein is en-
tirely extended; their shapes are molded by
their interactions with the RNA. From these
pictures, and from what is known about
protein cofactors that facilitate the action of
some other ribozymes, it is likely that these
ribosomal proteins buttress, stabilize, and
orient the otherwise floppy RNA into a spe-
cific, active structure.

The part of the subunit’s surface that is
most devoid of protein is the active-site re-
gion. This was precisely located by soaking
the crystals in a small-molecule inhibitor pro-
vided by Michael Yarus (7). This inhibitor is
an analog of the anionic tetrahedral interme-

diate formed when a nucleophile at-

tacks a planar carbonyl (see the
figure). (In protein synthesis, the
nucleophile is the amino group

of the amino acid in the ribo-
some’s A-site, and the car-
bonyl belongs to the P-site
amino acid esterified to the 3'-ri-
bose of tRNA.) It is the absence of
any protein moiety within 18 A of the
correctly bound inhibitor in their struc-
ture, coupled with ear-

lier work that defined

pst this conserved part of
the large-subunit rRNA
HEg as the “peptide trans-

ferase center,” that led
the authors to conclude
(P-site) tRNA  that RNA (and not pro-

(A-site)  tein) must be responsi-
ble for catalysis. The ri-
bosome is a ribozyme,
admittedly one depen-

“tRNA RNA  dent on structural sup-

port from protein com-

Ribozyme




The ribosome is a ribozyme

Amino end
of polypeptide

Ribosome ready for 5
next aminoacyl tRNA 2

R
(0]
A ribosome’s true colors. (Top) The large (P-site) tRNA
subunit of the ribosome ( 7) seen from the ‘ (A-site)

viewpoint of the small subunit, with pro- i o R

teins in purple, 23S rRNA in orange and Peptide /Wo

white, 55 rRNA (at the top) inburgundy Q@ KW O

and white, and A-site tRNA (green) and P- tRNA tRNA
site tRNA (red) docked according to (5).

(Bottom) The peptidyl transfer mechanism catalyzed by RNA (2). The
general base (adenine 2451 in Escherichia coli 23S rRNA) is rendered
unusually basic by its environment within the folded structure; it could

abstract the proton at any of several steps, one of which is shown here.
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Ribozymes — Problem salt

===) Need high salt (Magnesium) for functionality such as replication
===) |ncreased degradation —— Loss of information and functionality

===) |ncreased melting temperature for product-template complex
—— dead-end duplex
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laneselli, A. et al. Periodic Melting of Oligonucleotides by Oscillating Salt Concentrations Triggered by
Microscale Water Cycles Inside Heated Rock Pores. Angew. Chemie Int. Ed. 58, 13155-13160 (2019).
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Potential non-equilibrium settings on Early Earth

Laminar convection
& thermophoretic accumulation
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Potential non-equilibrium settings on Early Earth

Laminar convection
& thermophoretic accumulation
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Potential non-equilibrium settings on Early Earth

Accumulation by
evaporation

Laminar convection
& thermophoretic accumulation

Cyclic changesin T,

pH, salt Shear flow leading to fission



Potential non-equilibrium settings on Early Earth

Accumulation by @

evaporation _

& thermophoretic accumulation

Laminar convection Q Q /7 8 il
T

~ Fusion and
condensation of
droplets driven by
surface tension

Cyclic changesin T,

pH, salt Shear flow leading to fission



Potential non-equilibrium settings on Early Earth
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Potential non-equilibrium settings on Early Earth
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Building plausible non-equilibria in the Lab

Porous mafic rock
Water O in a hydrothermally

active setting

Accumulation at gas interface triggers:

Y

Crystallization RNA phosphorylatior}

T/

Ribozyme Gelation Encapsulation
catalysis of RNA in vesicles

Morasch, M., et al. Heated gas bubbles enrich, crystallize, dry,
phosphorylate and encapsulate prebiotic molecules. Nat. Chem.
11, 779-788 (2019)




Building plausible non-equilibria in the Lab
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Morasch, M., et al. Heated gas bubbles enrich, crystallize, dry,
phosphorylate and encapsulate prebiotic molecules. Nat. Chem.

11, 779-788 (2019)
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Salditt, A. et al. Thermal Habitat for RNA Amplification and
Accumulation. Phys. Rev. Lett. (2020).
doi:10.1103/PhysRevlett.125.048104




Building plausible non-equilibria in the Lab
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Morasch, M., et al. Heated gas bubbles enrich, crystallize, dry,
phosphorylate and encapsulate prebiotic molecules. Nat. Chem.

11, 779-788 (2019)
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Salditt, A. et al. Ribozyme-mediated RNA synthesis and replication
in a model Hadean microenvironment, Nature Communications
(2023) doi.org/10.1038/s41467-023-37206-4

laneselli, A. et al. Periodic Melting of Oligonucleotides by Oscillating
Salt Concentrations Triggered by Microscale Water Cycles Inside
Heated Rock Pores. Angew. Chemie Int. Ed. 58, 13155-13160 (2019).
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Salditt, A. et al. Thermal Habitat for RNA Amplification and
Accumulation. Phys. Rev. Lett. (2020).
doi:10.1103/PhysRevLett.125.048104




Thermal non-equilibria

4 Evaporation

Thermogravitational traps Air-water interfaces



RNA amplifictaion in water-filled pores
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24-3 Polymerase
Ribo PCR in realistic environment



RNA amplifictaion in water-filled pores
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RNA amplifictaion in water-filled pores

a  Denaturation Elongation b

e 24-3 Polymerase
e Ribo PCR in realistic environment

Polymerase chain reaction - PCR
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Experimental impementation

Fluorescence
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RNA amplifictaion in water-filled pores
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RNA amplifictaion in water-filled pores

a Thermal Cycler Convection Chamber
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Accumulation pattern of RNA

ssDNA 35nt dsDNA 210nt DNA Pol. RNA Pol. a 5SDNA 35nt dsDNA 210nt DNA Pol. RNA Pol.

&

60 min I I | | I | I

Top View cleg ), T
07 1.9

50 um 30 ym

* Micrometer sized conglomerates
* Include diffusiophoresis -> movement along a concentration gradient



Accumulation pattern of RNA
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RNA protection from heat
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Limited denaturation by temperature

Water cycles in
heated rock pores

===) |ncreased melting temperature for product-template complex

—— dead-end duplex
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laneselli, A. et al. Periodic Melting of Oligonucleotides by Oscillating Salt Concentrations Triggered by
Microscale Water Cycles Inside Heated Rock Pores. Angew. Chemie Int. Ed. 58, 13155-13160 (2019).
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Non-equilibrium setting to drive elongation
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Fully assembled Trap without
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Reaction and template release

sunY-mediated templated ligation

M1 %C;Z M3

template
sunY
cO
Mg?* 2
dew
Ribozyme-substrate complex In te rfa ce

G-binding pocket

=

11111 -0-H 111111

Sample concentrations:
sunY 2.5uM sunY
3\ 20uM or 10uM Fragments
2.5uM template
Buffer:

30mM Tris pH 7.5;

X M123
100 mM KCl;

varying MgCI2 (50mM, 10mM, 5mM, 1mM)

Salditt, A., Karr, L., Salibi, E., Le Vay, K., Braun, D., & Mutschler, H. (2022). Complete RNA replication cycles in a Hadean microcompartment.



sunY activity in the AWI-system at low Mg2+

SunY
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Template Template
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2.5uM sunY

20uM Fragments

2.5uM template
F—l-(glL — -

Buffer:

30mM Tris pH 7.5;
F3 100 mM KCl;

5mM MgClI2




Synthesis of similar sequences

isothermal

AWI
strand separation aCu
0 A
C G
S Frerrrrrrormeror] 2 u AC
0.2mM g
/ M92+ AA A
T A ¢ ¢ fragmented
G C
pH 4 G C sunY
5 C G UAAAU A
GAAAAUCUGCCUAAA UGC CAGC @
w AGACGG CG GUCGY

X // & UAAAU 5 3
CUCCAAC [AUCAGCAA

GAGGUUGAAGAUAUAGUC UGAAC GGAUC

5/ U A 3
CAAAGC GAUGA U Gg C
CG G C c
cG &[G G:\J
B AU @|e & Ia

G C AU
cC.A AT TG G, A
GA u A

G U

U, ,G

Salditt, A., Karr, L., Salibi, E., Le Vay, K., Braun, D., & Mutschler, H. (2022). Complete RNA replication cycles in a Hadean microcompartment.



Synthesis of similar sequences

AWI

A

strand separation
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>0 >0
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pH 4 g E sunY
5 C G UARAAU A e | i 1 I 1
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B‘CUCCAAC//[AUCAGCAAUC B o’ TO 2 h TO 2 h TO 2 h
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G
sunyY 5 / U A ES
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B 4u oc¢ B123
@) |6
G C AU [ e
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|| e 5 % oS
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U
n A8 e
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€12

Sample concentrations: m/—- -

2.5uM sunY
10puM Fragments
2.5uM template

Buffer:

30mM Tris pH 7.5;
100 mM KCl;
10mM MgCI2

Salditt, A., Karr, L., Salibi, E., Le Vay, K., Braun, D., & Mutschler, H. (2022). Complete RNA replication cycles in a Hadean microcompartment.



Towards a full replication cycle

Fragments of both (+ and -) side ——— C1-C3 and tC1-tC3

x Cl g C2 @ C3
A T
Template
Suny 1 Mg2+
x i(i Cl23 Mg2+ %} 1Strand .
T T separation
Template |
strand | separation ﬁwmgl'm@%—n%%
w
x C123 tC123
tC3 b tC2 © tC1 ™ E
SunY M 2+
SunY; 1 Mg2+ 1 g
x ~ C123 C123
w w
tC123 tC123

Salditt, A., Karr, L., Salibi, E., Le Vay, K., Braun, D., & Mutschler, H. (2022). Complete RNA replication cycles in a Hadean microcompartment.




Towards a full replication cycle

x Cl@CZQG C3
L S

Template

with template without template

& i,

- . Sample concentrations: Buffer:
2.5uM sunY 30mM Tris pH 7.5;

CL-CYo g @ o
10uM Fragments 100 mM KCl;

tC1- = ‘ ' 2.5uM template 10mM MgCI2 tC1- . ' -

Salditt, A., Karr, L., Salibi, E., Le Vay, K., Braun, D., & Mutschler, H. (2022). Complete RNA replication cycles in a Hadean microcompartment.



Synthesis of active ribozyme
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2.5uM sunY
10puM Fragments
2.5uM template

Buffer:
30mM Tris pH 7.5;
100 mM KCI;
D} 5mM MgClI2
45°C
-sunY
Oh 2h 4h 2h 4h cl.
HH-sub
HH123
HH12
HH1 —
HH-sub/ — - - .-
cleaved
HH-sub

One pot!
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