How did we get here?

How did we get here?

Reprinted from The Funny Times / PO Box 18530 / Cleveland Heights, OH 44118 phone: (216) 371-8600 / e-mail: ft@funnytimes.com

Evolution and the Origins of Life

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

A: Fundamentals of Life

- Definition of Life
- Logic of Molecular Biology
- History of Biology
- Becoming alive
- Soup of Life
- Selection: before and in life
- Three faces of Entropy
- Death and equilibrium
- Missing non-equilibrium
- Structure of Origin of Life
- Modes of non-equilibrium
- Examples of evolution

B: Physics for Chemistry

Polymerization

- Theory of polymerization
- P. by fast cooling
- P. by stacking with 3'-5'-Ph.
- Activation groups
- P. on clay
- P. by thermophoresis
- Phase transitions with DNA
- Sedimentation of DNA
- Drying and its problems
- Elegance of air interface

Replication

- Templated polymerization
- Ligation
- Strand separation problem
- PCR in convection
- Ribo-PCR in convection

C: Evolution Machines

Replication with accumulation

- Case of Ribo-PCR
- Spiegelman problem
- Case of trapped PCR
- Trapped PCR with flow
- Feeding problem
- Replication with heated tRNA
- Replication in driven Fog

Rebustness of evolution

- Error threshold
- Instability of four bases
- Hypercycles with ligation
- Spont. Symmetry breaking
- Spont. sequence selection
- Cooperation within cells

A: Fundamentals of Life

- Definition of Life
- Logic of Molecular Biology
- History of Biology
- Becoming alive
- Soup of Life
- Selection: before and in life
- Three faces of Entropy
- Death and equilibrium
- Missing non-equilibrium
- Structure of Origin of Life
- Modes of non-equilibrium
- Examples of evolution

What is life?

What is life?

Nasa working definition of Life: A self-sustained chemical system capable of undergoing Darwinian Evolution

Storage of information very similar to Turing machine => Computer

Storage of information very similar to Turing machine => Computer

DNA+RNA

DNA+RNA

How to make a machine that makes itself?

How to make a machine that makes itself?

Becoming alive

Becoming alive

Selection before and within life

Soup of life

Soup of life

Three faces of entropy

Molecular Entropy: ATP vs AMP, activation, nucleophiles, leaving group

Three faces of entropy

Localization Entropy: chances to find molecules, probability of reaction, leaving group

Three faces of entropy

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

ΑΤΤΤΤΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ

Sequence Entropy: information stored in DNA or RNA to be replicated

Death of equilibrium

Death of equilibrium

Death of equilibrium

Equilibria ore dead

Assumed nonequilibrium

ÓH ÓH

Far from Equilibrium

Structure of Origin of Life

Nucleotides (possibly stored)

Chemical conditions:

- Polymerization
- Ligation
- Activation

Physical non-equilibrium:

- Strand separation
- Maintaining accumulation
- Feeding and Waste removal

Some upcoming molecular machines

Structure of Origin of Life

Nucleotides (possibly stored)

Chemical conditions:

- Polymerization
- Ligation
- Activation

Physical non-equilibrium:

- Strand separation
- Maintaining accumulation
- Feeding and Waste removal

Some upcoming molecular machines