FAKUltÄt für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 13: Theorems of Gauss and Stokes

Posted: Mo 23.01.23 Central Tutorial: Th 26.01.23 Due: Th 02.02.23, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 2, 4, 6 (7, if time permits).

Videos exist for example problems 4 (V3.7.7), 7 (V3.7.11).

Example Problem 1: Gauss's theorem - cuboid (Cartesian coordinates) [2]

Points: (a)[1](M); (b)[1](M).
Consider the cuboid C, defined by $x \in(0, a), y \in(0, b), z \in(0, c)$, and the vector field $\mathbf{u}(\mathbf{r})=$ $\left(\frac{1}{2} x^{2}+x^{2} y, \frac{1}{2} x^{2} y^{2}, 0\right)^{T}$. Compute its outward flux, $\Phi=\int_{S} \mathrm{~d} \mathbf{S} \cdot \mathbf{u}$, through the cube's surface, $S \equiv \partial C$, in two ways:
(a) directly as a surface integral; and
(b) as a volume integral via Gauss's theorem.
[Check your results: if $a=2, b=3, c=\frac{1}{2}$, then $\Phi=18$.]

Example Problem 2: Computing volume of barrel using Gauss's theorem [1]

Points: (a)[1](E); (b)[2](A,Bonus).
Consider a three-dimensional body bounded by a surface S. One method of computing its volume, V, is to express the latter as a flux integral over S by evoking Gauss's theorem for a vector field, \mathbf{u}, satisfying $\boldsymbol{\nabla} \cdot \mathbf{u}=1$:

$$
V=\int_{V} \mathrm{~d} V=\int_{V} \mathrm{~d} V \boldsymbol{\nabla} \cdot \mathbf{u} \stackrel{\text { Gauss }}{=} \int_{S} \mathrm{~d} \mathbf{S} \cdot \mathbf{u} .
$$

Use this method with $\mathbf{u}=\frac{1}{2}(x, y, 0)^{T}$ to compute, in cylindrical coordinates, the volume of
(a) a cylinder with height h and radius R, and
(b) a cylindrical barrel with height h and z-dependent radius, $\rho(z)=R[1+a \sin (\pi z / h)]^{1 / 2}$, with $z \in(0, h)$ and $a>0$. [Check your result: if $a=\pi / 4$, then $V=\frac{3}{2} \pi R^{2} h$.]

Example Problem 3: Gradient, divergence, curl, Laplace in cylindrical coordinates [5]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](E); (d)[1](M); (e)[0.5](M); (f)[1](M); (g)[1](E)
We consider a curvilinear orthogonal coordinate system with coordinates $\mathbf{y}=\left(y^{1}, y^{2}, y^{3}\right)^{T} \equiv$ $(\eta, \mu, \nu)^{T}$, position vector $\mathbf{r}(\mathbf{y})=\mathbf{r}(\eta, \mu, \nu)$ and coordinate basis vectors $\partial_{\eta} \mathbf{r}=\mathbf{e}_{\eta} n_{\eta}, \partial_{\mu} \mathbf{r}=\mathbf{e}_{\mu} n_{\mu}$, $\partial_{\nu} \mathbf{r}=\mathbf{e}_{\nu} n_{\nu}$, with $\left\|\mathbf{e}_{j}\right\|=1$ and norm factors $n_{\eta}, n_{\mu}, n_{\nu}$ (i.e. no summations over η, μ and ν here!). Furthermore, let $f(\mathbf{r})$ be a scalar field and $\mathbf{u}(\mathbf{r})=\mathbf{e}_{\eta} u^{\eta}+\mathbf{e}_{\mu} u^{\mu}+\mathbf{e}_{\nu} u^{\nu}$ a vector field,
expressed in the local basis. Then, the gradient, divergence, curl and Laplace operator are given by
where circles with three arrows denote cyclical permutations of indices. Now consider the cylindrical coordinates defined by $\mathbf{r}(\rho, \phi, z)=(\rho \cos \phi, \rho \sin \phi, z)^{T}$.
(a) Write down formulas for $\mathbf{e}_{\rho}, \mathbf{e}_{\phi}, \mathbf{e}_{z}$ and $n_{\rho}, n_{\phi}, n_{z}$.

Starting from the general formulas given above, find explicit formulas for
(b) $\boldsymbol{\nabla} f$,
(c) $\boldsymbol{\nabla} \cdot \mathbf{u}$,
(d) $\boldsymbol{\nabla} \times \mathbf{u}$,
(e) $\nabla^{2} f$.
(f) Verify explicitly that $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} f)=\mathbf{0}$, using the given formulae for the gradient and curl in general curvilinear coordinates η, μ, ν (i.e. not specifically cylindrical coordinates).
(g) Use cylindrical coordinates to compute $\boldsymbol{\nabla} f, \boldsymbol{\nabla} \cdot \mathbf{u}, \boldsymbol{\nabla} \times \mathbf{u}$ and $\boldsymbol{\nabla}^{2} f$ for the fields $f(\mathbf{r})=\|\mathbf{r}\|^{2}$ and $\mathbf{u}(\mathbf{r})=(x, y, 2 z)^{T}$. [Check your results: if $\mathbf{r}=(1,1,1)^{T}$, then $\boldsymbol{\nabla} f=(2,2,2)^{T}, \boldsymbol{\nabla} \cdot \mathbf{u}=4$, $\boldsymbol{\nabla} \times \mathbf{u}=\mathbf{0}$ and $\boldsymbol{\nabla}^{2} f=6$.]

Example Problem 4: Gradient, divergence, curl (spherical coordinates) [2]

Consider the scalar field $f(\mathbf{r})=\frac{1}{r}$ and the vector field $\mathbf{u}(\mathbf{r})=\left(\mathrm{e}^{-r / a} / r\right) \mathbf{r}$, with $\mathbf{r}=(x, y, z)^{T}$ and $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Calculate $\boldsymbol{\nabla} f, \boldsymbol{\nabla} \cdot \mathbf{u}, \boldsymbol{\nabla} \times \mathbf{u}$ and $\boldsymbol{\nabla}^{2} f$ explicitly for $r>0$,
(a) in Cartesian coordinates;
(b) in spherical coordinates.

Verify that your results from (a) and (b) are consistent with one another.

Example Problem 5: Gauss's theorem - cylinder (cylindrical coordinates) [2]

Points: (a)[0.5](E); (b)[1](M); (c)[0.5](M)
Consider a vector field, \mathbf{u}, defined in cylindrical coordinates by $\mathbf{u}(\mathbf{r})=\mathbf{e}_{\rho} z \rho$, and a cylindrical volume, V, defined by $\rho \in(0, R), \phi \in(0,2 \pi), z \in(0, H)$.
(a) Compute the divergence of the vector field \mathbf{u} in cylindrical coordinates.

Compute the flux, Φ, of the vector field \mathbf{u} through the surface, S, of the cylindrical volume V, via two methods:
(b) by calculating the surface integral, $\Phi=\int_{S} \mathrm{~d} \mathbf{S} \cdot \mathbf{u}$, explicitly;
(c) by using Gauss's theorem to convert the flux integral to a volume integral of $\boldsymbol{\nabla} \cdot \mathbf{u}$ and then computing the volume integral explicitly.

Example Problem 6: Stokes's theorem - magnetic dipole (spherical coordinates) [2]

Points: (a)[1](M); (b)[1](M)
Every magnetic field can be represented as $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$, where the vector field \mathbf{A} is known as the vector potential of the field. For a magnetic dipole,

$$
\mathbf{A}=\frac{1}{c} \frac{\mathbf{m} \times \mathbf{r}}{r^{3}}, \quad \mathbf{B}=\frac{1}{c} \frac{3 \mathbf{r}(\mathbf{m} \cdot \mathbf{r})-\mathbf{m} r^{2}}{r^{5}}
$$

where c is the speed of light. Let the constant dipole moment m be oriented in the z-direction, $\mathbf{m}=\mathbf{e}_{z} m$. Let H be a hemisphere with radius R, oriented with base surface in the $x y$-plane, symmetry axis along the positive z-axis and 'north pole' on the latter. Compute the flux integral of the magnetic field through this hemisphere, $\Phi_{H}=\int_{H} \mathrm{~d} \mathbf{S} \cdot \mathbf{B}$, in two different ways:
(a) directly, using spherical coordinates;
(b) use $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$ and Stokes's theorem to express Φ as a line integral of \mathbf{A} over the boundary of the surface of H, and evaluate the line integral.

Example Problem 7: Stokes's theorem - magnetic field of a current carrying conductor (cylindrical coordinates) [4]

Points: (a)[1](E); (b)[1](M); (c)[0.5](M); (d)[0.5](E); (e)[0.5](M); (f)[0.5](M)
Let an infinitely long, infinitesimally thin conductor be oriented along the z-axis and carry a current I. It generates a magnetic field of the following form:

$$
\mathbf{B}(\mathbf{r})=\frac{2 I}{c} \frac{1}{x^{2}+y^{2}}\left(\begin{array}{r}
-y \\
x \\
0
\end{array}\right)=\mathbf{e}_{\phi} \frac{2 I}{c} \frac{1}{\rho}, \quad \text { for } \quad \rho=\sqrt{x^{2}+y^{2}}>0 .
$$

Calculate the divergence and rotation of $\mathbf{B}(\mathbf{r})$ explicitly for $\rho>0$, using
(a) Cartesian coordinates; and
(b) cylindrical coordinates. [Compare your results from (a) and (b)!]
(c) Use cylindrical coordinates to compute the line integral, $\oint_{\gamma} \mathrm{dr} \cdot \mathbf{B}$, of the magnetic field along the edge, γ, of a circular disk, D, with radius $R>0$, centred on the z-axis, and oriented parallel to the $x y$-plane.
(d) Use Stokes's theorem and the result from (c) to compute the flux integral, $\int_{D} \mathrm{~d} \mathbf{S} \cdot(\boldsymbol{\nabla} \times \mathbf{B})$, of the curl of the magnetic field over the disk D prescribed in (c).
(e) Use your results for $\boldsymbol{\nabla} \times \mathbf{B}$ from (a) and (d) to argue that the curl of the field is proportional to a two-dimensional δ-function, $\boldsymbol{\nabla} \times \mathbf{B}=\mathbf{e}_{z} C \delta(x) \delta(y)$. Find the constant C. [Hint: The two-dimensional δ-function is normalized such that $\int_{D} \mathrm{~d} S \delta(x) \delta(y)=1$ for the area integral over any surface D which lies parallel to the $x y$-plane and intersects the z-axis.]
(f) Write the result obtained in (e) in the form $\boldsymbol{\nabla} \times \mathbf{B}=\frac{4 \pi}{c} \mathbf{j}(\mathbf{r})$ and determine $\mathbf{j}(\mathbf{r})$. This equation is Ampere's law (one of the Maxwell equations), where $\mathbf{j}(\mathbf{r})$ is the current density. Can you give a physical interpretation of your result for $\mathbf{j}(\mathbf{r})$?

[Total Points for Example Problems: 18]

Homework Problem 1: Stokes's theorem - cuboid (Cartesian coordinates) [2]

Points: (a)[1](M); (b)[1](M).
Consider the cuboid C, defined by $x \in(0, a), y \in(0, b), z \in(0, c)$, and the vector field $\mathbf{w}(\mathbf{r})=$ $\frac{1}{2}\left(y z^{2},-x z^{2}, 0\right)^{T}$. Compute the outward flux of its curl, $\Phi=\int_{S} \mathrm{~d} \mathbf{S} \cdot(\boldsymbol{\nabla} \times \mathbf{w})$, through the surface $S \equiv \partial C$ ไtop, consisting of all faces of the cube except the top one at $z=c$, in two ways:
(a) directly as a surface integral;
(b) as a line integral via Stokes's theorem.
[Check your results: if $a=2, b=3, c=\frac{1}{2}$, then $\Phi=\frac{3}{2}$.]
Homework Problem 2: Computing volume of grooved ball using Gauss's theorem [1] Points: (a)[1](E); (b)[2](A,Bonus).
The volume of a body can be computed using a surface integral, $V=\int_{S} \mathrm{~d} \mathbf{S} \cdot \frac{1}{3} \mathbf{r}$, over the body's surface, S (cf. the corresponding example problem). Use this method to compute, in spherical coordinates,
(a) the volume, V, of a ball with radius R, and
(b) the volume, $V(\epsilon, n)$, of a 'grooved ball', whose ϕ-dependent radius is described by the function $r(\phi)=R[1+\epsilon \sin (n \phi)]^{2 / 3}$, where $1 \leq n \in \mathbb{N}$ determines the number of grooves and $\epsilon<1$ their depth. [Check your result: $V\left(\frac{1}{4}, 4\right)=\frac{33}{32} V(0,0)$.]

Homework Problem 3: Gradient, divergence, curl, Laplace in spherical coordinates [5] Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](E); (d)[1](M); (e)[0.5](M); (f)[1](M); (g)[1](E)
Consider a curvilinear orthogonal coordinate system with coordinates $\mathbf{y}=\left(y^{1}, y^{2}, y^{3}\right)^{T} \equiv(\eta, \mu, \nu)^{T}$, position vector $\mathbf{r}(\mathbf{y})=\mathbf{r}(\eta, \mu, \nu)$ and coordinate basis vectors $\partial_{\eta} \mathbf{r}=\mathbf{e}_{\eta} n_{\eta}, \partial_{\mu} \mathbf{r}=\mathbf{e}_{\mu} n_{\mu}, \partial_{\nu} \mathbf{r}=$ $\mathbf{e}_{\nu} n_{\nu}$, with $\left\|\mathbf{e}_{j}\right\|=1$. Furthermore, $f(\mathbf{r})$ is a scalar field and $\mathbf{u}(\mathbf{r})=\mathbf{e}_{\eta} u^{\eta}+\mathbf{e}_{\mu} u^{\mu}+\mathbf{e}_{\nu} u^{\nu}$ is a vector field, expressed in the local basis. Then, the gradient, divergence, curl and Laplace operator are given by

Consider the spherical coordinates defined by $\mathbf{r}(r, \theta, \phi)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)^{T}$.
(a) Write down formulas for $\mathbf{e}_{r}, \mathbf{e}_{\theta}, \mathbf{e}_{\phi}$ and $n_{r}, n_{\theta}, n_{\phi}$.

Starting from the general formulas given above, find an explicit formula for
(b) ∇f,
(c) $\boldsymbol{\nabla} \cdot \mathbf{u}$,
(d) $\boldsymbol{\nabla} \times \mathbf{u}$,
(e) $\nabla^{2} f$.
(f) Verify explicitly that $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{u})=0$, using the above formulae for the divergence and the curl for general curvilinear coordinates η, μ, ν (i.e. not specifically spherical coordinates).
(g) Use spherical coordinates to compute $\boldsymbol{\nabla} f, \boldsymbol{\nabla} \cdot \mathbf{u}, \boldsymbol{\nabla} \times \mathbf{u}$ and $\boldsymbol{\nabla}^{2} f$ for the fields $f(\mathbf{r})=\|\mathbf{r}\|^{2}$ and $\mathbf{u}(\mathbf{r})=(0,0, z)^{T}$. [Check your results: if $\mathbf{r}=(1,1,1)^{T}$, then $\boldsymbol{\nabla} f=(2,2,2)^{T}, \boldsymbol{\nabla} \cdot \mathbf{u}=1$, $\boldsymbol{\nabla} \times \mathbf{u}=\mathbf{0}$ and $\boldsymbol{\nabla}^{2} f=6$.]

Homework Problem 4: Gradient, divergence, curl (cylindrical coordinates) [2]
Points: (a)[1](E); (b)[1](M)
Consider the scalar field $f(\mathbf{r})=z\left(x^{2}+y^{2}\right)$ and the vector field $\mathbf{u}(\mathbf{r})=(z x, z y, 0)^{T}$. Calculate $\boldsymbol{\nabla} f, \boldsymbol{\nabla} \cdot \mathbf{u}, \boldsymbol{\nabla} \times \mathbf{u}$ and $\boldsymbol{\nabla}^{2} f$ explicitly in
(a) Cartesian coordinates;
(b) cylindrical coordinates.

Verify that your results from (a) and (b) are consistent with one another.

Homework Problem 5: Gauss's theorem - wedge ring (spherical coordinates) [4]

Points: (a)[1](M); (b)[2](A); (c)[1](M)
Consider the 'wedge-ring', W, which is shaded grey in the sketch. This shape can be expressed in spherical coordinates by the conditions $r \in(0, R)$ and $\theta \in(\pi / 3,2 \pi / 3)$. (Such a ring-like object, with wedge-shaped inner profile and rounded outer profile, is constructed from a sphere with radius R, by removing a double cone centred on the z-axis with apex angle $\pi / 3$.) Compute the outward flux, Φ_{W}, of the vector field $\mathbf{u}(\mathbf{r})=\mathbf{e}_{r} r^{2}$ through the surface, ∂W, of the wedge-ring, in two different ways:

(a) Compute the flux integral, $\Phi_{W}=\int_{\partial W} \mathrm{~d} \mathbf{S} \cdot \mathbf{u}$. [Check your result: if $R=\frac{1}{2}$, then $\Phi_{W}=\frac{\pi}{8}$.]
(b) Use Gauss's theorem to convert the flux integral into a volume integral of the divergence $\nabla \cdot \mathbf{u}$, and compute the volume integral explicitly. Hint: In the local basis of spherical coordinates,

$$
\boldsymbol{\nabla} \cdot \mathbf{u}=\frac{1}{r^{2}} \partial_{r}\left(r^{2} u^{r}\right)+\frac{1}{r \sin \theta} \partial_{\theta}\left(\sin \theta u^{\theta}\right)+\frac{1}{r \sin \theta} \partial_{\phi} u^{\phi} .
$$

(c) For the vector field $\mathbf{w}(\mathbf{r})=-\mathbf{e}_{\theta} \cos \theta$, calculate the outward flux, $\tilde{\Phi}_{W}=\int_{\partial W} \mathrm{~d} \mathbf{S} \cdot \mathbf{w}$, through the surface of the wedge-ring, either directly or by using Gauss's theorem.
[Check your result: if $R=\frac{1}{\sqrt{3}}$, then $\tilde{\Phi}_{W}=\frac{\pi}{\sqrt{12}}$.]

Homework Problem 6: Stokes's theorem - cylinder (cylindrical coordinates) [2]
 Points: (a)[1](E); (b)[1](E)

Consider a cylinder, C, with radius R and height $a R^{2}$, centred on the z-axis, with base in the $x y$ plane, and the vector field $\mathbf{u}=\frac{x^{2}+y^{2}}{z}(-y, x, 0)^{T}$. Compute the flux of its curl, $\Phi_{T}=\int_{T} \mathrm{~d} \mathbf{S} \cdot(\boldsymbol{\nabla} \times \mathbf{u})$, through the top face, T, of the cylinder in two different ways:
(a) directly, using cylindrical coordinates; and
(b) by using Stokes's theorem to express Φ_{T} as a line integral of \mathbf{u} over the boundary, ∂T, of the cylinder top, and then computing the integral.

Homework Problem 7: Gauss's law - electric field of a point charge (spherical coordinates) [4]

Points: (a)[1](E); (b)[1](M); (c)[0.5](M); (d)[0.5](E); (e)[0.5](M); (f)[0.5](M)
The electric field of a point charge Q at the origin has the form

$$
\mathbf{E}(\mathbf{r})=\frac{Q}{r^{3}} \mathbf{r}=\mathbf{e}_{r} \frac{Q}{r^{2}}, \quad \text { with } \quad r>0, \quad r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Calculate the divergence and the curl of $\mathbf{E}(\mathbf{r})$ explicitly for $r>0$, using
(a) Cartesian coordinates; and
(b) spherical coordinates. [Compare your results from (a) and (b)!]
(c) Use spherical coordinates to compute the flux, $\Phi_{S}=\int_{S} \mathrm{~d} \mathbf{S} \cdot \mathbf{E}$, of the electric field through a sphere, S, with radius $R>0$, centered at the origin.
(d) Use Gauss's theorem and the result from (c) to compute the integral, $\int_{V} \mathrm{~d} V(\boldsymbol{\nabla} \cdot \mathbf{E})$, over the volume, V, enclosed by the sphere S described in (c).
(e) Use your results for $\boldsymbol{\nabla} \cdot \mathbf{E}$ from (a) and (d) to argue that the divergence of the field is proportional to a three-dimensional δ-function, i.e. has the form $\boldsymbol{\nabla} \cdot \mathbf{E}=C \delta^{(3)}(\mathbf{r})$. Find the constant C. [Hint: The normalization of $\delta^{(3)}(\mathbf{r})=\delta(x) \delta(y) \delta(z)$ is given by the volume integral $\int_{V} \mathrm{~d} V \delta^{(3)}(\mathbf{r})=1$, for any volume, V, that contains the origin.]
(f) Write your result from (e) in the form $\boldsymbol{\nabla} \cdot \mathbf{E}=4 \pi \rho(\mathbf{r})$, and determine $\rho(\mathbf{r})$. This equation is the (physical) Gauss's law (one of the Maxwell equations), where $\rho(\mathbf{r})$ is the charge density. Can you interpret your result in terms of $\rho(\mathbf{r})$?

> [Total Points for Homework Problems: 20]

