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Example Problem 1: Gauss’s theorem – cuboid (Cartesian coordinates) [2]
Points: (a)[1](M); (b)[1](M).

Consider the cuboid C, defined by x ∈ (0, a), y ∈ (0, b), z ∈ (0, c), and the vector field u(r) =
(1
2
x2 + x2y, 1

2
x2y2, 0)T . Compute its outward flux, Φ =

�
S

dS · u, through the cube’s surface,
S ≡ ∂C, in two ways:

(a) directly as a surface integral; and

(b) as a volume integral via Gauss’s theorem.

[Check your results: if a = 2, b = 3, c = 1
2
, then Φ = 18.]

Example Problem 2: Computing volume of barrel using Gauss’s theorem [1]
Points: (a)[1](E); (b)[2](A,Bonus).

Consider a three-dimensional body bounded by a surface S. One method of computing its volume,
V , is to express the latter as a flux integral over S by evoking Gauss’s theorem for a vector field,
u, satisfying ∇ · u = 1:

V =

�
V

dV =

�
V

dV ∇ · u Gauss
=

�
S

dS · u .

Use this method with u = 1
2
(x, y, 0)T to compute, in cylindrical coordinates, the volume of

(a) a cylinder with height h and radius R, and

(b) a cylindrical barrel with height h and z-dependent radius, ρ(z) = R[1 + a sin(πz/h)]1/2, with
z ∈ (0, h) and a > 0. [Check your result: if a = π/4, then V = 3

2
πR2h.]

Example Problem 3: Gradient, divergence, curl, Laplace in cylindrical coordinates [5]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](E); (d)[1](M); (e)[0.5](M); (f)[1](M); (g)[1](E)

We consider a curvilinear orthogonal coordinate system with coordinates y = (y1, y2, y3)T ≡
(η, µ, ν)T , position vector r(y) = r(η, µ, ν) and coordinate basis vectors ∂ηr = eηnη, ∂µr = eµnµ,
∂νr = eνnν , with ‖ej‖ = 1 and norm factors nη, nµ, nν (i.e. no summations over η, µ and ν
here!). Furthermore, let f(r) be a scalar field and u(r) = eηu

η + eµu
µ + eνu

ν a vector field,

1

https://moodle.lmu.de/course/view.php?id=17525


expressed in the local basis. Then, the gradient, divergence, curl and Laplace operator are given
by

∇f = eη
1

nη
∂ηf + +

η ηµ µ

ν ν
,

∇ · u =
1

nηnµnν
∂η (nµnνu

η) + +
η ηµ µ

ν ν
,

∇× u = eη
1

nµnν

[
∂µ (nνu

ν)− ∂ν (nµu
µ)
]

+ +
η ηµ µ

ν ν
,

∇2f = ∇ · (∇f) =
1

nηnµnν
∂η

(
nµnν
nη

∂ηf

)
+ +

η ηµ µ

ν ν
,

where circles with three arrows denote cyclical permutations of indices. Now consider the cylindrical
coordinates defined by r(ρ, φ, z) = (ρ cosφ, ρ sinφ, z)T .

(a) Write down formulas for eρ, eφ, ez and nρ, nφ, nz .

Starting from the general formulas given above, find explicit formulas for

(b) ∇f , (c) ∇ · u, (d) ∇× u, (e) ∇2f .

(f) Verify explicitly that ∇ × (∇f) = 0, using the given formulae for the gradient and curl in
general curvilinear coordinates η, µ, ν (i.e. not specifically cylindrical coordinates).

(g) Use cylindrical coordinates to compute ∇f , ∇ ·u, ∇×u and ∇2f for the fields f(r) = ‖r‖2
and u(r) = (x, y, 2z)T . [Check your results: if r = (1, 1, 1)T , then ∇f = (2, 2, 2)T , ∇·u = 4,
∇× u = 0 and ∇2f = 6.]

Example Problem 4: Gradient, divergence, curl (spherical coordinates) [2]

Consider the scalar field f(r) = 1
r

and the vector field u(r) = (e−r/a/r)r, with r = (x, y, z)T and

r =
√
x2 + y2 + z2. Calculate ∇f , ∇ · u, ∇× u and ∇2f explicitly for r > 0,

(a) in Cartesian coordinates; (b) in spherical coordinates.

Verify that your results from (a) and (b) are consistent with one another.

Example Problem 5: Gauss’s theorem – cylinder (cylindrical coordinates) [2]
Points: (a)[0.5](E); (b)[1](M); (c)[0.5](M)

Consider a vector field, u, defined in cylindrical coordinates by u(r) = eρzρ, and a cylindrical
volume, V , defined by ρ ∈ (0, R), φ ∈ (0, 2π), z ∈ (0, H) .

(a) Compute the divergence of the vector field u in cylindrical coordinates.

Compute the flux, Φ, of the vector field u through the surface, S, of the cylindrical volume V , via
two methods:

(b) by calculating the surface integral, Φ =
�
S

dS · u, explicitly;
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(c) by using Gauss’s theorem to convert the flux integral to a volume integral of ∇ · u and then
computing the volume integral explicitly.

Example Problem 6: Stokes’s theorem – magnetic dipole (spherical coordinates) [2]
Points: (a)[1](M); (b)[1](M)

Every magnetic field can be represented as B = ∇×A, where the vector field A is known as the
vector potential of the field. For a magnetic dipole,

A =
1

c

m× r

r3
, B =

1

c

3r(m · r)−mr2

r5
,

where c is the speed of light. Let the constant dipole moment m be oriented in the z-direction,
m = ezm. Let H be a hemisphere with radius R, oriented with base surface in the xy-plane,
symmetry axis along the positive z-axis and ‘north pole’ on the latter. Compute the flux integral
of the magnetic field through this hemisphere, ΦH =

�
H

dS ·B, in two different ways:

(a) directly, using spherical coordinates;

(b) use B = ∇×A and Stokes’s theorem to express Φ as a line integral of A over the boundary
of the surface of H, and evaluate the line integral.

Example Problem 7: Stokes’s theorem – magnetic field of a current carrying conductor
(cylindrical coordinates) [4]
Points: (a)[1](E); (b)[1](M); (c)[0.5](M); (d)[0.5](E); (e)[0.5](M); (f)[0.5](M)

Let an infinitely long, infinitesimally thin conductor be oriented along the z-axis and carry a current
I. It generates a magnetic field of the following form:

B(r) =
2I

c

1

x2 + y2

 −yx
0

 = eφ
2I

c

1

ρ
, for ρ =

√
x2 + y2 > 0.

Calculate the divergence and rotation of B(r) explicitly for ρ > 0, using

(a) Cartesian coordinates; and

(b) cylindrical coordinates. [Compare your results from (a) and (b)!]

(c) Use cylindrical coordinates to compute the line integral,
�
γ

dr ·B, of the magnetic field along
the edge, γ, of a circular disk, D, with radius R > 0, centred on the z-axis, and oriented
parallel to the xy-plane.

(d) Use Stokes’s theorem and the result from (c) to compute the flux integral,
�
D

dS · (∇×B),
of the curl of the magnetic field over the disk D prescribed in (c).

(e) Use your results for ∇×B from (a) and (d) to argue that the curl of the field is proportional
to a two-dimensional δ-function, ∇×B = ez Cδ(x)δ(y). Find the constant C. [Hint: The
two-dimensional δ-function is normalized such that

�
D

dS δ(x)δ(y) = 1 for the area integral
over any surface D which lies parallel to the xy-plane and intersects the z-axis.]
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(f) Write the result obtained in (e) in the form ∇ × B = 4π
c
j(r) and determine j(r). This

equation is Ampere’s law (one of the Maxwell equations), where j(r) is the current density.
Can you give a physical interpretation of your result for j(r)?

[Total Points for Example Problems: 18]

Homework Problem 1: Stokes’s theorem – cuboid (Cartesian coordinates) [2]
Points: (a)[1](M); (b)[1](M).

Consider the cuboid C, defined by x∈ (0, a), y ∈ (0, b), z ∈ (0, c), and the vector field w(r) =
1
2
(yz2,−xz2, 0)T . Compute the outward flux of its curl, Φ =

�
S

dS · (∇×w), through the surface
S ≡ ∂C\top, consisting of all faces of the cube except the top one at z = c, in two ways:

(a) directly as a surface integral;

(b) as a line integral via Stokes’s theorem.

[Check your results: if a = 2, b = 3, c = 1
2
, then Φ = 3

2
.]

Homework Problem 2: Computing volume of grooved ball using Gauss’s theorem [1]
Points: (a)[1](E); (b)[2](A,Bonus).

The volume of a body can be computed using a surface integral, V =
�
S

dS · 1
3
r, over the body’s

surface, S (cf. the corresponding example problem). Use this method to compute, in spherical
coordinates,

(a) the volume, V , of a ball with radius R, and

(b) the volume, V (ε, n), of a ‘grooved ball’, whose φ-dependent radius is described by the function

r(φ) = R
[
1 + ε sin

(
nφ
)]2/3

, where 1 ≤ n ∈ N determines the number of grooves and ε < 1
their depth. [Check your result: V (1

4
, 4) = 33

32
V (0, 0).]

Homework Problem 3: Gradient, divergence, curl, Laplace in spherical coordinates [5]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](E); (d)[1](M); (e)[0.5](M); (f)[1](M); (g)[1](E)

Consider a curvilinear orthogonal coordinate system with coordinates y = (y1, y2, y3)T ≡ (η, µ, ν)T ,
position vector r(y) = r(η, µ, ν) and coordinate basis vectors ∂ηr = eηnη, ∂µr = eµnµ, ∂νr =
eνnν , with ‖ej‖ = 1 . Furthermore, f(r) is a scalar field and u(r) = eηu

η + eµu
µ + eνu

ν is a
vector field, expressed in the local basis. Then, the gradient, divergence, curl and Laplace operator
are given by

∇f = eη
1

nη
∂ηf + +

η ηµ µ

ν ν
,

∇ · u =
1

nηnµnν
∂η (nµnνu

η) + +
η ηµ µ

ν ν
,

∇× u = eη
1

nµnν

[
∂µ (nνu

ν)− ∂ν (nµu
µ)
]

+ +
η ηµ µ

ν ν
,

∇2f = ∇ · (∇f) =
1

nηnµnν
∂η

(
nµnν
nη

∂ηf

)
+ +

η ηµ µ

ν ν
.

Consider the spherical coordinates defined by r(r, θ, φ)=(r sin θ cosφ, r sin θ sinφ, r cos θ)T .
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(a) Write down formulas for er, eθ, eφ and nr, nθ, nφ.

Starting from the general formulas given above, find an explicit formula for

(b) ∇f , (c) ∇ · u, (d) ∇× u, (e) ∇2f .

(f) Verify explicitly that ∇ · (∇× u) = 0 , using the above formulae for the divergence and the
curl for general curvilinear coordinates η, µ, ν (i.e. not specifically spherical coordinates).

(g) Use spherical coordinates to compute ∇f , ∇ ·u, ∇×u and ∇2f for the fields f(r) = ‖r‖2
and u(r) = (0, 0, z)T . [Check your results: if r = (1, 1, 1)T , then ∇f = (2, 2, 2)T , ∇ ·u = 1,
∇× u = 0 and ∇2f = 6.]

Homework Problem 4: Gradient, divergence, curl (cylindrical coordinates) [2]
Points: (a)[1](E); (b)[1](M)

Consider the scalar field f(r) = z(x2 + y2) and the vector field u(r) = (zx, zy, 0)T . Calculate
∇f , ∇ · u, ∇× u and ∇2f explicitly in

(a) Cartesian coordinates; (b) cylindrical coordinates.

Verify that your results from (a) and (b) are consistent with one another.

Homework Problem 5: Gauss’s theorem – wedge ring (spherical coordinates) [4]
Points: (a)[1](M); (b)[2](A); (c)[1](M)

Consider the ‘wedge–ring’, W , which is shaded grey in the
sketch. This shape can be expressed in spherical coordinates
by the conditions r ∈ (0, R) and θ ∈ (π/3, 2π/3). (Such a
ring-like object, with wedge-shaped inner profile and roun-
ded outer profile, is constructed from a sphere with radius
R, by removing a double cone centred on the z-axis with
apex angle π/3.) Compute the outward flux, ΦW , of the
vector field u(r) = err

2 through the surface, ∂W , of the
wedge–ring, in two different ways:

z

3
π

3
π

3
π

(a) Compute the flux integral, ΦW =
�
∂W

dS · u. [Check your result: if R = 1
2
, then ΦW = π

8
.]

(b) Use Gauss’s theorem to convert the flux integral into a volume integral of the divergence ∇·u,
and compute the volume integral explicitly. Hint: In the local basis of spherical coordinates,

∇ · u =
1

r2
∂r
(
r2ur

)
+

1

r sin θ
∂θ
(
sin θuθ

)
+

1

r sin θ
∂φu

φ .

(c) For the vector field w(r) = −eθ cos θ, calculate the outward flux, Φ̃W =
�
∂W

dS ·w, through
the surface of the wedge–ring, either directly or by using Gauss’s theorem.
[Check your result: if R = 1√

3
, then Φ̃W = π√

12
.]
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Homework Problem 6: Stokes’s theorem – cylinder (cylindrical coordinates) [2]
Points: (a)[1](E); (b)[1](E)

Consider a cylinder, C, with radius R and height aR2, centred on the z-axis, with base in the xy-
plane, and the vector field u = x2+y2

z
(−y, x, 0)T . Compute the flux of its curl, ΦT =

�
T

dS·(∇×u),
through the top face, T , of the cylinder in two different ways:

(a) directly, using cylindrical coordinates; and

(b) by using Stokes’s theorem to express ΦT as a line integral of u over the boundary, ∂T , of the
cylinder top, and then computing the integral.

Homework Problem 7: Gauss’s law – electric field of a point charge (spherical coordi-
nates) [4]
Points: (a)[1](E); (b)[1](M); (c)[0.5](M); (d)[0.5](E); (e)[0.5](M); (f)[0.5](M)

The electric field of a point charge Q at the origin has the form

E(r) =
Q

r3
r = er

Q

r2
, with r > 0, r =

√
x2 + y2 + z2 .

Calculate the divergence and the curl of E(r) explicitly for r > 0, using

(a) Cartesian coordinates; and

(b) spherical coordinates. [Compare your results from (a) and (b)!]

(c) Use spherical coordinates to compute the flux, ΦS =
�
S

dS · E, of the electric field through
a sphere, S, with radius R > 0, centered at the origin.

(d) Use Gauss’s theorem and the result from (c) to compute the integral,
�
V

dV (∇ · E), over
the volume, V , enclosed by the sphere S described in (c).

(e) Use your results for ∇ · E from (a) and (d) to argue that the divergence of the field is
proportional to a three-dimensional δ-function, i.e. has the form ∇ · E = C δ(3)(r). Find
the constant C. [Hint: The normalization of δ(3)(r) = δ(x)δ(y)δ(z) is given by the volume
integral

�
V

dV δ(3)(r) = 1, for any volume, V, that contains the origin.]

(f) Write your result from (e) in the form ∇ ·E = 4πρ(r), and determine ρ(r). This equation is
the (physical) Gauss’s law (one of the Maxwell equations), where ρ(r) is the charge density.
Can you interpret your result in terms of ρ(r)?

[Total Points for Homework Problems: 20]
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