MÜNCHEN

FAKUltÄt für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 13: Theorems of Gauss and Stokes

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 2, 4, 6 (7, if time permits).

Videos exist for example problems 4 (V3.7.7), 7 (V3.7.11).

Optional Problem 1: Gauss's theorem - cube (Cartesian coordinates) [2]

Points: (a)[1](M); (b)[1](M).
Consider the cube C, defined by $x \in(0, a), y \in(0, a), z \in(0, a)$, and the vector field $\mathbf{u}(\mathbf{r})=$ $\left(x^{2}, y^{2}, z^{2}\right)^{T}$. Compute its outward flux, $\Phi=\int_{S} \mathrm{~d} \mathbf{S} \cdot \mathbf{u}$, through the cube's surface, $S \equiv \partial C$, in two ways:
(a) directly as a surface integral;
(b) as a volume integral via Gauss's theorem.
[Check your result: if $a=2$, then $\Phi=48$.]

Optional Problem 2: Stokes's theorem - cube (Cartesian coordinates) [2] Points: (a)[1](M); (b)[1](M).

Consider the cube C, defined by $x \in(0, a), y \in(0, a), z \in(0, a)$, and the vector field $\mathbf{w}(\mathbf{r})=$ $\left(-y^{2}, x^{2}, 0\right)^{T}$. Compute the outward flux of its curl, $\Phi=\int_{S} \mathrm{~d} \mathbf{S} \cdot(\boldsymbol{\nabla} \times \mathbf{w})$, through the surface $S \equiv \partial C \backslash$ top, consisting of all faces of the cube except the top one at $z=a$, in two ways:
(a) directly as a surface integral;
(b) as a line integral via Stokes's theorem.
[Check your result: if $a=2$, then $\Phi=-16$.]
Optional Problem 3: Gauss's theorem - electrical dipole potential (spherical coordinates) [4]
Points: (a)[0.5](E); (b)[0.5](E); (c)[1](M); (d)[1](M); (e)[0.5](M); (f)[0.5](M).
The potential of an electric dipole with dipole moment $\mathbf{p}=p \mathbf{e}_{z}$ is given by

$$
\Phi(\mathbf{r})=\frac{\mathbf{p} \cdot \mathbf{r}}{r^{3}}=\frac{p z}{r^{3}}
$$

(a) Calculate the electric field, $\mathrm{E}=-\nabla \Phi(\mathbf{r})$, explicitly in Cartesian coordinates.
(b) Represent $\Phi(\mathbf{r})$ in spherical coordinates and calculate the electric field explicitly in spherical coordinates. Compare this result with the result obtained in (a).
Hint: $\mathbf{e}_{z}=\cos \theta \mathbf{e}_{r}-\sin \theta \mathbf{e}_{\theta}$.
(c) Calculate the divergence and the curl of the electric field explicitly in Cartesian coordinates.
(d) Calculate the divergence and the curl of the electric field explicitly in spherical coordinates. [Compare the results obtained in (b) and (c)!]
(e) According to the (physical) law of Gauss, we have $\int_{S} \mathrm{~d} \mathbf{S} \cdot \mathbf{E}=4 \pi Q$, where Q is the total charge contained within the volume of S. Now consider a sphere, S, of radius R, centered at the origin. Calculate Q by performing the flux integral over the sphere. Does your result for Q make physical sense? Explain!
(f) Now compute the flux integral from (e) in an alternative manner: convert it via the (mathematical) theorem of Gauss into a volume integral over $\boldsymbol{\nabla} \cdot \mathbf{E}$, and evaluate this integral using the result from (d). Comment on the behavior of the integrand at $r=0$.

