
LUDWIGMAXIMILIANS UNIVERSITÄT MÜNCHEN

FAKUltÄt für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 12.2: Fourier Integrals, Differential Equations

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 3, 4, 5 . Videos exist for example problems 2 (C6.3.3), 3 (C7.5.1).

Optional Problem 1: Coupled oscillations of two point masses [5]

Points: (a)[0.5](E); (b)[0.5](E); (c)[2](E); (d)[2](M).
Consider a system of two point masses, with masses m_{1} and m_{2}, which are connected to two fixed walls and to each other by means of three springs (spring constants K_{1}, K_{12} and K_{2}) (see sketch). The equations of motion for both masses are

$$
\begin{aligned}
& m_{1} \ddot{x}^{1}=-K_{1} x^{1}-K_{12}\left(x^{1}-x^{2}\right), \\
& m_{2} \ddot{x}^{2}=-K_{2} x^{2}-K_{12}\left(x^{2}-x^{1}\right) .
\end{aligned}
$$

(a) Bring the system of equations into the form $\ddot{\mathbf{x}}(t)=-A \cdot \mathbf{x}(t)$, with $\mathbf{x}=\left(x^{1}, x^{2}\right)^{T}$. What is the form of matrix A ?
[Check your result: $\operatorname{det} A=\left[K_{1} K_{2}+\left(K_{1}+K_{2}\right) K_{12}\right] /\left(m_{1} m_{2}\right)$.]
(b) Using the ansatz $\mathbf{x}(t)=\mathbf{v} \cos (\omega t)$, this system of differential equations can be converted to an algebraic eigenvalue problem. Find the form of this eigenvalue problem.
(c) Set $m_{1}=m_{2}, K_{2}=m_{1} \Omega^{2}, K_{1}=4 K_{2}$ and $K_{12}=2 K_{2}$ (note that Ω has the dimension of frequency). Find the eigenvalues, λ_{j}, and the eigenvectors, \mathbf{v}_{j}, of the matrix $\frac{1}{\Omega^{2}} A$, and therefore the corresponding eigenfrequencies, ω_{j}, and eigenmodes, $\mathbf{x}_{j}(t)$, of the coupled masses (with $\mathbf{x}_{j}(0)=\mathbf{v}_{j}$). [Check your result: $\lambda_{1}+\lambda_{2}=9$.]
(d) Make a sketch of both eigenmodes $\mathbf{x}_{j}(t)$ which shows both the $j=1$ and 2 cases on the same set of axes. Comment on the physical behaviour that you observe!

Optional Problem 2: Coupled oscillations of three point masses [5]

Points: (a)[0.5](E); (b)[0.5](E); (c)[2](E); (d)[2](M)
Consider a system consisting of three masses, m_{1}, m_{2} and m_{3}, coupled through two identical springs, each with spring constant k (see sketch). The equations of motion for the three masses read:

$$
\begin{aligned}
& m_{1} \ddot{x}^{1}=-k\left(x^{1}-x^{2}\right), \\
& m_{2} \ddot{x}^{2}=-k\left(\left[x^{2}-x^{1}\right]-\left[x^{3}-x^{2}\right]\right), \\
& m_{3} \ddot{x}^{3}=-k\left(x^{3}-x^{2}\right),
\end{aligned}
$$

(a) Bring this system of equations into the form $\ddot{\mathbf{x}}(t)=-A \cdot \mathbf{x}(t)$, with $\mathbf{x}=\left(x^{1}, x^{2}, x^{3}\right)^{T}$. What is the matrix A ? [Check your result: $\operatorname{det} A=0$.]
(b) By making the ansatz $\mathbf{x}(t)=\mathbf{v} \cos (\omega t)$, this system of equations can be reduced to an algebraic eigenvalue problem. Find this eigenvalue equation.
(c) From now on, set $m_{1}=m_{3}=m, m_{2}=\frac{2}{3} m$, and $k=m \Omega^{2}$. (Ω has the dimension of a frequency.) Find the eigenvalues, λ_{j}, and normalized eigenvectors, \mathbf{v}_{j}, of the matrix $\frac{1}{\Omega^{2}} A$, and thus the corresponding eigenfrequencies, ω_{j}, and eigenmodes, $\mathbf{x}_{j}(t)$, of the coupled masses (with $\mathbf{x}_{j}(0)=\mathbf{v}_{j}$). [Check your result: $\lambda_{1}+\lambda_{2}+\lambda_{3}=5$.]
(d) Sketch the three eigenmodes $\mathbf{x}_{j}(t)$ as functions of time: for each $j=1,2$ and 3, make a separate sketch that displays the three components, $x_{j}^{1}(t), x_{j}^{2}(t)$ and $x_{j}^{3}(t)$, on the same axis. Comment on the physical behaviour that you observe!

