LUDWIGMAXIMILIANS UNIVERSITÄT MÜNCHEN

Fakultät für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23
Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 11: Delta Function and Fourier Series

Posted: Mo 09.01.23 Central Tutorial: Th 12.01.23 Due: Th 19.01.23, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 1, 3(a), 4, 5.

Videos exist for example problems 4 (C6.2.1), 5 (C6.3.5).

Example Problem 1: Integrals with δ function [3]

Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](M); (d)[1](M); (e)[0.1](E).
Calculate the following integrals (with $a \in \mathbb{R}$):
(a) $\quad I_{1}(a)=\int_{-\infty}^{\infty} \mathrm{d} x \delta(x-\pi) \sin (a x)$
(b) $\quad I_{2}(a)=\int_{\mathbb{R}^{3}} \mathrm{~d} x^{1} \mathrm{~d} x^{2} \mathrm{~d} x^{3} \delta(\mathbf{x}-\mathbf{y})\|\mathbf{x}\|^{2}, \quad$ with $\mathbf{y}=(a, 1,2)^{T}$
(c) $\quad I_{3}(a)=\int_{0}^{a} \mathrm{~d} x \delta(x-\pi) \frac{1}{a+\cos ^{2}(x / 2)}$
(d) $\quad I_{4}(a)=\int_{0}^{3} \mathrm{~d} x \delta\left(x^{2}-6 x+8\right) \sqrt{\mathrm{e}^{a x}}$
(e) $\quad I_{5}(a)=\int_{\mathbb{R}^{2}} \mathrm{~d} x^{1} \mathrm{~d} x^{2} \delta(\mathbf{x}-a \mathbf{y}) \mathbf{x} \cdot \mathbf{y}, \quad$ with $\mathbf{y}=(1,3)^{T} . \quad$ Remark: $\delta(\mathbf{x})=\delta\left(x^{1}\right) \delta\left(x^{2}\right)$.
[Check your results: $I_{1}\left(\frac{1}{2}\right)=1, I_{2}(1)=6, I_{3}(\pi)=\frac{1}{2 \pi}, I_{4}(\ln 2)=1, I_{5}(1)=10$.]

Example Problem 2: Lorentz representation of the Dirac δ-function [4]

Points: [4](M).
Explain why in the limit $\epsilon \rightarrow 0^{+}$, the Lorentz peak function $\delta^{\epsilon}(x)$ given below is a representation of the Dirac delta function $\delta(x)$. To this end, compute (i) the height, (ii) the width x_{w} (defined by $\left.\delta^{\epsilon}\left(x_{\mathrm{w}}\right)=\frac{1}{2} \delta^{\epsilon}(0), x_{\mathrm{w}}>0\right)$ and (iii) the area of the peak. How do these quantities behave for $\epsilon \rightarrow$ 0^{+}? Furthermore, calculate the functions (iv) $\Theta^{\epsilon}(x)=\int_{-\infty}^{x} \mathrm{~d} x^{\prime} \delta^{\epsilon}\left(x^{\prime}\right)$ and (v) $\delta^{\prime \epsilon}(x)=\frac{\mathrm{d}}{\mathrm{d} x} \delta^{\epsilon}(x)$. Sketch $\Theta^{\epsilon}, \epsilon \delta^{\epsilon}$ and $\epsilon^{2} \delta^{\prime \epsilon}$ as functions of x / ϵ in three separate sketches (one beneath the other, with aligned y-axes and the same scaling for the x / ϵ-axes).

Lorentz-Peak: $\delta^{\epsilon}(x)=\frac{\epsilon / \pi}{x^{2}+\epsilon^{2}}$.

Hint: When calculating the peak weight, use the substitution $x=\epsilon \tan y$.
Remark: Lorentzian functions are common in physics. Example: the energy spectrum of a discrete quantum state, which is weakly coupled to the environment, has the form of a Lorentzian function, the width of which is determined by the strength of the coupling to the environment. As the coupling strength approaches zero, we obtain a δ peak.

Example Problem 3: Series representation of hyperbolic functions [3]

Points: [3](E).
Compute the following series for $y \in \mathbb{R}^{+}$, by expressing each as a geometric series in $\omega \equiv \mathrm{e}^{-y}$.
(a) $\sum_{n=0}^{\infty} \mathrm{e}^{-y(n+1 / 2)}$,
(b) $\quad \sum_{n=0}^{\infty}(-1)^{n} \mathrm{e}^{-y(n+1 / 2)}$,
(c) $\sum_{n \in \mathbb{Z}} \mathrm{e}^{-y|n|}$.

Example Problem 4: Fourier series of the sawtooth function [2]

Points: [2](M).
Let $f(x)$ be a sawtooth function, defined by $f(x)=x$ for $-\pi<x<\pi, f(\pm \pi)=0$ and $f(x+2 \pi)=f(x)$. Calculate the Fourier coefficients \tilde{f}_{n} in the representation $f(x)=\frac{1}{L} \sum_{n} \mathrm{e}^{\mathrm{i} k_{n} x} \tilde{f}_{n}$. How should k_{n} and L be chosen? Sketch the function $f(x)$, as well as the sum of the $n=1$ and $n=-1$ terms of the Fourier series (i.e. the first term of the corresponding sine series). [Check your result: $\tilde{f}_{6}=\frac{1}{3} \mathrm{i} \pi$.]

Example Problem 5: Parseval's identity and convolution [7]

Points: (a)[3](M); (b)[2](M); (c)[2](M).
Let $f(x)$ be a sawtooth function, defined by $f(x)=x$ for $-\pi<x<\pi, f(\pm \pi)=0$ and $f(x+2 \pi)=f(x)$. In the Fourier representation $f(x)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} \mathrm{e}^{\mathrm{i} n x} \tilde{f}_{n}$, its Fourier coefficients are $\tilde{f}_{0}=0, \tilde{f}_{n \neq 0}=2 \pi \mathrm{i}(-1)^{n} / n$. (See example problem 4.) Let $g(x)=\sin x$.
(a) Using this concrete example, check that Parseval's identity holds, by computing both the integral $\int_{-\pi}^{\pi} \mathrm{d} x \bar{f}(x) g(x)$ and the sum $(1 / 2 \pi) \sum_{n} \overline{\tilde{f}}_{n} \tilde{g}_{n}$ explicitly.
(b) Prove the famous identity $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, by computing the integral $\int_{-\pi}^{\pi} \mathrm{d} x f^{2}(x)$ in two ways: first, by direct integration, and second, by expressing it as a sum over Fourier modes using Parseval's identity.
(c) Calculate the convolution $(f * g)(x)$ both by directly computing the convolution integral and by using the convolution theorem and a summation of Fourier coefficients.
[Total Points for Example Problems: 19]
Homework Problem 1: Integrals with δ function [4]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](M); (d)[1](M); (e)[1](A); (f)[0.5](E).

Calculate the following integrals (with $a \in \mathbb{R}, n \in \mathbb{N}$):
(a) $\quad I_{1}(a)=\int_{1}^{4} \mathrm{~d} x \delta(x-2)\left(a^{x}+3\right)$
(b) $\quad I_{2}(a)=\int_{\mathbb{R}^{2}} \mathrm{~d} x^{1} \mathrm{~d} x^{2} \delta(\mathbf{x}-\mathbf{y})\left(x^{1}+x^{2}\right)^{2} \mathrm{e}^{3-x^{1}}, \quad$ with $\quad \mathbf{y}=(3, a)^{T}$
(c) $I_{3}(a)=\int_{-1}^{1} \mathrm{~d} x \sqrt{2+2 x} \delta(a x-2)$, with $\quad a \neq 0$
(d) $\quad I_{4}(a)=\int_{-\infty}^{\infty} \mathrm{d} x \delta\left(3^{-x}-9\right)\left(1-x^{a}\right)$
(e) $\quad I_{5}(n)=\int_{-\pi / 2}^{9 \pi / 2} \mathrm{~d} x \cos (n x) \delta(\sin x)$
(f) $\quad I_{6}(a)=\int_{\mathbb{R}^{2}} \mathrm{~d} x^{1} \mathrm{~d} x^{2} \delta(\mathbf{x}-\mathbf{y}) \mathrm{e}^{\|\mathbf{x}\|^{2}}$, with $\mathbf{y}=(a,-a)^{T}$
[Check your results: $I_{1}(3)=12, I_{2}(-5)=4, I_{3}(2)=\frac{1}{2}, I_{4}(3)=\frac{1}{\ln 3}, I_{5}(7)=1, I_{6}\left(\frac{1}{\sqrt{2}}\right)=$ e.]
Homework Problem 2: Representations of the Dirac δ-function [4]
Points: [4](M).
Explain why in the limit $\epsilon \rightarrow 0^{+}$, the peak-shaped function $\delta^{\epsilon}(x)$ given below is a representation of the Dirac delta function $\delta(x)$. To this end, compute (i) the height, (ii) the width x_{w} (defined by $\left.\delta^{\epsilon}\left(x_{\mathrm{w}}\right)=\frac{1}{2} \delta^{\epsilon}(0), x_{\mathrm{w}}>0\right)$ and (iii) the area of the peak. How do these quantities behave for $\epsilon \rightarrow$ 0^{+}? Furthermore, calculate the functions (iv) $\Theta^{\epsilon}(x)=\int_{-\infty}^{x} \mathrm{~d} x^{\prime} \delta^{\epsilon}\left(x^{\prime}\right)$ and (v) $\delta^{\prime \epsilon}(x)=\frac{\mathrm{d}}{\mathrm{d} x} \delta^{\epsilon}(x)$. Sketch $\Theta^{\epsilon}, \epsilon \delta^{\epsilon}$ and $\epsilon^{2} \delta^{\prime \epsilon}$ as functions of x / ϵ in three separate sketches (one beneath the other, with aligned y-axes and the same scaling for the x / ϵ-axes).

Derivative of the Fermi function: $\quad \delta^{\epsilon}(x)=\frac{1}{4 \epsilon} \frac{1}{\cosh ^{2}[x /(2 \epsilon)]}$.
Hint: When calculating the peak weight, use the substitution $y=\tanh [x /(2 \epsilon)]$.
Remark: In condensed matter physics and nuclear physics the function $\delta^{\epsilon}(x)$ plays an important role: it arises as the derivative of the so-called Fermi function, $f(E)=\frac{1}{\mathrm{e}^{E / k_{\mathrm{B}} T}+1}=\Theta^{k_{\mathrm{B}} T}(-E)$, with $-\frac{\mathrm{d}}{\mathrm{d} E} f(E)=\delta^{k_{\mathrm{B}} T}(E)$, where $f(E)$ is the occupation probability of a fermionic single-particle state with energy E as function of the system's temperature T (k_{B} is the so-called Boltzmann constant). In the limit of zero temperature, $T \rightarrow 0$, the derivative of the Fermi function reduces to a Dirac δ-function.

Homework Problem 3: Series representation of the periodic δ function [5]
Points: (a)[0.5](E); (b)[0.5](M); (c)[1.5](A); (d)[0.5](E); (e)[1](A); (f)[0.5](E); (g)[0.5](E)
Show that the function $\delta^{\epsilon}(x)$, defined by

$$
\begin{equation*}
\delta^{\epsilon}(x)=\frac{1}{L} \sum_{k} \mathrm{e}^{\mathrm{i} k x-\epsilon|k|}, \quad k=2 \pi n / L, \quad n \in \mathbb{Z}, \quad x, \epsilon, L \in \mathbb{R}, \quad 0<\epsilon \ll L \tag{1}
\end{equation*}
$$

has the following properties:
(a) $\delta^{\epsilon}(x)=\delta^{\epsilon}(x+L)$.
(b) $\quad \int_{-L / 2}^{L / 2} \mathrm{~d} x \delta^{\epsilon}(x)=1$. Hint: Treat $k=0$ and $k \neq 0$ separately in \sum_{k}.
(c) $\delta^{\epsilon}(x)=\frac{1}{2 L}\left[\frac{1+w}{1-w}+\frac{1+\bar{w}}{1-\bar{w}}\right]=\frac{1}{L} \frac{1-\mathrm{e}^{-4 \pi \epsilon / L}}{1+\mathrm{e}^{-4 \pi \epsilon / L}-2 \mathrm{e}^{-2 \pi \epsilon / L} \cos (2 \pi x / L)}$,
where $w=\mathrm{e}^{2 \pi(\mathrm{i} x-\epsilon) / L}$ and $\bar{w}=\mathrm{e}^{2 \pi(-\mathrm{i} x-\epsilon) / L}$.
Hint: Write out the sum in Eq. (1) as a geometric series in powers of w and \bar{w}.
(d) $\quad \lim _{\epsilon \rightarrow 0} \delta^{\epsilon}(x)=0 \quad$ for $x \neq m L$, with $m \in \mathbb{Z}$. Hint: Start from Eq. (4).
(e) $\quad \delta^{\epsilon}(x) \simeq \frac{\epsilon / \pi}{\epsilon^{2}+x^{2}} \quad$ for $|x| / L \ll 1$ and $\epsilon / L \ll 1$.

Hint: Taylor expand the numerator in Eq. (4) up to first order in $\tilde{\epsilon}=2 \pi \epsilon / L$, and the denominator up to second order in $\tilde{\epsilon}$ and $\tilde{x}=2 \pi x / L$.
(f) Sketch the function $\delta^{\epsilon}(x)$ qualitatively for $\epsilon / L \ll 1$ and $x \in\left[-\frac{7}{2} L, \frac{7}{2} L\right]$.
(g) Deduce that in the limit of $\epsilon \rightarrow 0, \delta^{\epsilon}(x)$ represents a periodic δ function, with

$$
\delta^{0}(x)=\frac{1}{L} \sum_{k} \mathrm{e}^{\mathrm{i} k x}=\sum_{m \in \mathbb{Z}} \delta(x-m L)
$$

Homework Problem 4: Fourier series [4]

Points: (a)[2](E); (b)[2](M)
Determine the Fourier series for the following periodic functions, i.e. calculate the Fourier coefficients \tilde{f}_{n} in the representation $f(x)=\frac{1}{L} \sum_{n} \mathrm{e}^{\mathrm{i} k_{n} x} \tilde{f}_{n}$. How should k_{n} and L be chosen in each case? Sketch the functions first.
(a) $f(x)=|\sin x|$,
(b) $f(x)=\left\{\begin{array}{llr}4 x & \text { for } & -\pi \leq x<0, \\ 2 x & \text { for } & 0 \leq x<\pi,\end{array}\right.$ and $f(x+2 \pi)=f(x)$.
[Check your results: (a) $\tilde{f}_{3}=-\frac{2}{35}$, (b) $\tilde{f}_{3}=\frac{2}{9}(2-9 \mathbf{i} \pi)$.]

Homework Problem 5: Computing an infinite series using the convolution theorem [1]

 Points: (a)[0.5](E); (b)[0.5](M); (c)[2](A,Bonus)This problem illustrates how a complicated sum may be calculated explicitly using the convolution theorem.
Consider the periodic function $f_{\gamma}(t)=f_{\gamma}(0) \mathrm{e}^{\gamma t}$ for $t \in[0, \tau)$ and $f(t+\tau)=f(t)$, with $f_{\gamma}(0)=$ $1 /\left(\mathrm{e}^{\gamma \tau}-1\right)$. Take both γ and τ to be positive numbers, so that $f_{ \pm \gamma}(0) \gtrless 0$.
(a) Consider a Fourier series representation of $f_{\gamma}(t)$ of the following form:

$$
f_{\gamma}(t)=\frac{1}{\tau} \sum_{\omega_{n}} \mathrm{e}^{-\mathrm{i} \omega_{n} t} \tilde{f}_{\gamma, n}, \quad \tilde{f}_{\gamma, n}=\int_{0}^{\tau} d t \mathrm{e}^{\mathrm{i} \omega_{n} t} f_{\gamma}(t), \quad \text { with } \quad \omega_{n}=2 \pi n / \tau, \quad n \in \mathbb{Z}
$$

Show that the Fourier coefficients are given by $\tilde{f}_{\gamma, n}=1 /\left(\mathrm{i} \omega_{n}+\gamma\right)$.
(b) Use this result and the convolution theorem to express the following series as a convolution of f_{γ} and $f_{-\gamma}$:

$$
\begin{equation*}
S(t)=\sum_{n=-\infty}^{\infty} \frac{\mathrm{e}^{-\mathrm{i} \omega_{n} t}}{\omega_{n}^{2}+\gamma^{2}}=-\tau \int_{0}^{\tau} d t^{\prime} f_{\gamma}\left(t-t^{\prime}\right) f_{-\gamma}\left(t^{\prime}\right) \tag{5}
\end{equation*}
$$

(c) Sketch the functions $f_{\gamma}\left(t-t^{\prime}\right)$ and $f_{-\gamma}\left(t^{\prime}\right)$ occurring in the convolution theorem as functions of t^{\prime}, for $t^{\prime} \in[-\tau, 2 \tau]$. Assume $0 \leq t \leq \tau$ and show that the convolution integral (5) is given by the following expression:

$$
S(t)=\frac{\tau[\sinh (\gamma(t-\tau))-\sinh (\gamma t)]}{2 \gamma[1-\cosh (\gamma \tau)]}
$$

Hint: The integral $\int_{0}^{\tau} \mathrm{d} t^{\prime}$ involves an interval of t^{\prime} values for which $t-t^{\prime}$ lies outside of $[0, \tau)$. It is therefore advisable to split the integral into two parts, with $\int_{0}^{t} \mathrm{~d} t^{\prime}$ and $\int_{t}^{\tau} \mathrm{d} t^{\prime}$.

