Fakultät für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 11: Delta Function and Fourier Series

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 1, 3(a), 4, 5.

Videos exist for example problems 4 (C6.2.1), 5 (C6.3.5).

Optional Problem 1: Cosine Series [4]

Points: (a)[1](E); (b)[1](E); (c)[2](M).
For the function $f: I \rightarrow \mathbb{C}, \underset{\sim}{x} \mapsto f(x)$, with $I=[-L / 2, L / 2]$, consider the Fourier series representation $f(x)=\frac{1}{L} \sum_{k} \mathrm{e}^{\mathrm{i} k x} \tilde{f}_{k}$, with $k=\frac{2 \pi n}{L}$ and $n \in \mathbb{Z}$.
(a) Show that the Fourier coefficients are given by $\tilde{f}_{k}=\int_{-L / 2}^{L / 2} \mathrm{~d} x \mathrm{e}^{-\mathrm{i} k x} f(x)$.
(b) Now let f be an even function, i.e. $f(x)=f(-x)$. Show that then the Fourier coefficients are given by $\tilde{f}_{k}=2 \int_{0}^{L / 2} \mathrm{~d} x \cos (k x) f(x)$, and furthermore, that $f(x)$ can be represented by a cosine series of the form $f(x)=\frac{1}{2} a_{0}+\sum_{k>0} a_{k} \cos (k x)$, with $k=\frac{2 \pi n}{L}$ and $n \in \mathbb{N}_{0}$. Find a_{k}, expressed through \tilde{f}_{k}.
(c) Now consider the following function: $f(x)=1$ for $|x|<L / 4, f(x)=-1$ for $L / 4<|x|<$ $L / 2$. Sketch it, and compute the coefficients \tilde{f}_{k} and a_{k} of the corresponding Fourier and cosine series. [Check your result: if $k=\frac{2 \pi}{L}$, then $a_{k}=\frac{4}{\pi}$ and $\tilde{f}_{k}=\frac{2 L}{\pi}$.]

Optional Problem 2: Sine Series [3]

Points: (a)[1](E); (b)[2](M)
For the function $f: I \rightarrow \mathbb{C}, x \mapsto f(x)$, with $I=[-L / 2, L / 2]$, consider the Fourier series representation $f(x)=\frac{1}{L} \sum_{k} \mathrm{e}^{\mathrm{i} k x} \tilde{f}_{k}$, with $k=\frac{2 \pi n}{L}$ and $n \in \mathbb{Z}$, with Fourier coefficients $\tilde{f}_{k}=$ $\int_{-L / 2}^{L / 2} \mathrm{~d} x \mathrm{e}^{-\mathrm{i} k x} f(x)$.
(a) Let f be an odd function, i.e. $f(x)=-f(-x)$. Show that then the Fourier coefficients are given by $\tilde{f}_{k}=-2 \mathrm{i} \int_{0}^{L / 2} \mathrm{~d} x \sin (k x) f(x)$, and furthermore, that $f(x)$ can be represented by a sine series of the form $f(x)=\sum_{k>0} b_{k} \sin (k x)$ with $k=\frac{2 \pi n}{L}$ and $n \in \mathbb{N}_{0}$. What does b_{k} look like when expressed through \tilde{f}_{k} ?
(b) Now consider the following function: $f(x)=1$ for $0<x<L / 2, f(x)=-1$ for $-L / 2<$ $x<0$. Sketch it, and compute the coefficients \tilde{f}_{k} and b_{k} of the corresponding Fourier and sine series. [Check your result: if $k=\frac{2 \pi}{L}$, then $b_{k}=\frac{4}{\pi}$ and $\tilde{f}_{k}=\frac{2 L}{i \pi}$.]

