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Example Problem 1: Substitution and separation of variables [2]
Points: (a)[1](E); (b)[1](E).

Often differential equations can be solved by a suitably chosen substitution.

(a) Consider the differential equation y′ = f(y/x) for the function y(x). Show that the substitu-
tion y = ux can be used to convert it into a separable differential equation for the function
u(x), which can be solved using separation of variables.

(b) Use this method to solve the equation xy′ = 2y + x with the initial condition y(1) = 0.
[Check your result: y(2) = 2.]

Example Problem 2: Inhomogeneous linear differential equation, variation of constant
[3]
Points: (a)[1](E); (b)[2](M).

Solve the inhomogeneous differential equation ẋ+ 2x = t with x(0) = 0, as follows:

(a) Determine the general solution of the homogeneous equation.

(b) Then find a special (particular) solution to the inhomogeneous problem by means of variation
of constants. [Check your result: x(− ln 2) = 3

4
− 1

2
ln 2.]

Example Problem 3: Inhomogeneous linear differential equation of second order: driven
overdamped harmonic oscillator [7]
Points: (a)[1](E); (b)[2](M); (c)[2](M); (d)[2](M).

Consider the following driven, over-damped harmonic oscillator with γ > Ω:

Differential equation: ẍ+ 2γẋ+ Ω2x = fA(t). (1)

Initial values: x(0) = 0, ẋ(0) = 1 , (2)

Driving function: fA(t) =

{
fA for t ≥ 0,
0 for t < 0.

For t > 0, find a solution to this equation of the form x(t) = xh(t)+xp(t), where the homogeneous
solution, xh(t), solves the homogeneous DEQ, with initial values (2), and the particular solution,
xp(t), solves the inhomogeneous DEQ, with initial values xp(0) = ẋp(0) = 0. Proceed as follows:
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(a) Rewrite as matrix equation: Write the DEQ (1) in the matrix form

ẋ = A · x + b(t), with x ≡ (x, ẋ)T ≡ (x1, x2)T . (3)

Find the matrix A, the driving force vector b(t), and the initial value x0 = x(0).

(b) Homogeneous solution: Find the solution, xh(t), of the homogeneous DEQ (3)|b(t)=0 having

the initial value xh(0) = x0. Use the ansatz xh(t) =
∑

j c
j
hxj(t), with xj(t) = vje

λjt,
where λj and vj (j = 1, 2) are the eigenvalues and the eigenvectors of A. What does the
corresponding solution, xh(t) = x1h(t), of the homogeneous differential equation (1)|fA(t)=0

look like? [Check your result: if γ =
√

2 ln 2 and Ω = ln 2, then xh(1) = 3
4
2−
√
2

ln 2
.]

(c) Particular solution: Using the ansatz xp(t) =
∑

j c
j
p(t)xj(t) (variation of constants), find

the particular solution of the inhomogeneous differential equation (3) having the initial value
xp(0) = 0. What is the corresponding solution, xp(t) = x1p(t), of the inhomogeneous DEQ

(1)? [Check your result: if γ = 3 ln 2, Ω =
√

5 ln 2 and fA = 1, then xp(1) = 49
640

1
(ln 2)2

.]

(d) Qualitative discussion: The desired solution of the inhomogeneous DEQ (1) is given by x(t) =
xh(t)+xp(t). Sketch your result for this function qualitatively for the case fA < 0, and explain
the behavior as t→ 0 and t→∞.

Example Problem 4: System of linear differential equations with non-diagonizable matrix
[4]
Points: (a)[1](E); (b)[1](M); (c)[1](A); (d)[0.5](E); (e)[0.5](E).

We consider a procedure to solve the differential equation

ẋ = A · x (4)

for the case of a matrix A ∈ Mat(n,R) that has n − 1 distinct eigenvalues λj and associated
eigenvectors vj, with j = 1, . . . , n − 1, where the eigenvalue λn−1 = λn is a two-fold zero of
the characteristic polynomial but has only one eigenvector. Such a matrix is not diagonalizable.
However, it can be brought into the so-called Jordan normal form:

T−1AT = J, J =


λ1 0 · · · · · · 0

0 λ2 0 · · · 0

0 0
. . . · · · 0

... · · · · · · λn−1 1

0 · · · · · · 0 λn−1

 , T = (v1, · · · ,vn−1,vn) . (5)

Using A = TJT−1, as well as vj = Tej and Jej = λjej+δjnej−1, one finds that this is equivalent
to

A · vj = λjvj + vj−1δjn, ∀j = 1, . . . , n. (6)

For j = 1, . . . , n − 1 this corresponds to the usual eigenvalue equation, and vj to the usual
eigenvectors. vn, however, is not an eigenvector, but is rather determined by the following equation:

(A− 1λn)vn = vn−1. (7)
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Since (A − 1λn) is not invertible, this equation does not uniquely fix the vector vn. Different
choices of vn lead (via (5)) to different similarity transformation matrices T , but they all yield the
same form for the Jordan-Matrix J .
The λj and vj thus obtained can be used to find a solution for the DEQ (4), using an exponential
ansatz together with ‘variation of the constants’:

x(t) =
n∑
j=1

vje
λjtcj(t), with λn ≡ λn−1. (8)

The coefficients cj(t) can be determined by inserting this ansatz into (4):

0 =
(

d
dt
− A

)
x(t) =

n∑
j=1

vje
λjt
[
λjc

j(t) + ċj(t)− λjcj(t)
]
− vn−1e

λntcn(t). (9)

Comparing coefficients of vj we obtain:

vj 6=n−1 : ċj(t) = 0 ⇒ cj(t) = cj(0) = const. , (10)

vn−1 : ċn−1(t) = cn(t) ⇒ cn−1(t) = cn−1(0) + t cn(0) . (11)

The values of cj(0) are fixed by the initial conditions x(0):

x(0) =
∑
j

vjc
j(0) = Tc(0) , ⇒ c(0) = T−1x(0) . (12)

Now use this method to find the solution of the DEQ

ẋ = Ax, with A =
1

3

7 2 0

0 4 −1
2 0 4

 and x(0) =

1

1

1

 . (13)

(a) Show that the characteristic polynomial for A has a simple zero, say λ1, and a two-fold zero,
say λ2 = λ3. [Check: do your results satisfy

∑
j λj = TrA and

∏
j λj = detA?]

(b) Show that the eigenspaces associated with λ1 and λ2 are both one-dimensional (which implies
that A is not diagonalizable), and find the corresponding normalized eigenvectors v1 and v2.

(c) Use Eq. (7) to find a third, normalized vector v3, having the property that A is brought into
a Jordan normal form using T = (v1,v2,v3). While doing so, exploit the freedom of choice
that is available for v3 to choose the latter orthonormal to v1 and v2. [Remark: For the
present example orthonormality is achievable (and useful, since then T−1 = T T holds), but
this is generally not the case.]

(d) Now use an ansatz of the form (8) to find the solution x(t) to the DEQ (13). [Check your
result: x(ln 2) = (2, 4, 0)T + 4

3
(1 + ln 2)(2,−1, 2)T .]

(e) Check your result explicitly by verifying that it satisfies the DEQ.

Example Problem 5: Series expansion for iteratively solving an equation [2]
Points: (a)[1](M); (b)[1](M).
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Solve the equation ey−1 = 1− εy for y, to second order in the small parameter ε, using the ansatz
y(ε) = y0 + y1ε+ 1

2!
y2ε

2 +O(ε3). Use both of the following approaches:

(a) Method 1: expansion of equation. Insert the ansatz for y(ε) into the given equation, Taylor-
expand each term to order O(ε2), and collect terms having the same power of ε to obtain
an equation of the form 0 =

∑
n Fnε

n. The coefficient of each εn must vanish, yielding a
hierarchy of equations, Fn = 0. Starting from n = 0, solve these successively for the yn’s,
using knowledge of the previously determined yi<n at each step. [Check your results: y2 = 1.]

(b) Method 2: repeated differentiation. Method 1 can be viewed from the following perspective:
the given equation is written in the form 0 = F(y(ε), ε) ≡ F (ε), and the r.h.s. is brought into
the form

∑
n Fnε

n. The latter process can be streamlined by realizing that Fn = 1
n!

dnεF (ε)|ε=0.
Hence, the nth equation in the hierarchy, Fn = 0, can be set up by simply differentiating the
given equation n times and then setting ε to zero, 0 = dnεF (ε)|ε=0. Use this approach to find
a hierarchy of equations for y0, y1 and y2.

Hint: Since F (ε) depends on ε both directly and via y(ε), the chain rule must be used when
computing derivates, e.g. dεF (ε) = ∂yF(y, ε)y′ + ∂εF(y, ε).

Remark: Method 2 has the advantage that it systematically proceeds order by order: infor-
mation from O(εn) is generated at just the right time, namely when it is needed in step n for
computing yn. As a result, this method is often more convenient than method 1, particularly
if the dependence of F(y, ε) on y is non-trivial.

Example Problem 6: Taylor expansions in two dimensions [2]
Points: (a)[1](E); (b)[1](M).

Find the Taylor expansion of the function g(x, y) = ex cos(x + 2y) in x and y, around the point
(x, y) = (0, 0). Calculate explicitly all terms up to and including second order,

(a) by multiplying out the series expansions for the exponential and cosine functions;

(b) by using the formula for the Taylor series of a function of two variables.

[Check your results: the mixed second-order term in each case is: (a) −2xy, (b) −2xy.]

Example Problem 7: Intersecting planes: minimal distance to origin [2]
Points: [2](M).

Consider the line of intersection of the two planes defined by the equations x + y + z = 1 and
x − y + 2z = 2, respectively. Use Lagrange multipliers to find the point on this line lying closest
to the origin. [Check your result: its distance to the origin is

√
5/7.]

[Total Points for Example Problems: 22]

Homework Problem 1: Substitution and separation of variables [7]
Points: (a)[1](E); (b)[1](E); (c)[2](M); (d)[1](E); (e)[2](M).

Consider differential equations of the type

y′(x) = f(ax+ by(x) + c) . (14)

(a) Substitute u(x) = ax+ by(x) + c and find a differential equation for u(x).
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(b) Find an implicit expression for the solution u(x) of the new differential equation using an
integral that contains the function f . Hint: Separation of variables!

(c) Use the substitution strategy of (a,b) to solve the differential equation y′(x) = ex+3y(x)+5,
with initial condition y(0) = 1.
[Check your result: y(ln(e−8 + 3)− 2 ln 2) = 1

3
(2 ln 2− ln(e−8 + 3)− 5).]

(d) Check: Solve the differential equation given in (c) directly (without substitution) using sepa-
ration of variables. Is the result in agreement with the result from (c)?

(e) Solve the differential equation y′(x) = [a(x+ y) + c]2 with initial condition y(x0) = y0 using
the substitution given in (a).
[Check your result: if x0 = y0 = 0 and a = c = 1, then y(0) = 0.]

Homework Problem 2: Inhomogeneous linear differential equation, variation of constants
[2]
Points: (a)[1](E); (b)[1](E); (c)[1,Bonus](E)

The function x(t) satisfies the inhomogeneous differential equation

ẋ(t) + tx(t) = e−
t2

2 , with initial condition x(0) = x0. (15)

(a) Find the solution, xh(t), of the corresponding homogeneous equation with xh(0) = x0.

(b) Find the particular solution, xp(t), of the inhomogeneous equation (15), with xp(0) = 0 using
variation of constants. What is the general solution x(t), with x(0) = x0?
[Check your result: if x0 = 0, then x(1) = e−1/2.]

(c) For a differential equation of the form ẋ(t) + a(t)x(t) = b(t) (ordinary, first-order, linear and
inhomogeneous), the general solution x(t), with x(0) = x0, can be expressed as

x(t) = xh(t) + xp(t) = xh(t) + c(t)xh(t) = (1 + c(t))xh(t) = c̃(t)xh(t) ,

while imposing on xh(t) and c̃(t) the initial conditions xh(0) = 1 and c̃(0) = x0. Use this
approach to construct a solution to the differential equation (15) of the form x(t) = c̃(t)xh(t).
Does the result agree with the result as obtained in (b)? This example illustrates the general
fact that the same initial condition can be implemented in more than one way.

Homework Problem 3: Inhomogeneous linear differential equation of third order [3]
Points: (a)[1](E); (b)[2](M); (c)[2](M,Bonus).

Consider the following third order inhomogeneous linear differential equation:

Differential equation:
...
x − 6ẍ+ 11ẋ− 6x = fA(t), (16)

Initial value: x(0) = 1, ẋ(0) = 0, ẍ(0) = a , with a ∈ R. (17)

Driving: fA(t) =

{
e−bt for t ≥ 0 ,
0 for t < 0 ,

with 0 < b ∈ R. (18)

For t > 0, find a general solution to this equation of the form x(t) = xh(t) + xp(t), where xh(t)
and xp(t) are the homogeneous and particular solutions to the homogeneous and inhomogeneous
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differential equation that have the initial values (17) or xp(0) = ẋp(0) = ẍp(0) = 0 respectively.
Proceed as follows:

(a) Write the differential equation (16) in the matrix form

ẋ = A · x + b(t), with x ≡ (x, ẋ, ẍ)T ≡ (x1, x2, x3)T , x0 = (x(0), ẋ(0), ẍ(0))T . (19)

(b) Find the homogeneous solution xh(t) of (19)|b(t)=0 with xh(0) = x0; then xh(t) = x1h(t).
[Check your result: xh(ln 2) = 2 + a.]

(c) Find the inhomogeneous solution xp(t) of (19), with xp(0) = 0; then xp(t) = x1p(t). [Check
your result: for a = 2 and b = 1 we have xp(ln 2) = 7

48
.]

Hint: This problem is the direct analogue of the example problem on the driven, damped harmonic
oscillator. The eigenvalues λ1, λ2, λ3 of A are integers, with λ1 = 1.

Homework Problem 4: System of linear differential equations with non-diagonizable
matrix: critically damped harmonic oscillator [4]
Points: (a)[1](E); (b)[2](M); (c)[1](E); (d)[2](M,Bonus).

Consider a critically damped harmonic oscillator, described by the 2nd-order DEQ

ẍ+ 2γẋ+ γ2x = 0 . (20)

By introducing the variables x ≡ (x, v)T , with v ≡ ẋ and v̇ = ẍ = −γ2x− 2γv, this equation can
be transcribed into a system of two first-order DEQs:(

ẋ
v̇

)
=

(
0 1
−γ2 −2γ

)(
x
v

)
. (21)

To solve the matrix equation (21), ẋ = Ax, we may try the ansatz x(t) = veλt, leading to the
eigenvalue problem λv = Av. For the damped harmonic oscillator, this eigenvalue problem turns
out to have degenerate eigenvalues. To deal with this complication, proceed as follows:

(a) Find the degenerate eigenvalue, λ, its eigenvector, v, and the corresponding solution, x(t), of
Eq. (21). Verify that its first component, x(t), is a solution of (20). We will call this solution
x1(t) henceforth.

(b) Find a second solution, x2(t), of Eq. (20) via variation of constants, by inserting the ansatz
x2(t) = c(t)x1(t) into Eq. (20). Find a differential equation for c(t) and solve this equation.

(c) Using a linear combination of x1(t) and x2(t), find the solution x(t) satisfying x(0) = 1,
ẋ(1) = 1. [Check your result: if γ = 2, then x(ln 2) = 1

4
(1− ln 2(2 + e2)).]

(d) The critically damped harmonic oscillator can be thought of as the limit γ → Ω of both
the over-damped (see example problem) and under-damped (see lecture notes) harmonic
oscillator. Their general solution has the form x(t) = c+eγ+t + c−eγ−t, where γ± = −γ ±√
γ2 − Ω2 in the over-damped case and γ± = −γ ± i

√
Ω2 − γ2 in the under-damped case.

For both cases, show that a Taylor expansion of the general solution for small values of εt,
with ε ≡

√
|γ2 − Ω2|, yields expressions which can be written as linear combinations of the

solutions to the critically damped harmonic oscillator found in (a) and (b).
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Homework Problem 5: Series expansion for iteratively solving an equation [3]
Points: (a)[1.5](M); (b)[1.5](M).

Solve the equation ln [(x+ 1)2]+ey = 1−y for y, to second order in the small parameter x, using
the ansatz y(x) = y0+y1x+ 1

2!
y2x

2+O(x3). Use both the methods described in the corresponding
example problem:

(a) method 1: expansion of equation; and (b) method 2: repeated differentiation.

Which one do you find more convenient? [Check your results: y2 = 1
2
.]

Homework Problem 6: Taylor expansion in two dimensions [2]
Points: (a)[0.5](E); (b)[1.5](M)

For the following functions, calculate the Taylor expansion in x and y around the point (x, y) =
(0, 0), up to and including second order:

(a) f(x, y) = e−(x+y)
2

, (b) g(x, y) =
1 + x√
1 + xy

.

[Check your results: the mixed second-order term in each case is: (a) −2xy, (b) −1
2
xy.]

Homework Problem 7: Maximal volume of box enclosed in ellipsoid [2]
Points: (a)[1](M); (b)[1](M)

Consider the ellipsoid defined by x2

a2
+ y2

b2
+ z2

c2
= 1. Also consider a rectangular

box whose corners lie on the surface of the ellipsoid and whose edges are parallel
to the elipsoid’s symmetry axes. Let P = (xp, yp, zp)

T denote that corner of the
box that lies in the positive quadrant (xp > 0, yp > 0, zp > 0). How should this
corner be chosen to maximize the volume of the box? What is the value of the
maximal volume?

P

Hint: Maximize the volume V (x, y, z) = 8 xyz of a box having a corner at (x, y, z)T , under the
constraint that this point lies on the ellipsoid.
[Check your result: if a = 1

2
, b = 3, c =

√
3, then Vmax = 4.]

[Total Points for Homework Problems: 23]
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