FAKUltÄt FÜr Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 10: Differential Equations II. Asymptotic Expansions

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 2, 3, 4, 5. Videos exist for example problems 3 (C7.4.7), 5 (C5.4.1).

Optional Problem 1: Series expansion of inverse function [2]

Points: (a)[1](M); (b)[1](M).
This problem illustrates how the series expansion of an inverse function can be computed by expansion of the equation defining the inverse function.

The inverse, $g(x)$, of the function $f(x)$ fulfills the defining equation $f(g(x))=x$. To find the series expansion of the inverse function around some point x_{0}, we may use the ansatz $g\left(x_{0}+x\right) \equiv$ $y(x) \equiv \sum_{n=0}^{\infty} \frac{1}{n!} y_{n} x^{n}$, and determine the coefficients $y_{n} \equiv y^{(n)}(0)$ by iteratively solving the equation $f(y(x))=x_{0}+x$ for $y(x)$. In this manner, calculate the series expansion of the following functions around $x=0$, up to and including second order in x :
(a) $\ln (1+x)$,
(b) 2^{x}.
[Check your results: (a) $y_{2}=-1$, (b) $y_{2}=\ln ^{2}(2)$.]

Optional Problem 2: Series expansion of inverse function [2]

Points: (a)[1](M); (b)[1](M)
Find the series expansion of $\arcsin (x)$ around $x=0$, up to and including order three, using both of the following methods:
(a) Find the expansion of $\arcsin (x) \equiv y(x)$ by iteratively solving the equation $\sin [y(x)]=x$.
(b) Since the sine function is odd, so is its inverse, hence it can be represented by the ansatz $\arcsin (x)=c_{1} x^{1}+\frac{1}{3!} c_{3} x^{3}+\mathcal{O}\left(x^{5}\right)$. Determine the coefficients c_{1} and c_{3} by expanding the equation $\arcsin (\sin (y))=y$ in powers of y, using the known series expansion for $\sin (y)$. [Check your results: $c_{3}=1$.]

Optional Problem 3: Entropy maximization subject to constraints [2]

This problem and the next illustrate the use of Lagrange multipliers for a textbook topic from quantum statistical physics. For an in-depth discussion of the concepts mentioned below, refer to lecture courses in quantum physics and statistical physics.
Suppose a quantum system can be in any one of M possible states, $j=1, \ldots, M$, with a probability p_{j} of being in the state j. The sum of these probabilities, $P=\sum_{j} p_{j}$, is fixed at $P=1$. (Here, and in the following, \sum_{j} stands for $\sum_{j=1}^{M}$.) When the system is in the quantum state j, the system has
energy E_{j} and particle number N_{j}. In quantum statistical physics, the entropy, S, and average energy, E, of the system are defined as:

$$
\begin{equation*}
S=-\sum_{j} p_{j} \ln p_{j}, \quad E=\sum_{j} E_{j} p_{j} . \tag{1}
\end{equation*}
$$

Show that maximizing the entropy $S\left(\left\{p_{j}\right\}\right)$ with respect to the probabilities p_{j}, subject to the constraints set out below, leads to the following forms for the p_{j} 's:
(a) If $P=1$ is the only constraint, the entropy is maximal when all probabilities are equal, i.e. $p_{j}=1 / M$.
(b) If the constraint $P=1$ is augmented by a second constraint, namely that the average energy has a specified value, $E=\sum_{j} E_{j} p_{j}$, the entropy is maximal when the probabilities p_{j} depend exponentially on the energies E_{j} as $p_{j}=Z^{-1} e^{-\beta E_{j}}$ (this is the Boltzmann distribution), where $Z=\sum_{j} e^{-\beta E_{j}}$ and $\beta>0$ is a real constant.

Remarks: Z is known as the partition function of the system. In statistical physics, it is known that β is inversely proportional to the temperature, $\beta=1 /\left(k_{\mathrm{B}} T\right)$, where the Boltzmann constant, k_{B}, is a universal constant. The average energy of the system, given by $E=\sum_{j} E_{j} p_{j}=$ $\sum_{j} E_{j} e^{-\beta E_{j}} / Z$, is therefore governed by temperature: when T increases, E increases as well. In the limit $T \gg \max \left(E_{j}\right)$ we have $p_{j}=1 / M$, just as in (a), i.e. then all states are equally likely. In the limit of $T=0, p_{j}$ is non-zero only if E_{j} equals the lowest energy in the spectrum. If there is only a single state with lowest energy (a 'non-degenerate ground state'), say with index $i=1$, we have $p_{j}=\delta_{i 1}$, i.e. at zero temperature the system is in the ground state with certainty.

Optional Problem 4: Entropy maximization subject to constraints, continued [2]

Consider the same setup as in the previous problem. Show that maximizing the entropy with respect to the probabilities p_{j}, subject to the three constraints of $P=1$, specified average energy $E=\sum_{j} p_{j} E_{j}$, and specified average particle number, $N=\sum_{j} p_{j} N_{j}$, leads to probabilities of the form $p_{j}=Z^{-1} e^{-\beta\left(E_{j}-\mu N_{j}\right)}$, where $Z=\sum_{j} e^{-\beta\left(E_{j}-\mu N_{j}\right)}$ and $\beta>0$ and μ are constants. Here Z is known as the grand-canonical partition function, and the constant μ, referred to as the chemical potential, regulates the average number of particles.

[^0]
[^0]: [Total Points for Optional Problems: 8]

