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Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.lmu.de → Kurse suchen: ’Rechenmethoden’

Sheet 10: Differential Equations II. Asymptotic Expansions

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced
Suggestions for central tutorial: example problems 2, 3, 4, 5.

Videos exist for example problems 3 (C7.4.7), 5 (C5.4.1).

Optional Problem 1: Series expansion of inverse function [2]
Points: (a)[1](M); (b)[1](M).

This problem illustrates how the series expansion of an inverse function can be computed by
expansion of the equation defining the inverse function.

The inverse, g(x), of the function f(x) fulfills the defining equation f(g(x)) = x. To find the
series expansion of the inverse function around some point x0, we may use the ansatz g(x0+x) ≡
y(x) ≡

∑∞
n=0

1
n!
ynx

n, and determine the coefficients yn ≡ y(n)(0) by iteratively solving the
equation f(y(x)) = x0+x for y(x). In this manner, calculate the series expansion of the following
functions around x = 0, up to and including second order in x:

(a) ln(1 + x), (b) 2x.

[Check your results: (a) y2 = −1, (b) y2 = ln2(2).]

Optional Problem 2: Series expansion of inverse function [2]
Points: (a)[1](M); (b)[1](M)

Find the series expansion of arcsin(x) around x = 0, up to and including order three, using both
of the following methods:

(a) Find the expansion of arcsin(x) ≡ y(x) by iteratively solving the equation sin[y(x)] = x.

(b) Since the sine function is odd, so is its inverse, hence it can be represented by the ansatz
arcsin(x) = c1x

1 + 1
3!
c3x

3 + O(x5). Determine the coefficients c1 and c3 by expanding the
equation arcsin (sin(y)) = y in powers of y, using the known series expansion for sin(y).
[Check your results: c3 = 1.]

Optional Problem 3: Entropy maximization subject to constraints [2]

This problem and the next illustrate the use of Lagrange multipliers for a textbook topic from
quantum statistical physics. For an in-depth discussion of the concepts mentioned below, refer to
lecture courses in quantum physics and statistical physics.
Suppose a quantum system can be in any one of M possible states, j = 1, . . . ,M , with a probability
pj of being in the state j. The sum of these probabilities, P =

∑
j pj, is fixed at P = 1. (Here, and

in the following,
∑

j stands for
∑M

j=1.) When the system is in the quantum state j, the system has
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energy Ej and particle number Nj. In quantum statistical physics, the entropy, S, and average
energy, E, of the system are defined as:

S = −
∑
j

pj ln pj , E =
∑
j

Ejpj . (1)

Show that maximizing the entropy S({pj}) with respect to the probabilities pj, subject to the
constraints set out below, leads to the following forms for the pj’s:

(a) If P = 1 is the only constraint, the entropy is maximal when all probabilities are equal, i.e.
pj = 1/M .

(b) If the constraint P = 1 is augmented by a second constraint, namely that the average energy
has a specified value, E =

∑
j Ejpj, the entropy is maximal when the probabilities pj depend

exponentially on the energies Ej as pj = Z−1e−βEj (this is the Boltzmann distribution),
where Z =

∑
j e
−βEj and β > 0 is a real constant.

Remarks: Z is known as the partition function of the system. In statistical physics, it is known
that β is inversely proportional to the temperature, β = 1/(kBT ), where the Boltzmann con-
stant, kB, is a universal constant. The average energy of the system, given by E =

∑
j Ejpj =∑

j Eje
−βEj/Z, is therefore governed by temperature: when T increases, E increases as well. In

the limit T � max (Ej) we have pj = 1/M , just as in (a), i.e. then all states are equally likely. In
the limit of T = 0, pj is non-zero only if Ej equals the lowest energy in the spectrum. If there is
only a single state with lowest energy (a ‘non-degenerate ground state’), say with index i = 1, we
have pj = δi1, i.e. at zero temperature the system is in the ground state with certainty.

Optional Problem 4: Entropy maximization subject to constraints, continued [2]

Consider the same setup as in the previous problem. Show that maximizing the entropy with
respect to the probabilities pj, subject to the three constraints of P = 1, specified average energy
E =

∑
j pjEj, and specified average particle number, N =

∑
j pjNj, leads to probabilities of the

form pj = Z−1e−β(Ej−µNj), where Z =
∑

j e
−β(Ej−µNj) and β > 0 and µ are constants. Here

Z is known as the grand-canonical partition function, and the constant µ, referred to as the
chemical potential, regulates the average number of particles.

[Total Points for Optional Problems: 8]
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