LUDWIG-
MAXIMILIANS-
UNIVERSITÄT

Fakultät für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 09: Taylor Series. Differential Equations I

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced

Suggestions for central tutorial: example problems 2, 3, 5.
Videos exist for example problems 4 (L8.3.1).

Optional Problem 1: Integration by partial fraction expansion [4]

Points: (a)[2](M); (b)[2](M).
A function f is called a rational function if it can be expressed as a ratio $f(x)=P(x) / Q(x)$ of two polynomials, P and Q. Integrals of rational functions can be computed using partial fraction decomposition, a procedure that expresses f as the sum of a polynomial (possibly with degree 0) and several ratios of polynomials with simpler denominators. To achieve this, the denominator Q is factorized into a product of polynomials, q_{j}, of lower degree, $Q(x)=\prod_{j} q_{j}(x)$, and the function f is written as $f(x)=\sum_{j} p_{j}(x) / q_{j}(x)$. The form of the polynomials p_{j} in the numerators is fixed uniquely by the form of the polynomials P and q_{j}. (Since a partial fraction decomposition starts with a common denominator and ends with a sum of rational functions, it is in a sense the inverse of the procedure of adding rational functions by finding a common denominator.) If a complete factorization of Q is used, this yields a decomposition of the integral $\int \mathrm{d} x f(x)$ into a sum of integrals that can be solved by elementary means. Here we illustrate the method using some simple examples; for a systematic treatment, consult textbooks on calculus.

Use partial fraction decomposition to compute the following integrals, for $z \in(0,2)$:
(a) $\quad I(z)=\int_{0}^{z} \mathrm{~d} x \frac{3}{(x+1)(x-2)}$,
(b) $\quad I(z)=\int_{0}^{z} \mathrm{~d} x \frac{3 x}{(x+1)^{2}(x-2)}$.
[Check your results: (a) $I(3)=-\ln 8$, (b) $I(3)=-\ln 4+\frac{3}{4}$].
Optional Problem 2: Integration by partial fraction decomposition [2]
Points: (a)[2](M); (b)[2](M,Bonus).
Use partial fraction decomposition to compute the following integrals, for $z \in(0,1)$:
(a)
$I(z)=\int_{0}^{z} \mathrm{~d} x \frac{x+2}{x^{3}-3 x^{2}-x+3}$,
(b) $\quad I(z)=\int_{0}^{z} \mathrm{~d} x \frac{4 x-1}{(x+2)(x-1)^{2}}$.
[Check your results: (a) $I\left(\frac{1}{2}\right)=\frac{5}{8} \ln 5-\frac{1}{2} \ln 3$, (b) $I\left(\frac{1}{2}\right)=1-\ln \left(\frac{5}{2}\right)$.]

Optional Problem 3: Relativistic dispersion relation [1]

According to the special theory of relativity, the energy E of a particle of mass m is related to its momentum p by the following formula (dispersion relation),

$$
E(p)=\sqrt{m^{2} c^{4}+p^{2} c^{2}},
$$

where c is the speed of light. Calculate the first three nonzero terms of the Taylor series of $E(p)$ for small p , where m and c are positive constants. Which of the terms in this expansion are familiar from classical mechanics?
Hint: Write $E(p)$ in the form $E(p)=m c^{2} \sqrt{1+x}$, with $x=p^{2} /\left(m^{2} c^{2}\right)$, and expand in terms of x. Then rewrite the formula in terms of p again.
[Total Points for Optional Problems: 7]

