

 $https://moodle.lmu.de \rightarrow Kurse \ suchen: \ 'Rechenmethoden'$

Sheet 07: Matrices II: Inverse, Basis Transformation

Posted: Mo 28.11.22 Central Tutorial: Th 01.12.22 Due: Th 08.12.22, 14:00 (b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 2, 3, 4, 6.

Videos exist for example problems 1 (L5.4.1), 5 (V2.5.1). Also see tutorvideos on "basis transformations".

Example Problem 1: Gaussian elimination and matrix inversion [4]

Points: (a)[1](M); (b)[1](M); (c)[1](M); (d)[1](M)

Gaussian elimination is a convenient book-keeping scheme for solving a linear system of equations of the form $A\mathbf{x} = \mathbf{b}$. For example, consider the system

$$\begin{split} &A_{1}^{1} x^{1} + A_{2}^{1} x^{2} + A_{3}^{1} x^{3} = b^{1} , \\ &A_{1}^{2} x^{1} + A_{2}^{2} x^{2} + A_{3}^{2} x^{3} = b^{2} , \\ &A_{1}^{3} x^{1} + A_{2}^{3} x^{2} + A_{3}^{3} x^{3} = b^{3} . \end{split}$$

It can be solved by a sequence of steps, each of which involves taking a linear combination of rows, chosen such that the system is brought into the form

$$\begin{array}{l} 1 \ x^{1} + 0 \ x^{2} + 0 \ x^{3} = c^{1} \ , \\ 0 \ x^{1} + 1 \ x^{2} + 0 \ x^{3} = c^{2} \ , \\ 0 \ x^{1} + 0 \ x^{2} + 1 \ x^{3} = c^{3} \ . \end{array}$$

The solution can then be read off from the right-hand side, $(x^1, x^2, x^3)^T = (c^1, c^2, c^3)^T$.

During these manipulations, time and ink can be saved by refraining from writing down the $x^{i's}$ over and over again. Instead, it suffices to represent the linear system by an augmented matrix, containing the coefficients in array form, with a vertical line instead of the equal signs. This augmented matrix is to be manipulated in a sequence of steps, each of which involves taking a linear combination of rows, chosen such that the left side is brought into the form of the unit matrix. The right column then contains the desired solution for $(x^1, x^2, x^3)^T$.

x^1	x^2	x^3			x^1	x^2	x^3	
A^{1}_{1}	A^{1}_{2}	$A^{1}_{\ 3}$	b^1	ι,	1	0	0	c^1
$A^{2}_{\ 1}$	A^{2}_{2}	$A^{2}_{\ 3}$	b^2	\rightarrow	0	1	0	c^2
$A^{3}_{\ 1}$	$A^{3}_{\ 2}$	$A^{3}_{\ 3}$	b^3		0	0	1	c^3

Gaussian elimination is also useful for matrix inversion. The inverse of A has the form $A^{-1} = (\mathbf{a}_1, \ldots, \mathbf{a}_n)$, where the *j*th column is the solution of the linear system $A\mathbf{a}_j = \mathbf{e}_j$. The computation of all *n* vectors \mathbf{a}_j can be done simultaneously by setting up an augmented matrix with *n* columns on the right, each containing an \mathbf{e}_j . After manipulating the augmented matrix such that the left

side is the unit matrix, the columns on the right contain the desired vectors \mathbf{a}_{j} .

A^{1}_{1}	A^{1}_{2}	$A^{1}_{\ 3}$	1	0	0		1	0	0	a_{1}^{1}	a_{2}^{1}	a_{3}^{1}
$A^{2}_{\ 1}$	A^{2}_{2}	$A^{2}_{\ 3}$	0	1	0	\longrightarrow	0	1	0	a_{1}^{2}	a_{2}^{2}	a_{3}^{2}
A^{3}_{1}	A^{3}_{2}	$A^{3}_{\ 3}$	0	0	1		0	0	1	a_{1}^{3}	a_{2}^{3}	a_{3}^{3}

(a) Solve the following system of linear equations using Gaussian elimination.

$3x^1$	+	$2x^2$	_	x^3	=	1,
$2x^1$	_	$2x^2$	+	$4x^3$	=	-2,
$-x^1$	+	$\frac{1}{2}x^2$	_	x^3	=	0.

[Check your result: the norm of x is $||\mathbf{x}|| = 3$.]

- (b) How does the solution change when the last equation is removed?
- (c) What happens if the last equation is replaced by $-x^1 + \frac{2}{7}x^2 x^3 = 0$?
- (d) The system of equations given in (a) can also be expressed in the form Ax = b. Calculate the inverse A⁻¹ of the 3 × 3 matrix A using Gaussian elimination. Verify your answer to (a) using x = A⁻¹b.

Example Problem 2: Two-dimensional rotation matrices [4]

Points: (a)[1](M); (b)[1](E); (c)[1](M); (d)[1](M)

A rotation in two dimensions is a linear map, $R : \mathbb{R}^2 \to \mathbb{R}^2$, that rotates every vector by a given angle about the origin without changing its length.

- (a) Let the (2×2)-dimensional rotation matrix R_θ describing a rotation by the angle θ be defined by e_j → e'_j = e_i(R_θ)ⁱ_j. Find R_θ by proceeding as follows: Make a sketch that illustrates the effect, e_j → e'_j, of the rotation on the two basis vectors e_j (j = 1, 2) (e.g. for θ = π/6). The image vectors e'_j of the basis vectors e_j yield the columns of the matrix R_θ.
- (b) Write down the matrix R_{θ_i} for the angles $\theta_1 = 0, \theta_2 = \pi/4, \theta_3 = \pi/2$ and $\theta_4 = \pi$. Compute the action of R_{θ_i} (i = 1, 2, 3, 4) on $\mathbf{a} = (1, 0)^T$ and $\mathbf{b} = (0, 1)^T$, and make a sketch to visualize the results.
- (c) The composition of two rotations again is a rotation. Show that $R_{\theta}R_{\phi} = R_{\theta+\phi}$. *Hint:* Utilize the following 'addition theorems':

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi,$$

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi.$$

Remark: A geometric proof of these theorems (not requested here) follows from the figure by inspecting the three right-angled triangles with diagonals of length 1, $\cos \phi$ and $\sin \phi$.

(d) Show that the rotation of an arbitrary vector $\mathbf{r} = (x, y)^T$ by the angle θ does not change its length, i.e. that $R_{\theta}\mathbf{r}$ has the same length as \mathbf{r} .

Example Problem 3: Basis transformations and linear maps in \mathbb{E}^2 **[4]** Points: (a)[0.5](M); (b)[0.5](M); (c)[0.5](E); (d)[0.5](E); (e)[0.5](M); (f)[0.5](M); (g)[0.5](E); (h)[0.5](E)

Remark on notation: For this problem we denote vectors in Euclidean space \mathbb{E}^2 using hats (e.g. $\hat{\mathbf{v}}_j$, $\hat{\mathbf{x}}$, $\hat{\mathbf{y}} \in \mathbb{E}^2$). Their components with respect to a given basis are vectors in \mathbb{R}^2 and are written without hats (e.g. \mathbf{x} , $\mathbf{y} \in \mathbb{R}^2$).

Consider two bases for the Euclidean vector space \mathbb{E}^2 , one old, $\{\hat{\mathbf{v}}_i\}$, and one new, $\{\hat{\mathbf{v}}'_i\}$, with

$$\hat{\mathbf{v}}_1 = \frac{3}{4}\hat{\mathbf{v}}_1' + \frac{1}{3}\hat{\mathbf{v}}_2', \quad \hat{\mathbf{v}}_2 = -\frac{1}{8}\hat{\mathbf{v}}_1' + \frac{1}{2}\hat{\mathbf{v}}_2'.$$

- (a) The relation $\hat{\mathbf{v}}_j = \hat{\mathbf{v}}'_i T^i_j$ expresses the old basis in terms of the new basis. Find the transformation matrix $T = \{T^i_j\}$. [Check your result: $\sum_j T^1_j = \frac{5}{8}$.]
- (b) Find the matrix T^{-1} , and use the inverse transformation $\hat{\mathbf{v}}'_i = \hat{\mathbf{v}}_j (T^{-1})^j_i$ to express the new basis in terms of the old basis. [Check your result: $\hat{\mathbf{v}}'_1 4\hat{\mathbf{v}}'_2 = -8\hat{\mathbf{v}}_2$.]
- (c) Let $\hat{\mathbf{x}}$ be a vector with components $\mathbf{x} = (1, 2)^T$ in the old basis. Find its components \mathbf{x}' in the new basis. [Check your result: $\sum_i x'^i = \frac{11}{6}$.]
- (d) Let $\hat{\mathbf{y}}$ by a vector with components $\mathbf{y}' = (\frac{3}{4}, \frac{1}{3})^T$ in the new basis. Find its components \mathbf{y} in the old basis. [Check your result: $\sum_j y^j = 1$.]
- (e) Let \hat{A} be the linear map defined by $\hat{\mathbf{v}}'_1 \stackrel{\hat{A}}{\mapsto} 2\hat{\mathbf{v}}'_1$ and $\hat{\mathbf{v}}'_2 \stackrel{\hat{A}}{\mapsto} \hat{\mathbf{v}}'_2$. First find the matrix representation A' of this map in the new basis, then use a basis transformation to find its matrix representation A in the old basis. [Check your result: $(A)^2_1 = -\frac{3}{5}$.]
- (f) Let $\hat{\mathbf{z}}$ be the image vector onto which the vector $\hat{\mathbf{x}}$ is mapped by \hat{A} , i.e. $\hat{\mathbf{x}} \stackrel{\hat{A}}{\mapsto} \hat{\mathbf{z}}$. Find its components \mathbf{z}' with respect to the new basis by using A', and its components \mathbf{z} with respect to the old basis by using A. Are your results for \mathbf{z}' and \mathbf{z} consistent? [Check your result: $\mathbf{z}' = (1, \frac{4}{3})^T$.]
- (g) Now make the choice $\hat{\mathbf{v}}_1 = 3\hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_2$ and $\hat{\mathbf{v}}_2 = -\frac{1}{2}\hat{\mathbf{e}}_1 + \frac{3}{2}\hat{\mathbf{e}}_2$ for the old basis, where $\hat{\mathbf{e}}_1 = (1,0)^T$ and $\hat{\mathbf{e}}_2 = (0,1)^T$ are the standard Cartesian basis vectors of \mathbb{E}^2 . What are the components of $\hat{\mathbf{v}}'_1$, $\hat{\mathbf{v}}'_2$, $\hat{\mathbf{x}}$ and $\hat{\mathbf{z}}$ in the standard basis \mathbb{E}^2 ? [Check your results: $\|\hat{\mathbf{v}}'_1\| = 4$, $\|\hat{\mathbf{v}}'_2\| = 3$, $\|\hat{\mathbf{x}}\| = 2\sqrt{5}$, $\|\hat{\mathbf{z}}\| = 4\sqrt{2}$.]
- (h) Make a sketch (with $\hat{\mathbf{e}}_1$ and $\hat{\mathbf{e}}_2$ as unit vectors in the horizontal and vertical directions respectively), showing the old and new basis vectors, as well as the vectors $\hat{\mathbf{x}}$ and $\hat{\mathbf{z}}$. Are the coordinates of these vectors, discussed in (c) and (f), consistent with your sketch?

Example Problem 4: Computing determinants [2]

Points: [2](E)

Compute the determinants of the following matrices by expanding them along an arbitrary row or column. *Hint:* The more zeros the row or column contains, the easier the calculation.

$$A = \begin{pmatrix} 2 & 1 \\ 5 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 & 1 \\ 4 & -3 & 1 \\ 2 & -1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} a & a & a & 0 \\ a & 0 & 0 & b \\ 0 & 0 & b & b \\ a & b & b & 0 \end{pmatrix}$$

[Check your result: if a = 1, b = 2, then det C = -4.]

Example Problem 5: Jacobian determinant for cylindrical coordinates [2] Points: (a)[0.5](E); (b)[0.5](E); (c)[1](E).

- (a) Compute the Jacobi matrix, $\frac{\partial(x,y,z)}{\partial(\rho,\phi,z)}$, for the transformation expressing Cartesian through cylindrical coordinates.
- (b) Compute the Jacobi matrix, $J^{-1} = \frac{\partial(\rho,\phi,z)}{\partial(x,y,z)}$, for the inverse transformation expressing cylindrical through Cartesian coordinates. [Check your result: verify that $JJ^{-1} = \mathbb{1}$.]
- (c) Compute the Jacobi determinants det(J) and $det(J^{-1})$. [Check your results: does their product equal 1?]

Example Problem 6: Triple Gaussian integral via transformation of variables [2] Points: [2](M)

Calculate the following three-dimensional Gaussian integral (with a, b, c > 0, $a, b, c \in \mathbb{R}$):

$$I = \int_{\mathbb{R}^3} \mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z \,\mathrm{e}^{-\left[a^2(x+y)^2 + b^2(z-y)^2 + c^2(x-z)^2\right]}$$

Hint: Use the substitution u = a(x + y), v = b(z - y), w = c(x - z) and calculate the Jacobian determinant, using $J = \left|\frac{\partial(u,v,w)}{\partial(x,y,z)}\right|^{-1}$. You may use $\int_{-\infty}^{\infty} dx e^{-x^2} = \sqrt{\pi}$. [Check your result: if $a = b = c = \sqrt{\pi}$, then $I = \frac{1}{2}$.]

Example Problem 7: Variable transformation for two-dimensional integral [Bonus] Points: (a)[1](E,Bonus); (b)[1](M,Bonus); (c)[1](M,Bonus).

(a) Consider the transformation of variables $x = \frac{1}{2}(X+Y)$, $y = \frac{1}{2}(X-Y)$. Invert it to find X(x,y) and Y(x,y). Compute the Jacobian matrices $J = \frac{\partial(x,y)}{\partial(X,Y)}$ and $J^{-1} = \frac{\partial(X,Y)}{\partial(x,y)}$, and their determinants. [Check your results: verify that $JJ^{-1} = \mathbb{1}$ and $(\det J)(\det J^{-1}) = 1$.]

Use the transformation from (a) to compute the following integrals as $\int dX dY$ integrals:

- (b) $I_1 = \int_S dx dy$, integrated over the square $S = \{0 \le x \le 1, 0 \le y \le 1\}$.
- (c) $I_2(n) = \int_T dx dy |x y|^n$, integrated over the triangle $T = \{0 \le x \le 1, 0 \le y \le 1 x\}$. [Check your result: $I_2(1) = \frac{1}{6}$.]

Homework Problem 1: Gaussian elimination and matrix inversion [3] Points: (a)[1](E); (b)[1](E); (c)[1](M)

Consider the linear system of equations $A\mathbf{x} = \mathbf{b}$, with

$$A = \begin{pmatrix} 8-3a & 2-6a & 2\\ 2-6a & 5 & -4+6a\\ 2 & -4+6a & 5+3a \end{pmatrix} .$$
(1)

- (a) For $a = \frac{1}{3}$, use Gaussian elimination to compute the inverse matrix A^{-1} . (*Remark:* It is advisable to avoid the occurrence of fractions until the left side has been brought into row echelon form.) Use the result to find the solution \mathbf{x} for $\mathbf{b} = (4, 1, 1)^T$. [Check your result: the norm of \mathbf{x} is $\|\mathbf{x}\| = \sqrt{117}/18$.]
- (b) For which values of a can the matrix A not be inverted?
- (c) If A can be inverted, the system of equations $A\mathbf{x} = \mathbf{b}$ has a unique solution for every b, namely $\mathbf{x} = A^{-1}\mathbf{b}$. If A cannot be inverted, then either the solution is not unique, or no solution exists at all — it depends on b which of these two cases arises. Decide this for $\mathbf{b} = (4, 1, 1)^T$ and the values for a found in (b), and determine \mathbf{x} , if possible.

Homework Problem 2: Three-dimensional rotation matrices [4]

Points: (a)[1](E); (b)[1](E); (c)[1](E); (d)[0,5]; (e)[0,5](E); (f)[2](Bonus,A)

Rotations in three dimensions are represented by (3×3) -dimensional matrices. Let $R_{\theta}(\mathbf{n})$ be the rotation matrix that describes a rotation by the angle θ about an axis whose direction is given by the unit vector \mathbf{n} . Its elements are defined via $\mathbf{e}_j \xrightarrow{R_{\theta}(\mathbf{n})} \mathbf{e}'_j = \mathbf{e}_l(R_{\theta}(\mathbf{n}))_j^l$.

- (a) Find the three rotation matrices R_θ(e_i) for rotations about the three Cartesian coordinate axes e₁, e₂ and e₃, by proceeding as follows. Use three sketches, one each for i = 1, 2, 3, illustrating the effect, e_j ^{R_θ(e_i)} e'_j, of a rotation about the i axis on all three basis vectors e_j (j = 1, 2, 3) (e.g. for θ = π/6). The image vectors e'_j of the basis vectors e_j yield the columns of R_θ(e_i).
- (b) It can be shown that for a general direction, $\mathbf{n} = (n_1, n_2, n_3)^T$, of the axis of rotation, the matrix elements have the following form:

$$(R_{\theta}(\mathbf{n}))_{i}^{i} = \delta_{ij} \cos \theta + n_{i} n_{j} (1 - \cos \theta) - \epsilon_{ijk} n_{k} \sin \theta$$
 ($\epsilon_{ijk} = \text{Levi-Civita symbol}$).

Use this formula to find the three rotation matrices $R_{\theta}(\mathbf{e}_i)$ (i = 1, 2, 3) explicitly. Are your results consistent with those from (a)?

(c) Write down the following rotation matrices explicitly, and compute and sketch their effect on the vector $\mathbf{v} = (1, 0, 1)^T$:

(i)
$$A = R_{\pi}(\mathbf{e}_3)$$
, (ii) $B = R_{\frac{\pi}{2}}(\frac{1}{\sqrt{2}}(\mathbf{e}_3 - \mathbf{e}_1))$.

- (d) Rotation matrices form a group. Use A and B from (c) to illustrate that this group is not commutative (in contrast to the two-dimensional case!).
- (e) Show that a general rotation matrix R satisfies the relation $\text{Tr}(R) = 1 + 2\cos\theta$, where the 'trace' of a matrix R is defined by $\text{Tr}(R) = \sum_{i} (R)_{i}^{i}$.
- (f) The product of two rotation matrices is again a rotation matrix. Consider the product C = AB of the two matrices from (c), and find the corresponding unit vector \mathbf{n} and rotation angle θ . *Hint:* these are uniquely defined only up to an arbitrary sign, since $R_{\theta}(\mathbf{n})$ and $R_{-\theta}(-\mathbf{n})$ describe the same rotation. (To be concrete, fix this sign by choosing the component n_2 positive.) $|\theta|$ and $|n_i|$ are fixed by the trace and the diagonal elements of the rotation matrix, respectively; their relative sign is fixed by the off-diagonal elements. [Check your result: $n_2 = 1/\sqrt{3}$.]

Homework Problem 3: Basis transformations in \mathbb{E}^2 [4]

Points: (a)[0.5](M); (b)[0.5](M); (c)[0.5](E); (d)[0.5](E); (e)[0.5](M); (f)[0.5](M); (g)[0.5](E); (h)[0.5](E) Remark on notation: For this problem we denote vectors in Euclidean space \mathbb{E}^2 using hats (e.g. $\hat{\mathbf{v}}_j$, $\hat{\mathbf{x}}$, $\hat{\mathbf{y}} \in \mathbb{E}^2$). Their components with respect to a given basis are vectors in \mathbb{R}^2 and are written without hats (e.g. \mathbf{x} , $\mathbf{y} \in \mathbb{R}^2$).

Consider two bases for the Euclidean vector space \mathbb{E}^2 , one old, $\{\hat{\mathbf{v}}_i\}$, and one new, $\{\hat{\mathbf{v}}_i'\}$, with

$$\hat{f v}_1 = rac{1}{5} \hat{f v}_1' + rac{3}{5} \hat{f v}_2'\,, \quad \hat{f v}_2 = -rac{6}{5} \hat{f v}_1' + rac{2}{5} \hat{f v}_2'\,.$$

- (a) The relation $\hat{\mathbf{v}}_j = \hat{\mathbf{v}}'_i T^i_j$ expresses the old basis in terms of the new basis. Find the transformation matrix $T = \{T^i_j\}$. [Check your result: $\sum_j T^2_j = 1$.]
- (b) Find the matrix T^{-1} , and use the inverse transformation $\hat{\mathbf{v}}'_i = \hat{\mathbf{v}}_j (T^{-1})^j_i$ to express the new basis in terms of the old basis. [Check your result: $\hat{\mathbf{v}}'_1 + 3\hat{\mathbf{v}}'_2 = 5\hat{\mathbf{v}}_1$.]
- (c) Let $\hat{\mathbf{x}}$ be a vector with components $\mathbf{x} = (2, -\frac{1}{2})^T$ in the old basis. Find its components \mathbf{x}' in the new basis. [Check your result: $\sum_i x'^i = 2$.]
- (d) Let $\hat{\mathbf{y}}$ by a vector with components $\mathbf{y}' = (-3, 1)^T$ in the new basis. Find its components \mathbf{y} in the old basis. [Check your result: $\sum_j y^j = \frac{5}{2}$.]
- (e) Let \hat{A} be the linear map defined by $\hat{\mathbf{v}}_1 \stackrel{\hat{A}}{\mapsto} \frac{1}{3}(\hat{\mathbf{v}}_1 2\hat{\mathbf{v}}_2)$ and $\hat{\mathbf{v}}_2 \stackrel{\hat{A}}{\mapsto} -\frac{1}{3}(4\hat{\mathbf{v}}_1 + \hat{\mathbf{v}}_2)$. First find the matrix representation A of this map in the old basis, then use a basis transformation to find its matrix representation A' in the new basis. [Check your result: $(A')_1^2 = \frac{2}{3}$.]
- (f) Let $\hat{\mathbf{z}}$ be the image vector onto which the vector $\hat{\mathbf{x}}$ is mapped by \hat{A} , i.e. $\hat{\mathbf{x}} \stackrel{\hat{A}}{\mapsto} \hat{\mathbf{z}}$. Find its components \mathbf{z} with respect to the old basis by using A, and its components \mathbf{z}' with respect to the new basis by using A'. Are your results for \mathbf{z} and \mathbf{z}' consistent? [Check your result: $\mathbf{z}' = \frac{1}{3}(5, 1)^T$.]
- (g) Now make the choice $\hat{\mathbf{v}}_1 = \hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_2$ and $\hat{\mathbf{v}}_2 = 2\hat{\mathbf{e}}_1 \hat{\mathbf{e}}_2$ for the old basis, where $\hat{\mathbf{e}}_1 = (1,0)^T$ and $\hat{\mathbf{e}}_2 = (0,1)^T$ are the standard Cartesian basis vectors of \mathbb{E}^2 . What are the components of $\hat{\mathbf{v}}'_1$, $\hat{\mathbf{v}}'_2$, $\hat{\mathbf{x}}$ and $\hat{\mathbf{z}}$ in the standard basis \mathbb{E}^2 ? [Check your results: $\|\hat{\mathbf{v}}'_1\| = \frac{\sqrt{41}}{4}$, $\|\hat{\mathbf{v}}'_2\| = \frac{\sqrt{89}}{4}$, $\|\hat{\mathbf{x}}\| = \|\hat{\mathbf{z}}\| = \frac{\sqrt{29}}{2}$.]

(h) Make a sketch (with $\hat{\mathbf{e}}_1$ and $\hat{\mathbf{e}}_2$ as unit vectors in the horizontal and vertical directions, respectively), showing the old and new basis vectors, as well as the vectors $\hat{\mathbf{x}}$ and $\hat{\mathbf{z}}$. Are the coordinates of these vectors, discussed in (c) and (f), consistent with your sketch?

Homework Problem 4: Computing determinants [4]

Points: (a)[1](E); (b)[1,5](E); (c)[1,5](E)

- (a) Compute the determinant of the matrix $D = \begin{pmatrix} 1 & c & 0 \\ d & 2 & 3 \\ 2 & 2 & e \end{pmatrix}$. [Check your result: if c = 1, d = 3, e = 2, then det C = -2.]
 - (i) Which values must c and d have to ensure that $\det D = 0$ for all values of e?
 - (ii) Which values must d and e have to ensure that $\det D = 0$ for all values of c?
 - Could you have found the results of (i,ii) without explicitly calculating $\det D$?

Now consider the two matrices
$$A = \begin{pmatrix} 2 & -1 & -3 & 1 \\ 0 & 1 & 5 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 1 \\ 6 & 6 \\ -2 & 8 \\ -2 & -2 \end{pmatrix}$.

- (b) Compute the product AB, as well as its determinant det(AB) and inverse $(AB)^{-1}$.
- (c) Compute the product BA, as well as its determinant det(BA) and inverse (BA)⁻¹.
 Is it possible to calculate the determinant and the inverse of A and B?

Homework Problem 5: Jacobian determinant for spherical coordinates [2] Points: (a)[0.5](E); (b)[0.5](E); (c)[1](E).

- (a) Compute the Jacobi matrix, $J = \frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$, for the transformation expressing Cartesian through spherical coordinates.
- (b) Compute the Jacobi matrix $J^{-1} = \frac{\partial(r,\theta,\phi)}{\partial(x,y,z)}$ for the inverse transformation expressing spherical through Cartesian coordinates. [Check your result: verify that $JJ^{-1} = \mathbb{1}$.]
- (c) Compute the Jacobi determinants det(J) and $det(J^{-1})$. [Check your results: does their product equal 1?]

Homework Problem 6: Triple Lorentz integral via transformation of variables [2] Points: [2](M)

Calculate the following triple Lorentz integral (with a, b, c, d > 0, $a, b, c, d \in \mathbb{R}$):

$$I = \int_{\mathbb{R}^3} \mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z \,\frac{1}{[(xd+y)^2 + a^2]} \cdot \frac{1}{[(y+z-x)^2 + b^2]} \cdot \frac{1}{[(y-z)^2 + c^2]} \,.$$

Hint: Use the change of variables u = (xd+y)/a, v = (y+z-x)/b, w = (y-z)/c and compute the Jacobian determinant using $J = \left|\frac{\partial(u,v,w)}{\partial(x,y,z)}\right|^{-1}$. You may use $\int_{-\infty}^{\infty} dx (x^2+1)^{-1} = \pi$. [Check your result: if $a = b = c = \pi$, d = 2, then $I = \frac{1}{5}$.]

Homework Problem 7: Variable transformation for two-dimensional integral [Bonus] Points: (a)[1](E,Bonus); (b)[1](M,Bonus).

(a) Consider the transformation of variables $x = \frac{3}{5}X + \frac{3}{5}Y$ and $y = \frac{3}{5}X - \frac{2}{5}Y$. Invert it to find X(x,y) and Y(x,y). Compute the Jacobian matrices $J = \frac{\partial(x,y)}{\partial(X,Y)}$ and $J^{-1} = \frac{\partial(X,Y)}{\partial(x,y)}$, and their determinants. [Check your results: verify that $JJ^{-1} = 1$ and $(\det J)(\det J^{-1}) = 1$.]

(b) Compute the integral $I(a) = \int_{T_a} dx dy \cos \left[\pi (\frac{2}{3}x+y)^3\right] (x-y)$ over 1 the trapezoid T_a enclosed by the lines x = 0, $y = 1 - \frac{2}{3}x$, y = 0 and $y = a - \frac{2}{3}x$, with $a \in (0, 1)$. Hint: Express I(a) as an $\int dX dY$ integral using the transformation from (a). [Check your result: $I(2^{-1/3}) = -\frac{1}{8\pi}$.]

[Total Points for Homework Problems: 19]