
Fakultät für Physik

R: Rechenmethoden für Physiker, WiSe 2022/23

Dozent: Jan von Delft
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Sheet 06: Fields II. Matrices I

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced
Suggestions for central tutorial: example problems 4, 5(bii), 1.

Videos exist for example problems 1 (V3.4.1), 5 (V3.7.3).

Optional Problem 1: Wave functions of two-dimensional harmonic oscillator (polar coor-
dinates) [4]
Points: (a)[0,5](E); (b)[0,5](E); (c)[3](M)

The quantum mechanical treatment of a two-dimensional harmonic oscillator leads to so-called
‘wave functions’,

Ψnm : R2 → C, r 7→ Ψnm(r) , with n ∈ N0, m ∈ Z, m = −n,−n+ 2, . . . , n− 2, n,

which have a factorized form when written in terms of polar coordinates, Ψnm(r) = Rn|m|(ρ)Zm(φ),
with Zm(φ) = 1√

2π
eimφ. The wave functions satisfy the following ‘orthogonality relation’:

Omm′

nn′ ≡
�
R2

dSΨnm(r)Ψn′m′(r) = δnn′δmm′ .

Verify these for n = 0, 1 and 2, where the radial wave functions have the form:

R00(ρ)=
√

2e−ρ
2/2, R11(ρ)=

√
2ρe−ρ

2/2, R22(ρ)=ρ2 e−ρ
2/2, R20(ρ)=

√
2[ρ2−1]e−ρ

2/2.

Proceed as follows. Due to the product form of the wave function Ψ, each area integral separates

into two factors that can be calculated separately, Omm′

nn′ = P
|m||m′|
nn′ P̃mm′

, where P is a radial

integral and P̃ an angular integral.

(a) Find general expressions for P and P̃ as integrals over R- or Z-functions, respectively.

(b) Compute the angular integral P̃mm′
for arbitrary values of m and m′.

(c) Now compute those radial integrals that arise in combination with P̃ 6= 0, namely P 00
00 , P 11

11 ,
P 22
22 , P 00

22 and P 00
20 .

Hint: The Euler identity, ei2πk = 1 if k ∈ Z, is useful for evaluating the angular integral, and�∞
0

dx xne−x = n! for the radial integrals.

Background information: The functions Ψnm(r) are the ‘eigenfunctions’ of a quantum mechani-
cal particle in a two-dimensional harmonic potential, V (r) ∝ r2, where n and m are ‘quantum
numbers’ that specify a particular ‘eigenstate’. A particle in this state is found with probability
|Ψnm(r)|2dS within the area element dS at position r. The total probability of being found any-
where in R2 equals 1, hence the normalization integral yields Omm

nn = 1 for every eigenfunction
Ψnm(r). The fact that the area integral of two eigenfunctions vanishes if their quantum numbers
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are not equal, reflects the fact that the eigenfunctions form an orthonormal basis in the space of
square-integrable complex functions on R2.

Optional Problem 2: Wave functions of the hydrogen atom (spherical coordinates) [4]
Points: [2](M); (b)[2](M); (c)[2](M,Bonus)

Show that the volume integral, Pnlm =
�
R3 dV |Ψnlm(r)|2, for the following functions Ψnlm(r) =

Rnl(r)Y
m
l (θ, φ), with spherical coordinates r = r(r, θ, φ), yields Pnlm = 1:

(a) Ψ210(r) = R21(r)Y
0
1 (θ, φ), R21(r) =

re−r/2
√
24

, Y 0
1 (θ, φ) =

(
3
4π

)1/2
cos θ

(b) Ψ320(r) = R32(r)Y
0
2 (θ, φ), R32(r) =

4 r2e−r/3

81
√
30

, Y 0
2 (θ, φ) =

(
5

16π

)1/2
(3 cos2θ−1)

(c) Show that the ‘overlap integral’ O =
�
R3 dV Ψ320(r)Ψ210(r) yields zero.

Hint: In =
�∞
0

dx xn e−x = n!

Background information: The Ψnlm(r) are quantum mechanical ‘eigenfunc-
tions’ of the hydrogen atom, where n, l and m are ‘quantum numbers’ which
specify the quantum state of the system. A particle in this state is found with
probability |Ψnm(r)|2dV within the volume element dV at position r. The
total probability for being found anywhere in R3 equals 1, hence Pnlm = 1
holds for every eigenfunction Ψnm(r).

The figures each show a surface on which |Ψnlm|2 has a constant value. The eigenfunctions form
an orthonormal basis in the space of square-integrable complex functions on R3, hence the volume
integral of two eigenfunctions vanishes if their quantum numbers are not equal.

Optional Problem 3: Spin-1
2
matrices: commutation relations [2]

Points: (a)[0,5](E); (b)[1,5](E).

The ‘spin’ of a quantum mechanical particle is a type of internal angular momentum. The des-
cription of quantum mechanical spin requires three matrices, Sx, Sy and Sz, whose commutators
satisfy the SU(2) algebra. The commutator of two matrices is defined as [A,B] ≡ AB−BA. The
SU(2) algebra is defined by the relations [Si, Sj] = iεijkSk, where εijk is the antisymmetric Levi-
Civita symbol (with εxyz = 1, εyxz = −1, etc.). The description of quantum mechanical particles
with spin s, where s ∈ 1

2
Z, utilizes a representation of the SU(2) algebra in terms of matrices of

dimension (2s+ 1)× (2s+ 1). They have the property that the matrix S2 ≡ S2
x + S2

y + S2
z equals

s(s+ 1)1.

The following matrices are used to describe quantum mechanical particles with spin s = 1
2
:

Sx = 1
2

(
0 1
1 0

)
, Sy = 1

2

(
0 −i
i 0

)
, Sz = 1

2

(
1 0
0 −1

)
.

(a) Compute S2. Is the result consistent with the expected form s(s+ 1)1?

(b) Verify that Sx, Sy and Sz satisfy the SU(2) algebra [Si, Sj] = iεijkSk.

Optional Problem 4: Spin-1 matrices: commutation relations [2]
Points: (a)[0,5](E); (b)[1,5](E)
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The following matrices are used to describe quantum mechanical particles with spin s = 1:

Sx = 1
√
2

(
0 1 0
1 0 1
0 1 0

)
, Sy = 1

√
2

(
0 −i 0
i 0 −i
0 i 0

)
, Sz =

(
1 0 0
0 0 0
0 0 −1

)
.

(a) Compute S2 ≡ S2
x + S2

y + S2
z . Is the result consistent with the expected form s(s+ 1)1?

(b) Verify that Sx, Sy and Sz satisfy the SU(2) algebra [Si, Sj] = iεijkSk.

Optional Problem 5: Matrix multiplication [2]
Points: (a)[1](M); (b)[1](M)

Let A and B be N × N matrices with matrix elements Aij = ajδ
i
m and Bi

j = biδ
i
j, for a fixed

choice of m ∈ {1, 2, . . . , N}. Remark: Since the indices i and j are specified on the left, they are
not summed over on the right even though in the expression for Bi

j the index i appears twice on
the right.

(a) For N = 3 and m = 2, write these matrices explicitly in the usual matrix representation and
calculate the matrix product AB explicitly.

(b) Calculate the product AB for arbitrary N ∈ N and 1 ≤ m ≤ N . [Check your result: the sum
of the diagonal elements yields:

∑N
i=1(AB)ii = ambm.]

Optional Problem 6: Matrix multiplication [1]
Points: (a)[0.5](E); (b)[0.5](E)

Let A and B be N ×N matrices with matrix elements Aij = aiδ
i
N+1−j and Bi

j = biδ
i
j. Remark:

Since the indices i and j are specified on the left, they are not summed over on the right even
though the index i appears twice in Bi

j on the right.

(a) For N = 3 and m = 2, write these matrices explicitly in the usual matrix representation and
calculate the matrix product AB explicitly.

(b) Calculate the product AB for arbitrary N ∈ N and 1 ≤ m ≤ N . [Check your result: if N is
odd, the sum of the diagonal elements yields:

∑N
i=1(AB)ii = a(N+1)/2b(N+1)/2.]

[Total Points for Optional Problems: 15]
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