MÜNCHEN
https://moodle.Imu.de $\rightarrow$ Kurse suchen: 'Rechenmethoden'

## Sheet 05: Multidimensional Integration II. Fields I

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 2, 4, 7, 5.

Videos exist for example problems 2 (C4.2.1).

Optional Problem 1: Definite exponential integrals of the form $\int_{0}^{\infty} \mathrm{d} x x^{n} e^{-a x}$ [2] Points: (a)[1](M); (b)[1](M)
Calculate the integral $I_{n}(a)=\int_{0}^{\infty} \mathrm{d} x x^{n} e^{-a x}$ (with $a \in \mathbb{R}, a>0, n \in \mathbb{N}$ ) using two different methods: (a) repeated partial integration, and (b) repeated differentiation:
(a) Calculate $I_{0}, I_{1}$ and $I_{2}$ by using partial integration where necessary. Then use partial integration to show that

$$
I_{n}(a)=\frac{n}{a} I_{n-1}(a)
$$

for all $n \geq 1$. Use this relation iteratively to determine $I_{n}(a)$ as a function of $a$ and $n$. [Check your result: $I_{3}(2)=\frac{3}{8}$.]
(b) Show that taking $n$ derivatives of $I_{0}(a)$ with respect to $a$ yields

$$
I_{n}(a)=(-1)^{n} \frac{\mathrm{~d}^{n} I_{0}(a)}{\mathrm{d} a^{n}} .
$$

Then calculate these derivatives for a few small values of $n$. From the emerging pattern, deduce the general formula for $I_{n}(a)$.

## Optional Problem 2: General Gaussian integrals [2]

Points: (a)[1](M); (b)[1](M)
Determine the value of the $x^{2 n}$ Gaussian integral, $I_{n}(a)=\int_{-\infty}^{\infty} \mathrm{d} x x^{2 n} \mathrm{e}^{-a x^{2}}$ (with $a \in \mathbb{R}, a>0$, $n \in \mathbb{N}$ ), using two different methods: (a) repeated partial integration, and (b) repeated differentiation:
(a) Starting from the Gaussian integral $I_{0}(a)=\sqrt{\frac{\pi}{a}}$, compute the integrals $I_{1}$ and $I_{2}$ by using partial integration where necessary. Then use partial integration to show that

$$
I_{n}(a)=\frac{2 n-1}{2 a} I_{n-1}(a)
$$

holds for all $n \geq 1$. Use this relation iteratively to determine $I_{n}(a)$ as a function of $a$ and $n$.
[Check your result: $I_{3}(3)=\sqrt{\frac{\pi}{3}} \frac{5}{72}$.]
(b) Show that taking $n$ derivatives of $I_{0}(a)$ with respect to $a$ yields

$$
I_{n}(a)=(-1)^{n} \frac{\mathrm{~d}^{n} I_{0}(a)}{\mathrm{d} a^{n}}
$$

Then calculate these derivatives for a few small values of $n$. From the emerging pattern, deduce the general formula for $I_{n}(a)$.

## Optional Problem 3: Volume and surface integral: parabolic solid of revolution [3] Points: (a)[1](E); (b)[2](M).

Consider a parabolic solid of revolution, $P$, bounded from above by the plane $z=z_{\text {max }}$, and from below by the surface of revolution obtained by rotating the parabola $z(x)=x^{2}$ about the $z$-axis.
(a) Calculate the volume, $V$, of the body $P$.
(b) Calculate the surface area, $A$, of the curved part, $C$, of the surface of $P$.
[Check your results: For $z_{\max }=\frac{3}{4}$ we have $V=\frac{9 \pi}{32}$ and $A=\frac{7 \pi}{6}$.]
Optional Problem 4: Surface integral: hyperbolic solid of revolution (Gabriel's horn) [4]
Points: (a)[1](E); (b)[2](A); (c)[0.5](E); (d)[0.5](E).
Consider the solid body, $K$, generated by rotating the function $\rho(z)=1 / z$, with $1 \leq z \leq a$, about the $z$-axis. This shape is known as Gabriel's horn or Torticelli's trumpet.
(a) Compute the volume, $V(a)$, of the body $K$.
[Check your result: $V(2)=\frac{\pi}{2}$.]
(b) Write down the integral for the surface area of this solid, $A(a)$, and calculate its derivative, $A^{\prime}(a)=\frac{\mathrm{d}}{\mathrm{d} a} A(a)$. [Check your result: $A^{\prime}(1)=2 \sqrt{2} \pi$.]
(c) Find a lower bound for the value of the integral $A(a)$ by using the inequality
 $\sqrt{z^{-4}+1} \geq 1$.
(d) How large are the volume and (the lower bound for) the area in the limit as $a \rightarrow \infty$ ?

## Optional Problem 5: Area of a circular cone [2]

Points: [2](M)
Consider a circular cone, $C$, of radius $R$ and height $h$. Compute the area, $A_{C}(R, h)$, of its (slanted) conical surface $S_{C}$ as a function of $R$ and $h$. [Check your result: $A_{C}(3,4)=15 \pi$.]

## Optional Problem 6: Area of an elliptical cone [2]

Points: [2](M)
Consider an elliptical cone, $C$, with semi-axes $a$ and $b$ and height $h$. Use generalized polar coordinates to show that the area, $A_{C}$, of its (slanted) conical surface $S_{C}$ is given by an integral of the form,

$$
A_{C}=\int_{S_{C}} \mathrm{~d} S=P \int_{0}^{2 \pi} \mathrm{~d} \phi \sqrt{1+Q \sin ^{2} \phi}
$$

and find $P(a, b, h)$ and $Q(a, b, h)$ as functions of $a, b$ and $h$. Remark: This integral belongs to the class of so-called 'elliptical integrals', which cannot be solved in closed form. [Check your results: if $a=3, b=2$ and $h=4$, then $P=5$ and $Q=\frac{4}{5}$.]
[Total Points for Optional Problems: 15]

