L
LUDWIG-
https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 04: Multidimensional Differentiation and Integration I

Posted: Mo 07.11.22 Central Tutorial: 10.11.22 Due: Th 17.11.22, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 3, 4(a,b), 7(a-c), 9.

Videos exist for example problems 7 (V2.3.3), 8 (V2.3.5).

Example Problem 1: Partial derivatives [1]

Points: (a)[1](E); (b)[1](E,Bonus).
Compute the partial derivates $\partial_{x} f(x, y)$ and $\partial_{y} f(x, y)$ of the following functions: [Check your results against those in square brackets.]
(a) $f(x, y)=x^{2} y^{3}-2 x y$

$$
\begin{array}{ll}
{\left[\partial_{x} f(2,1)=2,\right.} & \left.\partial_{y} f(1,2)=10\right] \\
{\left[\partial_{x} f\left(0, \frac{1}{2}\right)=\mathrm{e},\right.} & \left.\partial_{y} f(\pi, 0)=-2 \pi\right]
\end{array}
$$

(b) $f(x, y)=\sin \left[x \mathrm{e}^{2 y}\right]$

Example Problem 2: Chain rule for functions of two variables [2]

Points: [2](E)
This problem aims to illustrate the inner life of the chain rule for a function of several variables. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{y}=\left(y^{1}, y^{2}\right)^{T} \mapsto f(\mathbf{y})=\|\mathbf{y}\|^{2}$ and the vector field $\mathbf{g}: \mathbb{R}_{+}^{2} \rightarrow$ $\mathbb{R}^{2}, \mathbf{x}=\left(x^{1}, x^{2}\right)^{T} \mapsto \mathbf{g}(\mathbf{x})=\left(\ln x^{2}, 3 \ln x^{1}\right)^{T}$, then $f(\mathbf{g}(\mathbf{x}))$ gives the norm of \mathbf{g} as a function of \mathbf{x}. Find the partial derivatives $\partial_{x^{1}} f(\mathbf{g}(\mathbf{x}))$ and $\partial_{x^{2}} f(\mathbf{g}(\mathbf{x}))$ as functions of x^{1} and x^{2} in two ways,
(a) by first computing $f(\mathbf{x})=f(\mathbf{g}(\mathbf{x}))$ as function of \mathbf{x} and then taking partial derivatives;
(b) by using the chain rule $\partial_{x^{k}} f(\mathbf{g}(\mathbf{x}))=\sum_{j} \partial_{g^{j}} f(\mathbf{g}(\mathbf{x})) \partial_{x^{k}} g^{j}(\mathbf{x})$.

Why do both routes yield the same answer? Identify the similarities in both computations!
[Check your results: if $x^{1}=9, x^{2}=2$, then $\partial_{x^{1}} f=4 \ln 3, \partial_{x^{2}} f=\ln 2$.]

Example Problem 3: Two-dimensional integration (Cartesian coordinates) [Bonus]
 Points: [2](M,Bonus)

Calculate the surface integral $I(a)=\int_{G_{a}} \mathrm{~d} x \mathrm{~d} y f(x, y)$ of the function $f(x, y)=x y$, over the area $G=\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leq y \leq 1 ; 1 \leq x \leq a-y\right\}$, with $2 \leq a \in \mathbb{R}$.
[Check your result: $I(2)=\frac{5}{24}$].

Example Problem 4: Area enclosed by curves (Cartesian coordinates) [3]

Points: (a)[1](E); (b)[1](M); (c)[1](M)
Consider the curve $\gamma_{1}: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto(t, b(1-t / a))^{T}$ and the closed curve $\gamma_{2}:(0,2 \pi) \subset \mathbb{R} \rightarrow$ $\mathbb{R}^{2}, t \mapsto(a \cos t, b \sin t)^{T}$ in Cartesian coordinates, with $0<a, b \in \mathbb{R}$.
(a) Sketch the curves γ_{1} and γ_{2}.
(b) Compute the area $S(a, b)$ enclosed by γ_{2}. [Check your result: $S(1,1)=\pi$.]
(c) γ_{1} divides the area enclosed by γ_{2} into two parts. Find the area $A(a, b)$ of the smaller part by computing an area integral. Check your result using elementary geometrical considerations.

Example Problem 5: Area integral for volume of a pyramid (Cartesian coordinates) [3]

Points: (a)[1](E); (b)[2](M)
Consider the pyramid bounded by the $x y$-plane, the $y z$-plane, the $x z$-plane and the plane $E=$ $\left\{(x, y, z) \in \mathbb{R}^{3}, z=c(1-x / a-y / b)\right\}$, with $0<a, b, c \in \mathbb{R}$.
(a) Make a qualitative sketch of the pyramid. Find its volume $V(a, b, c)$ using geometric arguments [Check your result: $V(1,1,1)=\frac{1}{6}$.]
(b) Compute $V(a, b, c)$ by integrating the height $h(x, y)$ of the pyramid over its base area in the $x y$ plane.

Example Problem 6: Coordinate transformations [3]
 Points: [3](E)

Consider three points whose Cartesian coordinates, (x, y, z), are $P_{1}:(3,-2,4), P_{2}:(1,1,1)$ and P_{3} : $(-3,0,-2)$. What is the representation of these three points in cylindrical coordinates, (ρ, ϕ, z), and in spherical coordinates, (r, θ, ϕ) ? (Give the angles in radians.)

Example Problem 7: Cylindrical coordinates: velocity, kinetic energy, angular momentum [3]
Points: (a)[2](E); (b)[1](E,Bonus); (c)[1](E); (d)[0,5](E,Bonus); (e)[0,5](E,Bonus).
The relation between Cartesian and cylindrical coordinates is given by: $x=\rho \cos \phi, y=\rho \sin \phi$, $z=z$, with $\rho \in(0, \infty), \phi \in(0,2 \pi), z \in(-\infty, \infty)$.
Basis vectors: Construct the basis vectors of the local basis for cylindrical coordinates, $\left\{\mathbf{e}_{y_{i}}\right\}=$ $\left\{\mathbf{e}_{\rho}, \mathbf{e}_{\phi}, \mathbf{e}_{z}\right\}$, and show explicitly that they have the following properties:
(a) $\mathbf{e}_{y_{i}} \cdot \mathbf{e}_{y_{j}}=\delta_{i j}$ and (b) $\mathbf{e}_{y_{i}} \times \mathbf{e}_{y_{j}}=\varepsilon_{i j k} \mathbf{e}_{y_{k}}$.

Physical quantities: Show that in cylindrical coordinates (c) the velocity vector, $\mathbf{v}=\frac{d}{d t} \mathbf{r}$, (d) the kinetic energy, $T=\frac{1}{2} m \mathbf{v}^{2}$, and (e) the angular momentum, $\mathbf{L}=m(\mathbf{r} \times \mathbf{v})$, have the following forms:

$$
\begin{aligned}
\mathbf{v} & =\dot{\rho} \mathbf{e}_{\rho}+\rho \dot{\phi} \mathbf{e}_{\phi}+\dot{z} \mathbf{e}_{z}, \quad T=\frac{1}{2} m\left[\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right], \\
\mathbf{L} & =m\left[-z \rho \dot{\phi} \mathbf{e}_{\rho}+(z \dot{\rho}-\rho \dot{z}) \mathbf{e}_{\phi}+\rho^{2} \dot{\phi} \mathbf{e}_{z}\right] .
\end{aligned}
$$

Example Problem 8: Line integral in polar coordinates: spiral [2]

Points: (a)[2](E); (b)[1](E)
The curve $\gamma_{S}=\left\{\mathbf{r}(\rho, \phi) \in \mathbb{R}^{2} \left\lvert\, \rho=R+\frac{1}{2 \pi} \phi \Delta\right., \phi \in(0,2 \pi)\right\}$, with $0<R, \Delta \in \mathbb{R}$, describes a spiral path in two dimensions, parametrized using polar coordinates.
(a) Sketch the spiral path γ_{S} and calculate the line integral $W_{1}\left[\gamma_{S}\right]=\int_{\gamma_{S}} \mathrm{~d} \mathbf{r} \cdot \mathbf{F}_{1}$ of the field $\mathbf{F}_{1}=\mathbf{e}_{\phi}$ along γ_{S}. [Check your result: if $R=\Delta=1$, then $W_{1}[\gamma]=3 \pi$.]
(b) Calculate the line integral $W_{2}[\gamma]=\int_{\gamma} \mathrm{d} \mathbf{r} \cdot \mathbf{F}_{2}$ of the field $\mathbf{F}_{2}=\mathbf{e}_{x}$ along the straight path γ_{G} from the point $(R, 0)^{T}$ to the point $(R+\Delta, 0)^{T}$, and also along the spiral path γ_{S}. Are the results related? Explain!

Example Problem 9: Line integral in spherical coordinates: satellite in orbit [Bonus] Points: (a)[0,5](E,Bonus); (b)[1](E,Bonus); (c)[0,5](E,Bonus); (d)[1](M,Bonus)

A satellite travels along an unusual trajectory γ that circles the north-south-axis of the earth as it travels from a point high above the north pole to a point high above the south pole. In spherical coordinates, the trajectory is given by $r(t)=r_{0}, \theta(t)=\omega_{1} t, \phi(t)=\omega_{2} t$, with $t \in\left(0, \pi / \omega_{1}\right)$. Due to the rotation of the earth, there is a wind in the upper atmosphere, exerting a force $\mathbf{F}=-F_{0} \sin \theta \mathbf{e}_{\phi}$ on the satellite.
(a) Make a qualitative sketch of the orbit, for $\omega_{2}=20 \omega_{1}$. How many times does the path circle around the north-south axis?
(b) What is the velocity vector $\dot{\mathbf{r}}$ written in spherical coordinates?
(c) Give the length $L[\gamma]$ of the orbit in terms of an integral. (You are not required to solve it.)
(d) Use the line integral $W[\gamma]=\int_{\gamma} \mathrm{d} \mathbf{r} \cdot \mathbf{F}$, to compute the work performed against the wind by the satellite along its orbit. [Check your result: if $F_{0}=r_{0}=\omega_{1}=\omega_{2}=1$, then $W[\gamma]=-\frac{\pi}{2}$.]
[Total Points for Example Problems: 17]

Homework Problem 1: Partial derivatives [1]

Points: (a)[1](E); (b)[1](E,Bonus).
Compute the partial derivates $\partial_{x} f(x, y)$ and $\partial_{y} f(x, y)$ of the following functions:
[Check your results against those in square brackets.]
(a) $f(x, y)=\mathrm{e}^{-x^{2} \cos (y)}$

$$
\begin{aligned}
& {\left[\partial_{x} f(1, \pi)=2 \mathrm{e}, \quad \partial_{y} f\left(1, \frac{\pi}{2}\right)=1\right]} \\
& {\left[\partial_{x} f(\ln 2,1)=\frac{5}{4}, \quad \partial_{y} f(\ln 2,1)=-\frac{5}{4} \ln 2\right]}
\end{aligned}
$$

(b) $f(x, y)=\sinh \left(\frac{x}{y}\right)$

Homework Problem 2: Chain rule for functions of two variables [2]

Points: [2](E)
Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{y}=\left(y^{1}, y^{2}\right)^{T} \mapsto f(\mathbf{y})=\mathbf{y} \cdot \mathbf{a}$, where $\mathbf{a}=\left(a^{1}, a^{2}\right)^{T} \in \mathbb{R}^{2}$, and the vector field $\mathbf{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \mathbf{x}=\left(x^{1}, x^{2}\right)^{T} \mapsto \mathbf{g}(\mathbf{x})=\mathbf{x}(\mathbf{x} \cdot \mathbf{b})$, where $\mathbf{b}=\left(b^{1}, b^{2}\right)^{T} \in \mathbb{R}^{2}$. Compute the partial derivatives $\partial_{x^{k}} f(\mathbf{g}(\mathbf{x}))$ (with $k=1,2$) as functions of \mathbf{x},
(a) by first computing $f(\mathbf{g}(\mathbf{x}))$ explicitly and then taking partial derivatives;
(b) by using the chain rule $\partial_{x^{k}} f(\mathbf{g}(\mathbf{x}))=\sum_{j} \partial_{g^{j}} f(\mathbf{g}(\mathbf{x})) \partial_{x^{k}} g^{j}(\mathbf{x})$.
[Check your result: if $\mathbf{a}=(0,1)^{T}, \mathbf{b}=(1,0)^{T}$, then $\partial_{x^{1}} f(\mathbf{g}(\mathbf{x}))=x^{2}, \partial_{x^{2}} f(\mathbf{g}(\mathbf{x}))=x^{1}$.]
Hint: If compact notation is used, such as $\mathbf{a} \cdot \mathbf{x}=a_{l} x^{l}$ and $\partial_{x^{k}} x^{l}=\delta_{k}^{l}$, the computations are quite short.

Homework Problem 3: Two-dimensional integration (Cartesian coordinates) [Bonus] Points: [2](M,Bonus)
Calculate the surface integral $I(a)=\int_{G} \mathrm{~d} x \mathrm{~d} y f(x, y)$ of the function $f(x, y)=y^{2}+x^{2}$ over the surface $G=\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leq x \leq 1 ; 0 \leq y \leq \mathrm{e}^{a x}\right\}$, with $a \in \mathbb{R}$. Hint: for $\int \mathrm{d} x x^{2} \mathrm{e}^{a x}$, use partial integration twice! [Check your result: $I(1)=\mathrm{e}+\left(\mathrm{e}^{3}-19\right) / 9$.]

Homework Problem 4: Area enclosed by curves (Cartesian coordinates) [3]

Points: (a)[1](E); (b)[2](M)
Consider the curves $\gamma_{1}: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto\left((t-2 a)^{2}+2 a^{2}, t\right)^{T}$ and $\gamma_{2}: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto\left(2(t-a)^{2}, t\right)^{T}$ in Cartesian coordinates, with $0<a \in \mathbb{R}$.
(a) Sketch the curves γ_{1} and γ_{2}.
(b) Compute the finite area $S(a)$ enclosed between these curves. [Check your result: $S\left(\frac{1}{2}\right)=\frac{4}{3}$.]

Homework Problem 5: Area integral for volume of ellipsoidal tent (Cartesian coordinates) [3]

Points: (a)[1](E); (b)[2](M)
A tent has a flat, ellipsoidal base, given by the equation $(x / a)^{2}+(y / b)^{2} \leq 1$. The shape of the tent's roof is given by the height function $h(x, y)=c\left[1-(x / a)^{2}-(y / b)^{2}\right]$.
(a) Give a qualitative sketch of the shape of the tent, for $a=2, b=1$ and $c=2$.
(b) Calculate the volume V of the tent via a surface integral of the height function. Use Cartesian coordinates. [Check your result: if $a=b=c=1$, then $V=\pi / 2$.]
Hint: Show by a suitable trigonometric substitution that $\int_{0}^{1} \mathrm{~d} x\left(1-x^{2}\right)^{3 / 2}=\frac{3}{16} \pi$.

Homework Problem 6: Coordinate transformations [2]

Points: [2](E)
The point P_{1} has spherical coordinates $(r, \theta, \phi)=(2, \pi / 6,2 \pi / 3)$. What are its Cartesian and cylindrical coordinates, (x, y, z) and (ρ, ϕ, z), respectively? The point P_{2} has cylindrical coordinates $(\rho, \phi, z)=(4, \pi / 4,2)$. What are its Cartesian and spherical coordinates? (Give the angles in radians.)

Homework Problem 7: Spherical coordinates: velocity, kinetic energy, angular momentum [3]

Points: (a)[2](E); (b)[1](E,Bonus); (c)[1](E); (d)[0,5](E,Bonus); (e)[0,5](E,Bonus)
The relationship between Cartesian and spherical coordinates is given by: $x=r \sin \theta \cos \phi, y=$ $r \sin \theta \sin \phi, z=r \cos \theta$, with $r \in(0, \infty), \phi \in(0,2 \pi), \theta \in(0, \pi)$.
Basis vectors: Construct the basis vectors of the local basis for spherical coordinates, $\left\{\mathbf{e}_{y_{i}}\right\}=$ $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}, \mathbf{e}_{\phi}\right\}$, and show explicitly that
(a) $\mathbf{e}_{y_{i}} \cdot \mathbf{e}_{y_{j}}=\delta_{i j}$ and (b) $\mathbf{e}_{y_{i}} \times \mathbf{e}_{y_{j}}=\varepsilon_{i j k} \mathbf{e}_{y_{k}}$.

Physical quantities: Show that in spherical coordinates (c) the velocity vector, $\mathbf{v}=\frac{d}{d t} \mathbf{r}$, (d) the kinetic energy, $T=\frac{1}{2} m \mathbf{v}^{2}$, and (e) the angular momentum, $\mathbf{L}=m(\mathbf{r} \times \mathbf{v})$, have the following forms:

$$
\mathbf{v}=\dot{r} \mathbf{e}_{r}+r \dot{\theta} \mathbf{e}_{\theta}+r \dot{\phi} \sin \theta \mathbf{e}_{\phi}, \quad T=\frac{1}{2} m\left[\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \dot{\phi}^{2} \sin ^{2} \theta\right], \quad \mathbf{L}=m r^{2}\left[\dot{\theta} \mathbf{e}_{\phi}-\dot{\phi} \sin \theta \mathbf{e}_{\theta}\right]
$$

Homework Problem 8: Line integral in Cartesian and spherical coordinates [3]

Points: (a)[1](E); (b)[2](E)
Consider the vector field $\mathbf{F}=(0,0, f z)^{\mathrm{T}}$, with $f \in \mathbb{R}$. Compute the line integral $W[\gamma]=\int_{\gamma} \mathrm{d} \mathbf{r} \cdot \mathbf{F}$ from $\mathbf{a}=(1,0,0)^{T}$ to $\mathbf{b}=(0,0,1)^{T}$ explicitly along the following two paths:
(a) γ_{1} : a straight line. [Check your result: if $f=2$, then $W\left[\gamma_{1}\right]=1$.]
(b) γ_{2} : a segment of a circle with radius $R=1$ centered at the origin. Use spherical coordinates. [Check your result: if $f=3$, then $W\left[\gamma_{2}\right]=\frac{3}{2}$.]

Homework Problem 9: Line integrals in cylindrical coordinates: bathtub drain [Bonus] Points: (a)[0,5](E,Bonus); (b)[1](E,Bonus); (c)[0,5](M,Bonus); (d)[1](M,Bonus)
A soap bubble travels along a spiral-shaped path γ towards the drain of a bathtub. In cylindrical coordinates the path is given by $\rho(t)=\rho_{0} \mathrm{e}^{-t / \tau}, \phi(t)=\omega t, z(t)=z_{0} \mathrm{e}^{-t / \tau}$, with $\rho_{0}>\rho_{\mathrm{d}}$ and $t \in\left[0, t_{\mathrm{d}}\right]$, where ρ_{d} is the drain radius and $t_{\mathrm{d}}=\tau \ln \left(\rho_{0} / \rho_{\mathrm{d}}\right)$ the time at which the bubble reaches the drain.
(a) Make a qualitative sketch of the path (e.g. for $\omega=6 \pi / \tau$ in $\rho_{0}=10 \rho_{\mathrm{A}}$).
(b) What is the velocity vector $\mathbf{v}=\dot{\mathbf{r}}$ in cylindrical coordinates? What is the magnitude of the final velocity, i.e $v_{\mathrm{d}}=\left\|\mathbf{v}\left(t_{\mathrm{d}}\right)\right\|$?
(c) Show that the length of the path is given by $L[\gamma]=\tau v_{\mathrm{d}}\left(\rho_{0} / \rho_{\mathrm{d}}-1\right)$.
(d) Using the line integral $W[\gamma]=\int_{\gamma} d \mathbf{r} \cdot \mathbf{F}$, find the work done by gravity $\mathbf{F}=-m g \mathbf{e}_{z}$ along the path of the soap bubble. Give a physical interpretation for this result!
[Check your results: if $\tau=2 / \omega, z_{0}=2 \rho_{0}$ and $\rho_{\mathrm{d}}=\rho_{0} / 3$, then: (b) $v_{\mathrm{d}}=\rho_{0} / \tau$, (c) $L=2 \rho_{0}$, (d) $W[\gamma]=m g \rho_{0} 4 / 3$.]

