MÜNCHEN

Fakultät für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz
https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 04: Multidimensional Differentiation and Integration I

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 3, 4(a,b), 7(a-c), 9 .

Videos exist for example problems 7 (V2.3.3), 8 (V2.3.5).

Optional Problem 1: Partial derivates of first and second order [2]
 Points: [2](E)

Consider the function $f: \mathbb{R}^{2} \backslash(0,0)^{T} \rightarrow \mathbb{R}, \mathbf{r}=(x, y)^{T} \mapsto f(\mathbf{r})=\frac{x}{r}+1$, with $r=\sqrt{x^{2}+y^{2}}$. Calculate all possible partial derivatives of first and second order.

Optional Problem 2: Partial derivates of first and second order [2]

Points: [2](E)
Calculate all possible partial derivatives of first and second order of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, $\mathbf{r}=(x, y, z)^{T} \mapsto f(\mathbf{r})$, for $f(\mathbf{r})=x^{2} \ln (y) / z$.

Optional Problem 3: Fubini's theorem [2]

Points: [2](M)
Verify Fubini's theorem for the following integrals of the function $f(x, y)=x \sqrt{x^{2}+y}$.
[Check your result: $I(1)=\frac{2}{15}\left(2^{5 / 2}-2\right)$.]
(a) $I(a)=\int_{0}^{a} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y f(x, y)$,
(b) $\quad I(a)=\int_{0}^{1} \mathrm{~d} y \int_{0}^{a} \mathrm{~d} x f(x, y)$.

Optional Problem 4: Fubini's theorem [2]

Points: [2](M)
Verify Fubini's theorem for the following integrals of the function $f(x, y)=x y^{2} \sin \left(x^{2}+y^{3}\right)$.
[Check your result: $I(\sqrt{\pi / 2})=\frac{1}{3}$.]
(a) $I(a)=\int_{0}^{a} \mathrm{~d} x \int_{0}^{\pi^{1 / 3}} \mathrm{~d} y f(x, y)$,
(b) $\quad I(a)=\int_{0}^{\pi^{1 / 3}} \mathrm{~d} y \int_{0}^{a} \mathrm{~d} x f(x, y)$.

Optional Problem 5: Violation of Fubini's Theorem [Bonus]
 Points: (a)[1](E,Bonus); (b)[0,5](E,Bonus); (M)[1](E,Bonus); (d)[0,5](M,Bonus).

Fubini's theorem holds only if the integrand is sufficiently well behaved that the integral of its modulus over the integration domain exists. Here we explore a counterexample.
(a) Integrate the function $f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ over the rectangle $R_{a}=\{a \leq x \leq$ $1,0 \leq y \leq 1\}$, with $0<a \in \mathbb{R}$, using two different orders of integration:

$I_{\mathrm{A}}(a)=\int_{a}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y f(x, y), \quad \quad I_{\mathrm{B}}(a)=\int_{0}^{1} \mathrm{~d} y \int_{a}^{1} \mathrm{~d} x f(x, y)$.
Verify that $I_{\mathrm{A}}(a)=I_{\mathrm{B}}(a)$. [Check your results: $I_{\mathrm{A}, \mathrm{B}}(\sqrt{3})=-\frac{\pi}{12}$.]
Hint: First show that $f(x, y)=\frac{\partial}{\partial y} \frac{y}{x^{2}+y^{2}}=-\frac{\partial}{\partial x} \frac{x}{x^{2}+y^{2}}$.

Set $a=0$ for the remainder of this problem.
(b) Show that $I_{\mathrm{A}}(0)=-I_{\mathrm{B}}(0)$ if these integrals are recomputed, setting $a=0$ from the outset. Which of the two, $I_{\mathrm{A}}(0)$ or $I_{\mathrm{B}}(0)$, agrees with the $a \rightarrow 0$ limit from part (a)?
(c) Show that the integral $I_{\mathrm{C}}=\int_{R_{0}} \mathrm{~d} x \mathrm{~d} y|f(x, y)|$ does not exist. To this end, split the integration domain $R_{a=0}$ into two parts, $R_{0}=R_{0}^{+} \cup R_{0}^{-}$, chosen such that $f \geq 0$ on R_{0}^{+}and $f \leq 0$ on R_{0}^{-}(see figure). Then $I_{\mathrm{C}}=$ $\int_{R_{0}^{+} \cup R_{0}^{-}} \mathrm{d} x \mathrm{~d} y|f(x, y)|=I_{0}^{+}-I_{0}^{-}$, with $I_{0}^{ \pm}=\int_{R_{0}^{ \pm}} \mathrm{d} x \mathrm{~d} y f(x, y)$.

Compute the contributions $I_{0}^{ \pm}$separately and show that $I_{0}^{+}=-I_{0}^{-}=\infty$.
As seen in (a) and (b), Fubini's theorem applies for $a>0$, but not for $a=0$, because then the integral over the modulus of the function does not exist, $I_{\mathrm{C}}=I_{0}^{+}-I_{0}^{-}=\infty$, as seen in (c). This happens because for $a=0$ the integration domain touches a point where f diverges - the origin: as $(x, y)^{T}$ approaches $(0,0)^{T}$, the integrand tends to $+\infty$ for $x>y$ or $-\infty$ for $x<y$. According to (c), the integrals over the positive or negative 'branches' of f diverge, $I_{0}^{ \pm}= \pm \infty$. Hence the integral $I_{0}=\int_{R_{0}} \mathrm{~d} x \mathrm{~d} y f(x, y)$ is not defined: it yields $\infty-\infty$ contributions, and the extent to which these cancel depends on the integration order, as seen in (b).

One may make sense of the integral I_{0} by regularizing it, i.e. by modifying the integration domain to avoid the singularity. For example, consider the domain $R_{\delta}=$ $R_{0} \backslash S_{\delta}$, obtained from R_{0} by removing an infinitesimal square adjacent to the origin, $S_{\delta}=\{0 \leq x \leq \delta, 0 \leq y \leq \delta\}$.
(d) Compute the integral $I_{\delta}=\int_{R_{\delta}} \mathrm{d} x \mathrm{~d} y f(x, y)$ using the method of (c), splitting the integration domain as $R_{\delta}=R_{\delta}^{+} \cup R_{\delta}^{-}$(see figure). Discuss the limit $I_{\delta \rightarrow 0}$. Why is it well-defined?

Optional Problem 6: Violation of Fubini's Theorem [Bonus]

Points: (a)[1](E,Bonus); (b)[0,5](E,Bonus); (M)[1](E,Bonus); (d)[0,5](M,Bonus).
(a) Compute the integral of the function $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}$ over the rectangle $R_{a}=\{a \leq x \leq$ $1,0 \leq y \leq 1\}$, with $0<a \in \mathbb{R}$, using two different orders of integration:
$I_{\mathrm{A}}(a)=\int_{a}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y f(x, y)$,

$$
I_{\mathrm{B}}(a)=\int_{0}^{1} \mathrm{~d} y \int_{a}^{1} \mathrm{~d} x f(x, y)
$$

Verify that $I_{\mathrm{A}}(a)=I_{\mathrm{B}}(a)$. [Check your results: $I_{\mathrm{A}, \mathrm{B}}\left(\frac{1}{3}\right)=\frac{1}{10}$.]

Hint: First show that $f(x, y)=\frac{\partial}{\partial y} \frac{x y^{2}}{2\left(x^{2}+y^{2}\right)^{2}}=-\frac{\partial}{\partial x} \frac{x^{2} y}{2\left(x^{2}+y^{2}\right)^{2}}$.
(b) Show that $I_{\mathrm{A}}(0)=-I_{\mathrm{B}}(0)$ if these integrals are recomputed with $a=0$ from the outset.
(c) Compute $I_{\mathrm{C}}=\int_{R_{0}} \mathrm{~d} x \mathrm{~d} y|f(x, y)|$ and explain why Fubini's theorem is violated in (b).
(d) Compute the regularized integral $I_{\delta}=\int_{R_{\delta}} \mathrm{d} x \mathrm{~d} y f(x, y)$, where the integration domain $R_{\delta}=$ $R_{0} \backslash S_{\delta}$ is obtained from $R_{a=0}$ by removing an infinitesimal square adjacent to the origin, $S_{\delta}=\{0 \leq x \leq \delta, 0 \leq y \leq \delta\}$. Discuss the limit $I_{\delta \rightarrow 0}$. Why is it well-defined?

