

 $https://moodle.lmu.de \rightarrow Kurse \ suchen: \ 'Rechenmethoden'$

Sheet 04: Multidimensional Differentiation and Integration I

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 3, 4(a,b), 7(a-c), 9.

Videos exist for example problems 7 (V2.3.3), 8 (V2.3.5).

Optional Problem 1: Partial derivates of first and second order [2] Points: [2](E)

Consider the function $f : \mathbb{R}^2 \setminus (0,0)^T \to \mathbb{R}$, $\mathbf{r} = (x,y)^T \mapsto f(\mathbf{r}) = \frac{x}{r} + 1$, with $r = \sqrt{x^2 + y^2}$. Calculate all possible partial derivatives of first and second order.

Optional Problem 2: Partial derivates of first and second order [2] Points: [2](E)

Calculate all possible partial derivatives of first and second order of the function $f : \mathbb{R}^3 \to \mathbb{R}$, $\mathbf{r} = (x, y, z)^T \mapsto f(\mathbf{r})$, for $f(\mathbf{r}) = x^2 \ln(y)/z$.

Optional Problem 3: Fubini's theorem [2]

Points: [2](M)

Verify Fubini's theorem for the following integrals of the function $f(x, y) = x\sqrt{x^2 + y}$. [Check your result: $I(1) = \frac{2}{15}(2^{5/2} - 2)$.]

(a)
$$I(a) = \int_0^a dx \int_0^1 dy \ f(x,y)$$
, (b) $I(a) = \int_0^1 dy \int_0^a dx \ f(x,y)$.

Optional Problem 4: Fubini's theorem [2]

Points: [2](M)

Verify Fubini's theorem for the following integrals of the function $f(x, y) = xy^2 \sin(x^2 + y^3)$. [Check your result: $I(\sqrt{\pi/2}) = \frac{1}{3}$.]

(a)
$$I(a) = \int_0^a dx \int_0^{\pi^{1/3}} dy f(x, y)$$
, (b) $I(a) = \int_0^{\pi^{1/3}} dy \int_0^a dx f(x, y)$.

Optional Problem 5: Violation of Fubini's Theorem [Bonus]

Points: (a)[1](E,Bonus); (b)[0,5](E,Bonus); (M)[1](E,Bonus); (d)[0,5](M,Bonus).

Fubini's theorem holds only if the integrand is sufficiently well behaved that the integral of its *modulus* over the integration domain exists. Here we explore a counterexample.

(a) Integrate the function $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ over the rectangle $R_a = \{a \le x \le 0\} = \frac{1}{2} \left[\frac{y}{R_a} \right]_{A_a}$ $1, 0 \le y \le 1$ }, with $0 < a \in \mathbb{R}$, using two different orders of integration:

$$I_{\rm A}(a) = \int_{a}^{1} \mathrm{d}x \int_{0}^{1} \mathrm{d}y \, f(x, y) \,, \qquad \qquad I_{\rm B}(a) = \int_{0}^{1} \mathrm{d}y \int_{a}^{1} \mathrm{d}x \, f(x, y) \,.$$

Verify that $I_{\rm A}(a) = I_{\rm B}(a)$. [Check your results: $I_{\rm A,B}(\sqrt{3}) = -\frac{\pi}{12}$.] *Hint:* First show that $f(x,y) = \frac{\partial}{\partial y} \frac{y}{x^2 + y^2} = -\frac{\partial}{\partial x} \frac{x}{x^2 + y^2}$.

Set a = 0 for the remainder of this problem.

- (b) Show that $I_A(0) = -I_B(0)$ if these integrals are recomputed, setting a = 0 from the outset. Which of the two, $I_A(0)$ or $I_B(0)$, agrees with the $a \to 0$ limit from part (a)?
- (c) Show that the integral $I_{\rm C} = \int_{R_0} {\rm d}x {\rm d}y \, |f(x,y)|$ does not exist. To this end, split the integration domain $R_{a=0}^-$ into two parts, $R_0^- = R_0^+ \cup R_0^-$, chosen such that $f \ge 0$ on R_0^+ and $f \le 0$ on R_0^- (see figure). Then $I_{\rm C} = \int_{R_0^+ \cup R_0^-} \mathrm{d}x \mathrm{d}y \, |f(x,y)| = I_0^+ - I_0^-$, with $I_0^\pm = \int_{R_0^\pm} \mathrm{d}x \, \mathrm{d}y \, f(x,y)$. Compute the contributions I_0^{\pm} separately and show that $I_0^{+} = -I_0^{-} = \infty$.

$$0 \frac{1}{1} \frac{y}{R_0^-} x$$

As seen in (a) and (b), Fubini's theorem applies for a > 0, but not for a = 0, because then the integral over the *modulus* of the function does not exist, $I_{\rm C} = I_0^+ - I_0^- = \infty$, as seen in (c). This happens because for a = 0 the integration domain touches a point where f diverges — the origin: as $(x, y)^T$ approaches $(0, 0)^T$, the integrand tends to $+\infty$ for x > y or $-\infty$ for x < y. According to (c), the integrals over the positive or negative 'branches' of f diverge, $I_0^{\pm} = \pm \infty$. Hence the integral $I_0 = \int_{R_0} dx dy f(x, y)$ is not defined: it yields $\infty - \infty$ contributions, and the extent to which these cancel depends on the integration order, as seen in (b).

One may make sense of the integral I_0 by **regularizing** it, i.e. by modifying the integration domain to avoid the singularity. For example, consider the domain $R_{\delta}=$ $R_0 \setminus S_{\delta}$, obtained from R_0 by removing an infinitesimal square adjacent to the origin, $S_{\delta} = \{ 0 \le x \le \delta, 0 \le y \le \delta \}.$

- $\begin{array}{c|c}1 & g\\ \delta & R_{\delta}^{-} \\ 0 & R_{\delta}^{+} \\ \end{array} x$
- (d) Compute the integral $I_{\delta} = \int_{R_{\delta}} dx dy f(x, y)$ using the method of (c), splitting the integration domain as $R_{\delta} = R_{\delta}^+ \cup R_{\delta}^-$ (see figure). Discuss the limit $I_{\delta \to 0}$. Why is it well-defined?

Optional Problem 6: Violation of Fubini's Theorem [Bonus]

Points: (a)[1](E,Bonus); (b)[0,5](E,Bonus); (M)[1](E,Bonus); (d)[0,5](M,Bonus).

(a) Compute the integral of the function $f(x,y) = \frac{xy(x^2-y^2)}{(x^2+y^2)^3}$ over the rectangle $R_a = \{a \le x \le x \le x \le x\}$ $1, 0 \le y \le 1$ }, with $0 < a \in \mathbb{R}$, using two different orders of integration:

$$I_{\rm A}(a) = \int_a^1 dx \int_0^1 dy f(x, y), \qquad I_{\rm B}(a) = \int_0^1 dy \int_a^1 dx f(x, y).$$

Verify that $I_A(a) = I_B(a)$. [Check your results: $I_{A,B}(\frac{1}{3}) = \frac{1}{10}$.]

 $\textit{Hint: First show that } f(x,y) = \frac{\partial}{\partial y} \frac{xy^2}{2(x^2+y^2)^2} = -\frac{\partial}{\partial x} \frac{x^2y}{2(x^2+y^2)^2}.$

- (b) Show that $I_{\rm A}(0) = -I_{\rm B}(0)$ if these integrals are recomputed with a = 0 from the outset.
- (c) Compute $I_{\rm C} = \int_{R_0} \mathrm{d}x \mathrm{d}y \, |f(x,y)|$ and explain why Fubini's theorem is violated in (b).
- (d) Compute the regularized integral $I_{\delta} = \int_{R_{\delta}} dx dy f(x, y)$, where the integration domain $R_{\delta} = R_0 \setminus S_{\delta}$ is obtained from $R_{a=0}$ by removing an infinitesimal square adjacent to the origin, $S_{\delta} = \{0 \le x \le \delta, 0 \le y \le \delta\}$. Discuss the limit $I_{\delta \to 0}$. Why is it well-defined?

[Total Points for Optional Problems: 8]