MÜNCHEN

FAKUltät für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 03: Vector Product, Curves, Line Integrals

Posted: Mo 31.10.22 Central Tutorial: Th 03.11.22 Due: Th 10.11.22, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 3, 6, 7, 4.
Videos exist for example problems 4 (L4.3.1), 8 (V1.4.1).
Example Problem 1: $1 /\left(1-x^{2}\right)$ Integrals by hyperbolic substitution [3]
Points: (a)[1](E); (b)[2](M)
For integrals involving $1 /\left(1-x^{2}\right)$, the substitution $x=\tanh y$ may help, since it gives $1-x^{2}=$ $\operatorname{sech}^{2} y$. Use it to compute the following integrals $I(z)$; check your answers by calculating $\frac{\mathrm{d} I(z)}{\mathrm{d} z}$. [Check your results: (a) $I\left(\frac{3}{5}\right)=\ln 2$; (b) for $a=3, I\left(\frac{1}{5}\right)=\frac{1}{6} \ln 2+\frac{5}{32}$.]
(a) $I(z)=\int_{0}^{z} \mathrm{~d} x \frac{1}{1-x^{2}} \quad(|z|<1)$,
(b) $I(z)=\int_{0}^{z} \mathrm{~d} x \frac{1}{\left(1-a^{2} x^{2}\right)^{2}} \quad(|a z|<1)$.

Hint: For (b), use integration by parts for the $\cosh ^{2} y$ integral emerging after the substitution.

Example Problem 2: Elementary computations with vectors [3]

Points: (a)[1](E); (b)[1](E); (c)[1](E)
Given the vectors $\mathbf{a}=(4,3,1)^{T}$ and $\mathbf{b}=(1,-1,1)^{T}$.
(a) Calculate $\|\mathbf{b}\|, \mathbf{a}-\mathbf{b}, \mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$.
(b) Decompose $\mathbf{a} \equiv \mathbf{a}_{\|}+\mathbf{a}_{\perp}$ into two vectors parallel and perpendicular to \mathbf{b}.
(c) Calculate $\mathbf{a}_{\|} \cdot \mathbf{b}, \mathbf{a}_{\perp} \cdot \mathbf{b}, \mathbf{a}_{\|} \times \mathbf{b}$ and $\mathbf{a}_{\perp} \times \mathbf{b}$. Do these results match your expectations?
[Check your results: $(\mathrm{a}) \mathbf{a} \cdot \mathbf{b}+\sum_{i}(\mathbf{a} \times \mathbf{b})^{i}=-4$, (b) $\sum_{i}\left(\mathbf{a}_{\|}\right)^{i}=\frac{2}{3}, \sum_{i}\left(\mathbf{a}_{\perp}\right)^{i}=7 \frac{1}{3}$]

Example Problem 3: Levi-Civita symbol [3]

Points: (a)[1](E); (b)[1](E); (c)[1](E).
(a) Is the statement $a^{i} b^{j} \epsilon_{i j 2} \stackrel{?}{=}-a^{k} \epsilon_{k 2 l} b^{l}$ true or false? Justify your answer.

Express the following k-sums over products of two Levi-Civita symbols in terms of Kronecker delta symbols. Check your answers by also writing out the k-sums explicitly and evaluating each term separately.
(b) $\epsilon_{1 i k} \epsilon_{k j 1}$,
(c) $\epsilon_{1 i k} \epsilon_{k j 2}$.

Example Problem 4: Grassmann identity (BAC-CAB) and Jacobi identity [5]

Points: (a)[2](M); (b)[1](E); (c)[2](M)
(a) Prove the Grassmann (or BAC-CAB) identity for arbitrary vectors $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$:

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b})
$$

Hint: Expand the three vectors in an orthonormal basis, e.g. $\mathbf{a}=\mathbf{e}_{i} a^{i}$, and use the identity $\epsilon_{i j k} \epsilon_{m n k}=\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}$ for the Levi-Civita symbol. If you prefer, you may equally well write all indices downstairs, e.g. $\mathbf{a}=\mathbf{e}_{i} a_{i}$, since in an orthonormal basis $a_{i}=a^{i}$.
(b) Use the Grassmann identity to derive the Jacobi identity:

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})+\mathbf{b} \times(\mathbf{c} \times \mathbf{a})+\mathbf{c} \times(\mathbf{a} \times \mathbf{b})=\mathbf{0} .
$$

(c) Check both identities explicitly for $\mathbf{a}=(1,1,2)^{T}, \mathbf{b}=(3,2,0)^{T}$ and $\mathbf{c}=(2,1,1)^{T}$ by separately computing all terms they contain.

Example Problem 5: Scalar triple product [2]

Points: (a)[0.5](E); (b)[1](E); (c)[0.5](E)
This problem illustrates an important relation between the scalar triple product and the question whether three vectors in \mathbb{R}^{3} are linearly independent or not.
(a) Compute the scalar triple product, $S(y)=\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)$, of $\mathbf{v}_{1}=(1,0,2)^{T}, \mathbf{v}_{2}=(3,2,1)^{T}$ and $\mathbf{v}_{3}=(-1,-2, y)^{T}$ as a function of the variable y. [Check your result: $S(1)=-4$].
(b) By solving the vector equation $\mathbf{v}_{i} a^{i}=\mathbf{0}$, find that value of y for which $\mathbf{v}_{1}, \mathbf{v}_{2}$ are \mathbf{v}_{3} not linearly independent.
(c) What is the value of $S(y)$ for the value of y found in (b)? Interpret your result!

Example Problem 6: Velocity and acceleration [3]

Points: (a)[1](E); (b)[1](M); (c)[1](E)
Consider the curve $\gamma=\{\mathbf{r}(t) \mid t \in(0,2 \pi / \omega)\}, \mathbf{r}(t)=(a C(t), S(t))^{T} \in \mathbb{R}^{2}$, with $C(t)=$ $\cos [\pi(1-\cos \omega t)], S(t)=\sin [\pi(1-\cos \omega t)]$, and $0<a, \omega \in \mathbb{R}$.
(a) Calculate the curve's velocity vector, $\dot{\mathbf{r}}(t)$, and it's acceleration vector, $\ddot{\mathbf{r}}(t)$. Can $\mathbf{r}(t)$ be expressed in terms of $\dot{\mathbf{r}}(t)$ and $\ddot{\mathbf{r}}(t)$?
(b) Can you represent the curve without the parameter t using an equation? Do you recognize the curve? Sketch the curve for the case $a=2$.
(c) Calculate $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t)$. For which values of a is $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t)=0$ true for all t ?

Example Problem 7: Line integral: mountain hike [3]

Points: [3](M)
Two hikers want to hike from the point $\mathbf{r}_{0}=(0,0)^{T}$ in the valley to a mountain hut at the point $\mathbf{r}_{1}=(3,3 a)^{T}$. Hiker 1 chooses the straight path from valley to hut, γ_{1}. Hiker 2 chooses a parabolic path, γ_{2}, via the mountain top at the apex of the parabola, at $\mathbf{r}_{2}=(2,4 a)^{T}$ (see figure). They are acted on by the force of gravity $\mathbf{F}_{g}=-10 \mathbf{e}_{y}$, and a height-dependent wind force, $\mathbf{F}_{w}=-y^{2} \mathbf{e}_{x}$.

Find the work, $W\left[\gamma_{i}\right]=-\int_{\gamma_{i}} \mathrm{~d} \mathbf{r} \cdot \mathbf{F}$, performed by the hikers along γ_{1} and γ_{2}, as function of the parameter a. [Check your results: for $a=1$ one finds $W\left[\gamma_{1}\right]=39, W\left[\gamma_{2}\right]=303 / 5$.]

[Total Points for Example Problems: 22]

Homework Problem 1: $1 /\left(1+x^{2}\right)$ Integrals by trigonometric substitution [3]
Points: (a)[1](E); (b)[2](M).
For integrals involving $1 /\left(1+x^{2}\right)$, the substitution $x=\tan y$ may help, since it gives $1+x^{2}=\sec ^{2} y$. Use it to compute the following integrals $I(z)$; check your answers by calculating $\frac{\mathrm{d} I(z)}{\mathrm{d} z}$.
[Check your results: (a) $I(1)=\frac{\pi}{4}$; (b) for $a=\frac{1}{2}, I(2)=\frac{\pi}{4}+\frac{1}{2}$.]
(a) $I(z)=\int_{0}^{z} \mathrm{~d} x \frac{1}{1+x^{2}}$
(b) $I(z)=\int_{0}^{z} \mathrm{~d} x \frac{1}{\left(1+a^{2} x^{2}\right)^{2}}$.

Homework Problem 2: Elementary computations with vectors [3]

Points: (a)[1](E); (b)[1](E); (c)[1](E)
Given the vectors $\mathbf{a}=(2,1,5)^{T}$ and $\mathbf{b}=(-4,3,0)^{T}$.
(a) Calculate $\|\mathbf{b}\|, \mathbf{a}-\mathbf{b}, \mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$.
(b) Decompose \mathbf{a} into a vector $\mathbf{a}_{\|}$parallel to \mathbf{b} and a vector \mathbf{a}_{\perp} perpendicular to \mathbf{b}.
(c) Calculate $\mathbf{a}_{\|} \cdot \mathbf{b}, \mathbf{a}_{\perp} \cdot \mathbf{b}, \mathbf{a}_{\|} \times \mathbf{b}$ and $\mathbf{a}_{\perp} \times \mathbf{b}$. Do these results match your expectations?
[Check your results: (a) $\mathbf{a} \cdot \mathbf{b}+\sum_{i}(\mathbf{a} \times \mathbf{b})^{i}=-30,(\mathrm{~b}) \sum_{i}\left(\mathbf{a}_{\|}\right)^{i}=\frac{1}{5}, \sum_{i}\left(\mathbf{a}_{\perp}\right)^{i}=7 \frac{4}{5}$]
Homework Problem 3: Levi-Civita symbol [2]
Points: (a)[0,5](E); (b)[0,5](E); (c)[0,5](E); (d)[0,5](E).
(a) Is the statement $a^{i} a^{j} \epsilon_{i j 3} \stackrel{?}{=} b^{m} b^{n} \epsilon_{m n 2}$ true or false? Justify your answer.

Express the following k-sums over products of two Levi-Civita symbols in terms of Kronecker delta functions.
(b) $\epsilon_{1 i k} \epsilon_{23 k}$,
(c) $\epsilon_{2 j k} \epsilon_{k i 2}$,
(d) $\epsilon_{1 i k} \epsilon_{k 3 j}$.

Points: (a)[1](E); (b)[1](E); (c)[1](E)
(a) Prove the Lagrange identity for arbitrary vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^{3}$:

$$
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})
$$

Hint: Work in an orthonormal basis and use the properties of the Levi-Civita symbol.
(b) Use (a) to compute $\|\mathbf{a} \times \mathbf{b}\|$ and express the result in terms of $\|\mathbf{a}\|,\|\mathbf{b}\|$ and the angle ϕ between a and b .
(c) Check the Lagrange identity explicitly for the vectors $\mathbf{a}=(2,1,0)^{T}, \mathbf{b}=(3,-1,2)^{T}$, $\mathbf{c}=$ $(3,0,2)^{T}, \mathbf{d}=(1,3,-2)^{T}$, by separately computing all its terms.

Homework Problem 5: Scalar triple product [3]

Points: [3](M)
Compute the volume, $V(\phi)$, of the parallelepiped spanned by three unit vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3}, each pair of which encloses a mutual angle of ϕ (with $0 \leq \phi \leq \frac{2}{3} \pi$; why is this restriction needed?).
Check your results: (i) What do you expect for $V\left(\frac{\pi}{2}\right)$ and $V\left(\frac{2}{3} \pi\right)$? (ii): $V\left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$.

Hint: Choose the orientation of the parallelepiped such that \mathbf{v}_{1} and \mathbf{v}_{2} both lie in the plane spanned by \mathbf{e}_{1} and \mathbf{e}_{2}, and that \mathbf{e}_{1} bisects the angle between \mathbf{v}_{1} and \mathbf{v}_{2} (see figure).

Homework Problem 6: Velocity and acceleration [2]

Points: (a)[1](E); (b)[0.5](E); (c)[0.5](E)
Consider the curve $\gamma=\{\mathbf{r}(t) \mid t \in(0, \infty)\}, \mathbf{r}(t)=\left(\mathrm{e}^{-t^{2}}, a \mathrm{e}^{t^{2}}\right)^{T} \in \mathbb{R}^{2}$, with $0<a \in \mathbb{R}(0<a<1$ for (c)).
(a) Calculate the curve's velocity vector, $\dot{\mathbf{r}}(t)$, and it's acceleration vector, $\ddot{\mathbf{r}}(t)$. Can $\mathbf{r}(t)$ be expressed as a linear combination of $\dot{\mathbf{r}}(t)$ and $\ddot{\mathbf{r}}(t)$?
(b) Can you represent the curve without the parameter t using an equation? Do you recognize the curve? Sketch the curve for the case $a=2$.
(c) Calculate $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t)$. Find the time, $t(a)$, for which $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t)=0$ holds. [Check your result: $t\left(\mathrm{e}^{-2}\right)= \pm 1$.]

Homework Problem 7: Line integrals in Cartesian coordinates [4]

Points: (a)[2](M); (b)[1](E); (c)[1](M)
Let $\mathbf{F}(\mathbf{r})=\left(x^{2}, z, y\right)^{T}$ be a three-dimensional vector field in Cartesian coordinates, with $\mathbf{r}=$ $(x, y, z)^{T}$. Calculate the line integral $\int_{\gamma} \mathrm{d} \mathbf{r} \cdot \mathbf{F}$ along the following paths from $\mathbf{r}_{0} \equiv(0,0,0)^{T}$ to $\mathbf{r}_{1} \equiv(0,-2,1)^{T}$:
(a) $\gamma_{a}=\gamma_{1} \cup \gamma_{2}$ is the composite path consisting of γ_{1}, the straight line from \mathbf{r}_{0} to $\mathbf{r}_{2} \equiv(1,1,1)^{T}$, and γ_{2}, the straight line from \mathbf{r}_{2} to \mathbf{r}_{1}.
(b) γ_{b} is parametrized by $\mathbf{r}(t)=\left(\sin (\pi t),-2 t^{1 / 2}, t^{2}\right)^{T}$, with $0<t<1$.
(c) γ_{c} is a parabola in the $y z$-plane with the form $z(y)=y^{2}+\frac{3}{2} y$.
[Check your results: the sum of the answers from (a), (b) and (c) is -6.]
[Total Points for Homework Problems: 20]

