FAKUltÄt FÜr Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 02: Vector Spaces, Euclidean Spaces

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 5, 7, 9, 8.
Videos exist for example problems 4 (L2.4.1), 9 (L3.3.7).

Optional Problem 1: Vector space of real functions [2] Points: [2](M)

Let $F \equiv\{f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)\}$ be the set of real functions. Show that $(F, \boldsymbol{+}, \cdot)$ is an \mathbb{R}-vector space, where the addition of functions, and their multiplication by scalars, are defined as follows:

$$
\begin{array}{rllll}
\mathbf{+}: F \times F \rightarrow F & & (f, g) \mapsto f+g, & \text { with } & f+g: x \mapsto[f+g](x) \equiv f(x)+g(x) \\
\cdot: \mathbb{R} \times F \rightarrow F & (\lambda, f) \mapsto \lambda \cdot f, & \text { with } & \lambda \cdot f: x \mapsto[\lambda \cdot f](x) \equiv \lambda f(x) \tag{2}
\end{array}
$$

Remark regarding notation: It is important to distinguish the 'name' of a function, f, from the 'function value', $f(x)$, which it returns when evaluated at the argument x. The sum of the functions f and g is a function named $f+g$. Equation (1) states that its function value at x, denoted by $[f+g](x)$, is by definition equal to $f(x)+g(x)$, the sum of the function values of f and g at x. (For emphasis, in this problem we use square bracket to indicate the function name; elsewhere we'll use round brackets for this.) The product of the number c and the function f yields a function named $c \cdot f$. Eq. (2) states that its function value at x, denoted by $[c \cdot f](x)$, is by definition equal to $c f(x)$, the product of c with the function value of f at x.

Optional Problem 2: Vector space of polynomials of degree at most n [3]

Points: (a)[1](E); (b)[1](E); (c)[1](E)
The vector space of all real functions is infinite-dimensional. However, if only functions of a prescribed form are considered, the corresponding vector space can be finite-dimensional. As an example, it is shown in this problem that the set of all polynomials of degree at most n form a vector space of dimension $n+1$, isomorphic to \mathbb{R}^{n+1}.
[Remark on the notation: In the context of the present problem on polynomials, x^{k} means " x to the power of k ", and a_{k} is "the coefficient of x^{k} ". This is in contrast to the notation that we have adopted elsewhere when discussing vectors, where x^{k} stands for the k-th component of the vector $\mathbf{x}=\sum_{k} \mathbf{v}_{k} x^{k}$ with respect to a basis of vectors $\left\{\mathbf{v}_{k}\right\}$. Every notational convention has exceptions!]

Let $p_{\mathbf{a}}$ denote a polynomial in the variable $x \in \mathbb{R}$ of degree at most n :

$$
p_{\mathbf{a}}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto p_{\mathbf{a}}(x) \equiv a_{0} x^{0}+a_{1} x^{1}+\ldots a_{n} x^{n} .
$$

$p_{\mathbf{a}}$ is uniquely specified by its $n+1$ real coefficients $a_{0}, a_{1}, \ldots, a_{n}$, which for notational brevity we arrange into a $(n+1)$-tuplet, $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{T} \in \mathbb{R}^{n+1}$. Let $P_{n}=\left\{p_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{R}^{n+1}\right\}$ denote the
set of all such polynomials of degree n. The natural definitions for adding such polynomials, or multiplying them by a scalar $c \in \mathbb{R}$, are:

$$
\begin{aligned}
& p_{\mathrm{a}}+p_{\mathrm{b}}: \mathbb{R} \rightarrow \mathbb{R}, \\
& x \mapsto p_{\mathbf{a}}(x)+p_{\mathbf{b}}(x), \\
& c \cdot p_{\mathbf{a}}: \mathbb{R} \rightarrow \mathbb{R}, \\
& x \mapsto c p_{\mathbf{a}}(x),
\end{aligned}
$$

where on the right side the usual addition and multiplication in \mathbb{R} is used.
(a) Show that the above addition and scalar multiplication rules imply the following composition rules in P_{n} :

Addition of polynomials: $\quad \mathbf{~ : ~} \quad P_{n} \times P_{n} \rightarrow P_{n}, \quad\left(p_{\mathbf{a}}, p_{\mathbf{b}}\right) \mapsto p_{\mathbf{a}}+p_{\mathbf{b}} \equiv p_{\mathbf{a}+\mathbf{b}}$,
Multiplication by a scalar: \quad : $\mathbb{R} \times P_{n} \rightarrow P_{n}, \quad\left(c, p_{\mathbf{x}}\right) \mapsto c \bullet p_{\mathbf{a}} \equiv p_{c \mathbf{a}}$, where $\mathbf{a}+\mathbf{b}$ and $c \mathbf{a}$ denote the usual addition and scalar multiplication in \mathbb{R}^{n+1}.
(b) Show that $\left(P_{n},+, \cdot\right)$ is an \mathbb{R}-vector space, and that it is isomorphic to \mathbb{R}^{n+1}.
(c) Find a set $n+1$ of polynomials, $\left\{p_{\mathbf{a}_{0}}, \ldots, p_{\mathbf{a}_{n}}\right\} \subset P_{n}$, forming a basis for this vector space.

Optional Problem 3: Unconventional inner products on \mathbb{R}^{2} [2]

Points: [2](M)

The defining properties of an inner product on \mathbb{R}^{n} are of course satisfied not only by the 'standard' definition, $\langle\mathbf{x}, \mathbf{x}\rangle=\sum_{i=1}^{n}\left(x^{i}\right)^{2}$; there are infinitely many other bilinear forms that do so, too. The present problem illustrate this with a simple example. Show that the following map defines an inner product on the vector space \mathbb{R}^{2} :

$$
\langle\cdot, \cdot\rangle: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad(\mathbf{x}, \mathbf{y}) \mapsto x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+3 x_{2} y_{2}
$$

Optional Problem 4: Inner product and norm for the vector space of continuous functions [3]

Points: (a)[2](M); (b)[1](M)
This problem illustrates a particularly important example of an inner product: in the space of continuous functions, an inner product can be defined via integration.
Let V be the vector space of continuous real functions defined on a finite interval $I \subset \mathbb{R}$, $f: I \rightarrow \mathbb{R}$, with the usual composition rules of vector addition and scalar multiplication:

$$
\begin{array}{lll}
\forall f, g \in V: & f+g: I \rightarrow \mathbb{R}, & \\
\forall f \in V, \lambda \in \mathbb{R}: & \lambda \cdot f: I \rightarrow \mathbb{R}, & \\
\forall f \mapsto(f+g)(x) \equiv f(x)+g(x), \\
& \mapsto \cdot f)(x) \equiv \lambda(f(x)) .
\end{array}
$$

(a) Show that the following map defines an inner product on V :

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}, \quad(f, g) \mapsto\langle f, g\rangle \equiv \int_{I} \mathrm{~d} x f(x) g(x)
$$

(b) Now consider $I=[-1,1]$. Compute $\left\langle f_{1}, f_{2}\right\rangle$ for $f_{1}(x) \equiv \sin \left(\frac{x}{\pi}\right)$ and $f_{2}(x) \equiv \cos \left(\frac{x}{\pi}\right)$.

> [Total Points for Optional Problems: 10]

