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(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced
Suggestions for central tutorial: example problems 5, 7, 9, 8.

Videos exist for example problems 4 (L2.4.1), 9 (L3.3.7).

Optional Problem 1: Vector space of real functions [2]
Points: [2](M)

Let F ≡ {f : R→ R, x 7→ f(x)} be the set of real functions. Show that (F, , •) is an R-vector
space, where the addition of functions, and their multiplication by scalars, are defined as follows:

: F × F → F (f, g) 7→ f g, with f g : x 7→
[
f g

]
(x) ≡ f(x) + g(x) (1)

• : R× F → F (λ, f) 7→ λ • f, with λ • f : x 7→
[
λ • f

]
(x) ≡ λf(x) (2)

Remark regarding notation: It is important to distinguish the ‘name’ of a function, f , from the
‘function value’, f(x), which it returns when evaluated at the argument x. The sum of the functions
f and g is a function named f g. Equation (1) states that its function value at x, denoted by[
f g

]
(x), is by definition equal to f(x) + g(x), the sum of the function values of f and g at x.

(For emphasis, in this problem we use square bracket to indicate the function name; elsewhere we’ll
use round brackets for this.) The product of the number c and the function f yields a function
named c •f . Eq. (2) states that its function value at x, denoted by

[
c •f
]
(x), is by definition equal

to cf(x), the product of c with the function value of f at x.

Optional Problem 2: Vector space of polynomials of degree at most n [3]
Points: (a)[1](E); (b)[1](E); (c)[1](E)

The vector space of all real functions is infinite-dimensional. However, if only functions of a prescri-
bed form are considered, the corresponding vector space can be finite-dimensional. As an example,
it is shown in this problem that the set of all polynomials of degree at most n form a vector space
of dimension n+ 1, isomorphic to Rn+1.
[Remark on the notation: In the context of the present problem on polynomials, xk means “x to
the power of k”, and ak is “the coefficient of xk”. This is in contrast to the notation that we
have adopted elsewhere when discussing vectors, where xk stands for the k-th component of the
vector x =

∑
k vkx

k with respect to a basis of vectors {vk}. Every notational convention has
exceptions!]

Let pa denote a polynomial in the variable x ∈ R of degree at most n:

pa : R→ R, x 7→ pa(x) ≡ a0x
0 + a1x

1 + . . . anx
n.

pa is uniquely specified by its n+1 real coefficients a0, a1, . . . , an, which for notational brevity we
arrange into a (n+1)-tuplet, a = (a0, a1, . . . , an)

T ∈ Rn+1. Let Pn = {pa|a ∈ Rn+1} denote the
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set of all such polynomials of degree n. The natural definitions for adding such polynomials, or
multiplying them by a scalar c ∈ R, are:

pa pb : R→ R, x 7→ pa(x) + pb(x) ,

c • pa : R→ R, x 7→ c pa(x) ,

where on the right side the usual addition and multiplication in R is used.

(a) Show that the above addition and scalar multiplication rules imply the following composition
rules in Pn:

Addition of polynomials: : Pn × Pn → Pn, (pa, pb) 7→ pa pb ≡ pa+b ,

Multiplication by a scalar: • : R× Pn → Pn, (c, px) 7→ c • pa ≡ pca ,

where a+ b and ca denote the usual addition and scalar multiplication in Rn+1.

(b) Show that (Pn, , •) is an R-vector space, and that it is isomorphic to Rn+1.

(c) Find a set n+ 1 of polynomials, {pa0 , . . . , pan} ⊂ Pn, forming a basis for this vector space.

Optional Problem 3: Unconventional inner products on R2 [2]
Points: [2](M)

The defining properties of an inner product on Rn are of course satisfied not only by the ‘standard’
definition, 〈x,x〉 =

∑n
i=1(x

i)2; there are infinitely many other bilinear forms that do so, too. The
present problem illustrate this with a simple example. Show that the following map defines an
inner product on the vector space R2:

〈·, ·〉 : R2 ×R2 → R,
(
x,y

)
7→ x1y1 + x1y2 + x2y1 + 3x2y2 .

Optional Problem 4: Inner product and norm for the vector space of continuous functions
[3]
Points: (a)[2](M); (b)[1](M)

This problem illustrates a particularly important example of an inner product: in the space of
continuous functions, an inner product can be defined via integration.
Let V be the vector space of continuous real functions defined on a finite interval I ⊂ R,
f : I → R, with the usual composition rules of vector addition and scalar multiplication:

∀f, g ∈ V : f + g : I → R, x 7→ (f + g)(x) ≡ f(x) + g(x),

∀f ∈ V, λ ∈ R : λ · f : I → R, x 7→ (λ · f)(x) ≡ λ (f(x)) .

(a) Show that the following map defines an inner product on V :

〈·, ·〉 : V × V → R, (f, g) 7→ 〈f, g〉 ≡
�
I

dx f(x)g(x) .

(b) Now consider I = [−1, 1]. Compute 〈f1, f2〉 for f1(x) ≡ sin
(
x
π

)
and f2(x) ≡ cos

(
x
π

)
.

[Total Points for Optional Problems: 10]
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