

Fakultät für Physik
R: Rechenmethoden für Physiker, WiSe 2022/23 Dozent: Jan von Delft
Übungen: Mathias Pelz, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 01: Mathematical Foundations

Posted: Mo 17.10.22 Central Tutorial: Th 20.10.22 Due: Th 27.10.22, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 9, 10, 4, 3.
Videos exist for example problems 9 (C2.3.1), 10 (C2.3.3).

Example Problem 1: Composition of maps [2]

Points: (a)[1](E); (b)[1](E).
Let \mathbb{N}_{0} denote the set of all natural numbers including zero, and \mathbb{Z} the set of all integers. Consider the following two maps:

$$
\begin{array}{ll}
A: \mathbb{Z} \rightarrow \mathbb{Z}, & n \mapsto A(n)=n+1, \\
B: \mathbb{Z} \rightarrow \mathbb{N}_{0}, & n \mapsto B(n)=|n| \equiv n \cdot \operatorname{sign}(n) .
\end{array}
$$

(a) Find the composite map $C=B \circ A$, i.e. specify its domain, image and action on n.
(b) Which of the above maps A, B and C are surjective? Injective? Bijective?

Example Problem 2: The abelian group \mathbb{Z}_{2} [3]
Points: (a)[2](E); (b)[1](E).
(a) Show that $\mathbb{Z}_{2} \equiv(\{0,1\}, \boldsymbol{+})$, where the addition operation $\boldsymbol{+}$ is defined by the adjacent composition table, is an abelian group.

+	0	1
0	0	1
1	1	0

(b) Construct a group isomorphic to \mathbb{Z}_{2}, using two integers as group elements and standard multiplication of integers as group operation. Set up the corresponding composition table.

Example Problem 3: Permutation groups [4]

Points: (a)[3](E); (b)[0,5](E); (c)[0,5](E).
A map which reorders n labelled objects is called a permutation of these objects. For example, $1234 \stackrel{[4312]}{\longrightarrow} 4312$ is a permutation of the four numbers in the string 1234 , where we use [4312] as shorthand for the map $1 \mapsto 4,2 \mapsto 3,3 \mapsto 1$ and $4 \mapsto 2$. Similarly, if the same permutation is applied to the string 2314 , it yields $2314 \stackrel{[4312]}{\longrightarrow} 3142$. (In general, $[P(1) \ldots P(n)]$ denotes the map $j \mapsto P(j)$ which replaces j by $P(j)$, for $j=1, \ldots, n$.) Two permutations performed in succession again yield a permutation. For example, acting on 1234 with $P=[4312]$ followed by $P^{\prime}=[2413]$ yields $1234 \stackrel{[4312]}{\longrightarrow} 4312 \stackrel{[2413]}{\longrightarrow} 3124$, thus the resulting permutation is $P^{\prime} \circ P=[3124]$.
The set of all possible permutations of n numbers, denoted by S_{n}, contains n ! elements. Viewing $P^{\prime} \circ P$ (perform first P, then P^{\prime}) as a group operation,

$$
\circ: S_{n} \times S_{n} \rightarrow S_{n}, \quad\left(P^{\prime}, P\right) \mapsto P^{\prime} \circ P,
$$

we obtain a group, (S_{n}, \circ), the permutation group, usually denoted simply by S_{n}.
(a) Complete the adjacent composition table for S_{3}, in which the entries $P^{\prime} \circ P$ are arranged such that those with fixed P^{\prime} sit in the same row, those with fixed P in the same column.

$P^{\prime} \circ P$	$[123]$	$[231]$	$[312]$	$[213]$	$[321]$	$[132]$
$[123]$	$[123]$	$[231]$	$[312]$	$[213]$	$[321]$	$[132]$
$[231]$		$[312]$	$[123]$	$[321]$	$[132]$	$[213]$
$[312]$			$[231]$	$[132]$	$[213]$	$[321]$
$[213]$					$[312]$	$[231]$
$[321]$						$[312]$
$[132]$						

(b) Which element is the neutral element of S_{3} ? How can we see from the multiplication table that every element has a unique inverse?
(c) Is S_{3} an abelian group? Justify your answer.

Example Problem 4: Algebraic manipulations with complex numbers [4]

Points: (a-c)[0,5](E); (d)[0,5](M); (e)[0,5](E); (f)[0,5](E); (g)[1](M); (h)[1](M).
For $z=x+\mathrm{i} y \in \mathbb{C}$, bring each of the following expressions into standard form, i.e. write them as (real part) +i (imaginary part):
(a) $z+\bar{z}$,
(b) $z-\bar{z}$,
(c) $z \cdot \bar{z}$,
(d) $\frac{z}{\bar{z}}$,
(e) $\frac{1}{z}+\frac{1}{\bar{z}}$,
(f) $\frac{1}{z}-\frac{1}{\bar{z}}$,
(g) $z^{2}+z$,
(h) z^{3}.
[Check your results for $x=2, y=1$: (a) 4 , (b) i2, (c) 5 , (d) $\frac{3}{5}+\mathrm{i} \frac{4}{5}$, (e) $\frac{4}{5}$, (f) $-\mathrm{i} \frac{2}{5}$, (g) $5+\mathrm{i} 5$, (h) $2+$ i11.]

Example Problem 5: Multiplication of complex numbers - geometrical interpretation

 [4]Points: (a)[2](E); (b)[2](E)
(a) Consider the polar representation, $z_{j}=\left(\rho_{j} \cos \phi_{j}, \rho_{j} \sin \phi_{j}\right)$, of two complex numbers, z_{1} and z_{2}, with $\phi_{j} \in[0,2 \pi)$. Show that multiplying them, $z_{3}=z_{1} z_{2}$, yields the relations $\rho_{3}=\rho_{1} \rho_{2}$ and $\phi_{3}=\left(\phi_{1}+\phi_{2}\right) \bmod (2 \pi)$. [The $\bmod (2 \pi)$ is needed since we restricted polar angles to lie in the interval $[0,2 \pi)$.$] To this end, the following trigonometric identities are useful:$

$$
\begin{aligned}
\cos \phi_{1} \cos \phi_{2}-\sin \phi_{1} \sin \phi_{2} & =\cos \left(\phi_{1}+\phi_{2}\right) \\
\sin \phi_{1} \cos \phi_{2}+\cos \phi_{1} \sin \phi_{2} & =\sin \left(\phi_{1}+\phi_{2}\right) .
\end{aligned}
$$

(b) For $z_{1}=\sqrt{3}+\mathrm{i}, z_{2}=-2+2 \sqrt{3} \mathrm{i}$, compute the product $z_{3}=z_{1} z_{2}$, as well as $z_{4}=1 / z_{1}$ and $z_{5}=\bar{z}_{1}$. Find the polar representation (with $\phi \in[0,2 \pi$)) of all five complex numbers and sketch them in the complex plane (in one diagram). Is your result for z_{3} consistent with (a)?

Example Problem 6: Differentiation of trigonometric functions [1]

Points: (a)[0,5](E); (b)[0,5](E).

Show that the trigonometric functions

$$
\tan x=\frac{\sin x}{\cos x}, \quad \csc x=\frac{1}{\sin x}, \quad \sec x=\frac{1}{\cos x}, \quad \cot x=\frac{\cos x}{\sin x}=\frac{1}{\tan x},
$$

satisfy the following identities:
(a) $\frac{\mathrm{d}}{\mathrm{d} x} \tan x=1+\tan ^{2} x=\sec ^{2} x$,
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \cot x=-1-\cot ^{2} x=-\csc ^{2} x$.

Example Problem 7: Differentiation of powers, exponentials, logarithms [2]

Points: [3](E).
Compute the first derivative of the following functions.
[Check your results against those in square brackets, where $[a, b]$ stands for $f^{\prime}(a)=b$.]
(a) $f(x)=-\frac{1}{\sqrt{2 x}}$
$\left[2, \frac{1}{8}\right]$
(b) $f(x)=\frac{x^{1 / 2}}{(x+1)^{1 / 2}}$
$\left[3, \frac{1}{16 \sqrt{3}}\right]$
(c) $f(x)=\mathrm{e}^{x}(2 x-3)$
$[1, \mathrm{e}]$
(d) $f(x)=3^{x}$
$\left[-1, \frac{\ln 3}{3}\right]$
(e) $f(x)=x \ln x$
$[1,1]$
(f) $f(x)=x \ln \left(9 x^{2}\right)$
$\left[\frac{1}{3}, 2\right]$

Example Problem 8: Differentiation of inverse trigonometric functions [4]

Points: (a)[1](E); (b)[1](M); (c)[2](M).
Compute the following derivatives of inverse trigonometric functions, f^{-1}. For each case, make a qualitative scetch showing $f(x)$ and $f^{-1}(x)$. If f is non-monotonic, consider domains with positive or negative slope separately. [Check your results: $[a, b]$ stands for $\left(f^{-1}\right)^{\prime}(a)=b$.]
(a) $\frac{\mathrm{d}}{\mathrm{d} x} \arcsin x \quad\left[\frac{1}{3}, \frac{3}{\sqrt{8}}\right]$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \arccos x \quad\left[\frac{1}{2}, \frac{2}{\sqrt{3}}\right]$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \arctan x \quad\left[1, \frac{1}{2}\right]$

Hint: The identity $\sin ^{2} x+\cos ^{2} x=1$ is useful for (a) and (b), $\sec ^{2} x=1+\tan ^{2} x$ for (c).

Example Problem 9: Integration by parts [6]

Points: [6](M)
Integrals of the form $I(z)=\int_{z_{0}}^{z} \mathrm{~d} x u(x) v^{\prime}(x)$ can be written as $I(z)=[u(x) v(x)]_{z_{0}}^{z}-\int_{z_{0}}^{z} \mathrm{~d} x u^{\prime}(x) v(x)$ using integration by parts. This is useful if $u^{\prime} v$ can be integrated - either directly, or after further integrations by parts [see (b)], or after other manipulations [see (e,f)]. When doing such a calculation, it is advisable to clearly indicate the factors u, v^{\prime}, v and u^{\prime}. Always check that the derivative $I^{\prime}(z)=\mathrm{d} I / \mathrm{d} z$ of the result reproduces the integrand! If a single integration by parts suffices to calculate $I(z)$, its derivative exhibits the cancellation pattern $I^{\prime}=u^{\prime} v+u v^{\prime}-u^{\prime} v=u v^{\prime}$ [see ($\mathrm{a}, \mathrm{c}, \mathrm{d}$)]; otherwise, more involved cancellations occur [see (b,e,f)].
Integrate the following integrals by parts. [Check your results against those in square brackets, where $[a, b]$ stands for $I(a)=b$.]
(a) $I(z)=\int_{0}^{z} \mathrm{~d} x x \mathrm{e}^{2 x}$
$\left[\frac{1}{2}, \frac{1}{4}\right]$
(b) $I(z)=\int_{0}^{z} \mathrm{~d} x x^{2} \mathrm{e}^{2 x}$
$\left[\frac{1}{2}, \frac{e}{8}-\frac{1}{4}\right]$
(c) $I(z)=\int_{0}^{z} \mathrm{~d} x \ln x$
$[1,-1]$
(d) $I(z)=\int_{0}^{z} \mathrm{~d} x \ln x \frac{1}{\sqrt{x}}$
$[1,-4]$
(e) $I(z)=\int_{0}^{z} \mathrm{~d} x \sin ^{2} x$
$\left[\pi, \frac{\pi}{2}\right]$
(f) $I(z)=\int_{0}^{z} \mathrm{~d} x \sin ^{4} x$
$\left[\pi, \frac{3 \pi}{8}\right]$

Example Problem 10: Integration by substitution [4]

Points: [4](M)
Integrals of the form $I(z)=\int_{z_{0}}^{z} \mathrm{~d} x y^{\prime}(x) f(y(x))$ can be written as $I(z)=\int_{y\left(z_{0}\right)}^{y(z)} \mathrm{d} y f(y)$ by using the substitution $y=y(x), \mathrm{d} y=y^{\prime}(x) \mathrm{d} x$. When doing such integrals, it is advisable to explicitly write down $y(x)$ and $\mathrm{d} y$, to ensure that you correctly identify the prefactor of $f(y)$. Always check that the derivative $I^{\prime}(z)=\mathrm{d} I / \mathrm{d} z$ of the result reproduces the integrand! You'll notice that the factor $y^{\prime}(z)$ emerges via the chain rule for differentiating composite functions.
Calculate the following integrals by substitution. [Check your results against those in square brackets, where $[a, b]$ stands for $I(a)=b$.]
(a) $I(z)=\int_{0}^{z} \mathrm{~d} x x \cos \left(x^{2}+\pi\right) \quad\left[\sqrt{\frac{\pi}{2}},-\frac{1}{2}\right]$
(b) $I(z)=\int_{0}^{z} \mathrm{~d} x \sin ^{3} x \cos x \quad\left[\frac{\pi}{4}, \frac{1}{16}\right]$
(c) $\left.I(z)=\int_{0}^{z} \mathrm{~d} x \sin ^{3} x\right]\left[\frac{\pi}{3}, \frac{5}{24}\right]$
(d) $I(z)=\int_{0}^{z} \mathrm{~d} x \cosh ^{3} x \quad\left[\ln 2, \frac{57}{64}\right]$
(e) $I(z)=\int_{0}^{z} \mathrm{~d} x \frac{\sqrt{1+\ln (x+1)}}{x+1} \quad\left[\mathrm{e}^{3}-1, \frac{14}{3}\right]$
(f) $I(z)=\int_{0}^{z} \mathrm{~d} x x^{3} \mathrm{e}^{-x^{4}} \quad\left[\sqrt[4]{\ln 2}, \frac{1}{8}\right]$

[Total Points for Example Problems: 34]

Homework Problem 1: Composition of maps [2]

Points: (a)[0,5](E); (b)[0,5](E); (c)[0,5](E); (d)[0,5](E).
(a) Consider the set $S=\{-2,-1,0,1,2\}$. Find its image, $T=A(S)$, under the map $n \mapsto$ $A(n)=n^{2}$. Is the map $A: S \rightarrow T$ surjective? Injective? Bijective?
(b) Find the image, $U=B(T)$, of the set T from part (a) under the map $n \mapsto B(n)=\sqrt{n}$.
(c) Find the composite map $C=B \circ A$.
(d) Which of the above maps A, B and C are surjective? Injective? Bijective?

Homework Problem 2: The groups of addition modulo 5 and rotations by multiples of 72 deg [3]
Points: (a)[1](E); (b)[1](E); (c)[0,5](E); (d)[0,5](E).
(a) Consider the set $\mathbb{Z}_{5}=\{0,1,2,3,4\}$, endowed with the group operation

$$
\boldsymbol{+}: \mathbb{Z}_{5} \times \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}, \quad\left(p, p^{\prime}\right) \mapsto p \boldsymbol{+} p^{\prime} \equiv\left(p+p^{\prime}\right) \bmod 5
$$

Set up the composition table for the group $\left(\mathbb{Z}_{5}, \boldsymbol{+}\right)$. Which element is the neutral element? For a given $n \in \mathbb{Z}$, which element is the inverse of n ?
(b) Let $r(\phi)$ denote a rotation by ϕ degrees about a fixed axis, with $r(\phi+360)=r(\phi)$. Consider the set of rotations by multiples of 72 deg ,

$$
\mathcal{R}_{72}=\{r(0), r(72), r(144), r(216), r(288)\}
$$

and the group $\left(\mathcal{R}_{72}, \cdot\right)$, where the group operation • involves two rotations in succession:

$$
\cdot: \mathcal{R}_{72} \times \mathcal{R}_{72} \rightarrow \mathcal{R}_{72}, \quad\left(r(\phi), r\left(\phi^{\prime}\right)\right) \mapsto r(\phi) \cdot r\left(\phi^{\prime}\right) \equiv r\left(\phi+\phi^{\prime}\right) .
$$

Set up the multiplication table for this group. Which element is the neutral element? Which element is the inverse of $r(\phi)$?
(c) Explain why the groups $\left(\mathbb{Z}_{5}, \boldsymbol{+}\right)$ and $\left(\mathcal{R}_{72}, \cdot\right)$ are isomorphic.
(d) Let $\left(\mathbb{Z}_{n}, \boldsymbol{+}\right)$ denote the group of integer addition modulo n of the elements of the set $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$. Which group of discrete rotations is isomorphic to this group?

Homework Problem 3: Decomposing permutations into sequences of pair permutations [2]

Consider the permutation group S_{n}. Any permutation can be decomposed into a sequence of pair permutations, i.e. permutations which exchange just two objects, leaving the others unchanged. Examples:

$$
\begin{aligned}
& 123 \xrightarrow{[321]} 321 \stackrel{[132]}{\longrightarrow} 231 \quad \Rightarrow \quad[231]=[132] \circ[321] . \\
& 1234 \stackrel{[2134]}{\longrightarrow} 2134 \stackrel{[3214]}{\longrightarrow} 2314 \quad \Rightarrow[2314]=[3214] \circ[2134], \\
& 1234 \stackrel{[3214]}{\longrightarrow} 3214 \stackrel{[1324]}{\longrightarrow} 2314 \Rightarrow[2314]=[1324] \circ[3214] \text {, } \\
& 1234 \xrightarrow{[4231]} 4231 \xrightarrow{[1432]} 2431 \xrightarrow{[1243]} 2341 \xrightarrow{[4231]} 2314 \Rightarrow[2314]=[4231] \circ[1243] \circ[1432] \circ[4231] .
\end{aligned}
$$

The last three lines illustrate that a given permutation can be pair-decomposed in several ways, and that these may or may not involve different numbers of pair exchanges. However, one may convince oneselve (try it!) that all pair decompositions of a given permutation have the same parity, i.e. the number of exchanges is either always even or always odd.
To find a 'minimal' (shortest possible) pair decomposition of a given permutation, say [2413], we may start from the naturally-ordered string 1234 and rearrange it to its desired form, 2413, one pair permutation at a time, bringing the 2 to the first slot, then the 4 to the second slot, etc. This yields $1234 \stackrel{[2134]}{\longmapsto} 2134 \stackrel{[4231]}{\longrightarrow} 2431 \stackrel{[3214]}{\longrightarrow} 2413$, hence $[2413]=[3214] \circ[4231] \circ[2134]$.
Find a minimal pair decomposition and the parity of each of the following permutations:
(a) $[132]$,
(b) [231],
(c) [3412],
(d) [3421],
(e) [15234],
(f) $[31542]$.

Homework Problem 4: Algebraic manipulations with complex numbers [3]
Points: (a)[1](E); (b)[1](M); (c)[1](E).
For $z=x+\mathrm{i} y \in \mathbb{C}$, bring each of the following expressions into standard form:
(a) $(z+i)^{2}$,
(b) $\frac{z}{z+1}$,
(c) $\frac{\bar{z}}{z-\mathrm{i}}$.
[Check your results for $x=1, y=2$: (a) $-8+\mathrm{i} 6$, (b) $\frac{3}{4}+\mathrm{i} \frac{1}{4}$, (c) $-\frac{1}{2}-\mathrm{i} \frac{3}{2}$.]
Homework Problem 5: Multiplication of complex numbers - geometrical interpretation [2]
Points: [2](E)

For $z_{1}=\frac{1}{\sqrt{8}}+\frac{1}{\sqrt{8}} \mathrm{i}, z_{2}=\sqrt{3}-\mathrm{i}$, compute the product $z_{3}=z_{1} z_{2}$, as well as $z_{4}=1 / z_{1}$ and $z_{5}=\bar{z}_{1}$. Find the polar representation (with $\phi \in[0,2 \pi)$) of all five complex numbers and sketch them in the complex plane (in one diagram).

Homework Problem 6: Differentiation of hyperbolic functions [2]

Points: (a)[0,5](E); (b,c)[0,5](E); (d)[0,5](E); (e)[0,5](E).
Show that the hyperbolic functions

$$
\begin{array}{lll}
\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right), & \cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right), & \tanh x=\frac{\sinh x}{\cosh x}, \\
\operatorname{csch} x=\frac{1}{\sinh x}, & \operatorname{sech} x=\frac{1}{\cosh x}, & \operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{1}{\tanh x},
\end{array}
$$

satisfy the following identities:
(a) $\cosh ^{2} x-\sinh ^{2} x=1$,
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \sinh x=\cosh x$,
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \cosh x=\sinh x$.
(d) $\frac{\mathrm{d}}{\mathrm{d} x} \tanh x=1-\tanh ^{2} x=\operatorname{sech}^{2} x$,
(e) $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{coth} x=1-\operatorname{coth}^{2} x=-\operatorname{csch}^{2} x$.

Homework Problem 7: Differentiation of powers, exponentials, logarithms [2] Points: [2](E) (Solve any 4 subproblems; beyond that: 0.25 bonus per subproblem.)
Compute the first derivative of the following functions.
[Check your results against those in square brackets, where $[a, b]$ stands for $f^{\prime}(a)=b$.]
(a) $f(x)=\sqrt[3]{x^{2}}$
$\left[8, \frac{1}{3}\right]$
(b) $f(x)=\frac{x}{\left(x^{2}+1\right)^{1 / 2}}$
(c) $f(x)=-\mathrm{e}^{\left(1-x^{2}\right)}$
$[1,2]$
(d) $f(x)=2^{x^{2}}$
(e) $f(x)=2 \frac{\sqrt{\ln x}}{x}$
$\left[\mathrm{e},-\frac{1}{\mathrm{e}^{2}}\right]$
(f) $f(x)=\ln \sqrt{x^{2}+1}$

Homework Problem 8: Differentiation of inverse hyperbolic functions [2]

Points: $[2](\mathrm{M})$ (Solve subproblem, (b); beyond that: 0.5 bonus points per subproblem.)
Compute the following derivatives of inverse hyperbolic functions, f^{-1}. For each case, make a qualitative sketch showing $f(x)$ and $f^{-1}(x)$. If f is non-monotonic, consider domains with positive or negative slope separately. [Check your results: $[a, b]$ stands for $\left(f^{-1}\right)^{\prime}(a)=b$.]
(a) $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{arcsinh} x$
$\left[2, \frac{1}{\sqrt{5}}\right]$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{arccosh} x$
$\left[2, \frac{1}{\sqrt{3}}\right]$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{arctanh} x \quad\left[\frac{1}{2}, \frac{4}{3}\right]$

Hint: The identity $\cosh ^{2} x=1+\sinh ^{2} x$ is useful for (a) and (b), $\operatorname{sech}^{2} x=1-\tanh ^{2} x$ for (c).

Homework Problem 9: Integration by parts [4]

Points: $[4](M)$ (Solve any 4 subproblems; beyond that: 0.5 bonus per subproblem.)
Integrate the following integrals by parts. [Check your results against those in square brackets, where $[a, b]$ stands for $I(a)=b$.]
(a) $I(z)=\int_{0}^{z} \mathrm{~d} x x \sin (2 x)$
$\left[\frac{\pi}{2}, \frac{\pi}{4}\right]$
(b) $I(z)=\int_{0}^{z} \mathrm{~d} x x^{2} \cos (2 x)$
$\left[\frac{\pi}{2},-\frac{\pi}{4}\right]$
(c) $I(z)=\int_{0}^{z} \mathrm{~d} x(\ln x) x \quad\left[1,-\frac{1}{4}\right]$
(d) $I(z) \stackrel{[n>-1]}{=} \int_{0}^{z} \mathrm{~d} x(\ln x) x^{n}$
$\left[1, \frac{-1}{(n+1)^{2}}\right]$
(e) $I(z)=\int_{0}^{z} \mathrm{~d} x \cos ^{2} x$
$\left[\pi, \frac{\pi}{2}\right]$
(f) $I(z)=\int_{0}^{z} \mathrm{~d} x \cos ^{4} x$
$\left[\pi, \frac{3}{8} \pi\right]$

Homework Problem 10: Integration by substitution [3]

Points: $[3](\mathrm{M})$ (Solve any 3 subproblems; beyond that: 0.5 bonus per subproblem.)
Calculate the following integrals by substitution. [Check your results versus those in square brackets, where $[a, b]$ stands for $I(a)=b$.]
(a) $I(z)=\int_{0}^{z} \mathrm{~d} x x^{2} \sqrt{x^{3}+1}$
$\left[2, \frac{52}{9}\right]$
(b) $I(z)=\int_{0}^{z} \mathrm{~d} x \sin x \mathrm{e}^{\cos x}$
$\left[\frac{\pi}{3}, \mathrm{e}-\sqrt{\mathrm{e}}\right]$
(c) $I(z)=\int_{0}^{z} \mathrm{~d} x \cos ^{3} x$
$\left[\frac{\pi}{4}, \frac{5}{6 \sqrt{2}}\right]$
(d) $I(z)=\int_{0}^{z} \mathrm{~d} x \sinh ^{3} x$
$\left[\ln 3, \frac{44}{81}\right]$
(e) $I(z)=\int_{0}^{z} \mathrm{~d} x \frac{\sin \sqrt{\pi x}}{\sqrt{x}}$
$\left[\frac{\pi}{9}, \frac{1}{\sqrt{\pi}}\right]$
(f) $I(z)=\int_{0}^{z} \mathrm{~d} x \sqrt{x} \mathrm{e}^{\sqrt{x^{3}}}$
$\left[(\ln 4)^{2 / 3}, 2\right]$

