
https://moodle.Imu.de $\rightarrow$ Kurse suchen: 'Rechenmethoden'

## Sheet 01: Mathematical Foundations

(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 9, 10, 4, 3.
Videos exist for example problems 9 (C2.3.1), 10 (C2.3.3).

## Optional Problem 1: Group of discrete translations in one dimension [4] <br> Points: (a)[2](E); (b)[2](M)

In this problem we show that discrete translations on an infinite, one-dimensional lattice form a group. Let us denote the lattice constant, i.e. the fixed distance between neighboring lattice points, by $\lambda \in \mathbb{R}^{+}$, a positive, real number. The lattice $\mathbb{G}$ consists of the set of all integer multiples of $\lambda$, i.e. $\mathbb{G} \equiv \lambda \mathbb{Z} \equiv\{x \in \mathbb{R} \mid \exists n \in \mathbb{Z}: x=\lambda \cdot n\}$, where $\cdot$ is the usual multiplication rule in $\mathbb{R}$. Note that for any given $x \in \mathbb{G}, n$ is uniquely determined. On this lattice we define 'translation' by the group operation

$$
T: \quad \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}, \quad(x, y) \mapsto T(x, y) \equiv x+y,
$$

where + denotes the usual addition of real numbers. Since this operation is symmetric, it can be visualized in two equivalent ways: $T(x, y)$ describes (i) a 'shift' or a 'translation' of lattice point $x$ by the distance $y$, or (ii) a translation of lattice point $y$ by the distance $x$. [Figure (a), where $\lambda=\frac{1}{3}$, shows both visualizations of $T\left(\frac{2}{3}, \frac{4}{3}\right)$.]
(a)

(b)

(a) Show that $(\mathbb{G}, T)$ forms an abelian group.
(b) For a given $y \in \mathbb{G}$ we now define, in accordance with visualization (i), a 'translation' of the lattice by $y$, i.e. each lattice point $x$ is 'shifted' by $y$ :

$$
\mathcal{T}_{y}: \quad \mathbb{G} \rightarrow \mathbb{G}, \quad x \mapsto \mathcal{T}_{y}(x) \equiv T(x, y) .
$$

[Figure (b), where $\lambda=\frac{1}{3}$, shows $\mathcal{T}_{\frac{2}{3}}$.] Now consider the set of all such translations, $\mathbb{T} \equiv$ $\left\{\mathcal{T}_{y}, y \in \mathbb{G}\right\}$. Show that $(\mathbb{T}, \boldsymbol{+})$ forms an abelian group, where $\boldsymbol{+}$ is defined as

$$
+: \quad \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{T}, \quad\left(\mathcal{T}_{x}, \mathcal{T}_{y}\right) \mapsto \mathcal{T}_{x}+\mathcal{T}_{y} \equiv \mathcal{T}_{T(x, y)}
$$

Remark: the set $\mathbb{T}$ underlying this group consists of maps (namely translations), illustrating that the set underlying a group need not be 'simple'.

Optional Problem 2: Group of discrete translations on a ring [4]
Points: (a)[2](M); (b)[2](M)

In this problem we show that discrete translations on a finite, one-dimensional lattice with periodic boundary conditions form a group. Consider a ring with radius $0<R \in \mathbb{R}$ and lattice constant $\lambda=2 \pi R / N$ with $N \in \mathbb{N}$, thus $\mathbb{G} \equiv \lambda(\mathbb{Z} \bmod N) \equiv\{x \in \mathbb{R} \mid \exists n \in\{0,1, \ldots, N-1\}: x=\lambda \cdot n\}$, where $\cdot$ is the usual multiplication rule in $\mathbb{R}$. Note that for any given $x \in \mathbb{G}, n$ is uniquely determined. The ring forms a 'periodic' structure: when counting its sites, $0 \lambda$ and $N \lambda$ describe the same lattice site, the same is true for $1 \lambda$ and $(1+N) \lambda$, for $2 \lambda$ and $(2+N) \lambda$, etc. On this lattice we define a group operation, corresponding to a 'translation', using addition modulo $N$ :

$$
T: \quad \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}, \quad(x, y)=\left(\lambda \cdot n_{x}, \lambda \cdot n_{y}\right) \mapsto T(x, y) \equiv \lambda \cdot\left(\left(n_{x}+n_{y}\right) \bmod N\right) .
$$

Here + is the usual addition of integers, and $n \bmod N($ spoken as ' $n \bmod N$ ') is defined as the integer remainder after division of $n$ by $N$ (e.g. $9 \bmod 8=1$ ). [For $N=8$, figure (a) shows two visualizations of the translation $T(4 \lambda, 5 \lambda)$ : as a 'shift' of the lattice site $4 \lambda$ by the distance $5 \lambda$ along the ring, or of the site $5 \lambda$ by the distance $4 \lambda$.]
(a)
$N=8$

(b)

(a) Show that $(\mathbb{G}, T)$ forms an abelian group.
(b) For a given $y \in \mathbb{G}$ we now define a 'translation' of the lattice by $y$,

$$
\mathcal{T}_{y}: \quad \mathbb{G} \rightarrow \mathbb{G}, \quad x \mapsto \mathcal{T}_{y}(x) \equiv T(x, y)
$$

i.e. each site $x$ is 'shifted' by $y$ along the ring. [For $N=8$, figure (b) shows the translation $\left.\mathcal{T}_{2 \lambda}\right]$. Now consider the set of all such translations, $\mathbb{T} \equiv\left\{\mathcal{T}_{y}, y \in \mathbb{G}\right\}$. Show that $(\mathbb{T}, \boldsymbol{+})$ forms an abelian group, where the group operation $\boldsymbol{+}$ is defined as

$$
\boldsymbol{+}: \quad \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{T}, \quad\left(\mathcal{T}_{x}, \mathcal{T}_{y}\right) \mapsto \mathcal{T}_{x}+\mathcal{T}_{y} \equiv \mathcal{T}_{T(x, y)}
$$

## Optional Problem 3: L’Hôpital's rule [4]

Points: (a)[0,5](E); (b)[0,5](E); (c)[1](M); (d)[1](M); (e)[1](M)
Consider the following question: what is the limiting value of the ratio, $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}$, if the functions $f$ and $g$ both vanish at the point $x_{0}$ ? The naive answer, $\frac{f\left(x_{0}\right)}{g\left(x_{0}\right)} \stackrel{?}{=} \frac{0}{0}$, is ill-defined. However, if both functions have a finite slope at $x_{0}$, we may use a linear approximation for both, $f\left(x_{0}+\delta\right) \simeq$ $0+\delta f^{\prime}\left(x_{0}\right)$ and $g\left(x_{0}+\delta\right) \simeq 0+\delta g^{\prime}\left(x_{0}\right)$, to obtain $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$. This result is a special case of L'Hôpital's rule.
The general formulation of L'Hôpital's rule is: If either $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0$ or $\lim _{x \rightarrow x_{0}}|f(x)|=\lim _{x \rightarrow x_{0}}|g(x)|=\infty$, and the limit $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} \tag{1}
\end{equation*}
$$

The proof of this general statement is non-trivial, but is a standard topic in calculus textbooks.
Use L'Hôpital's rule to evaluate the following limits as functions of the real number $a$ : [Check your results against those in square brackets, where $[a, b]$ means that the limit $L(a)=b$.]
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+(a-1) x-a}{x^{2}+2 x-3}$
(b) $\lim _{x \rightarrow 0} \frac{\sin (a x)}{x+a x^{2}}$

If not only $f$ and $g$ but also $f^{\prime}$ and $g^{\prime}$ all vanish at $x_{0}$, the limit on the r.h.s. of L'Hôpital's rule may be evaluated by applying the rule a second time (or $n+1$ times, if the derivatives up to $f^{(n)}$ and $g^{(n)}$ all vanish at $x_{0}$ ). Use this procedure to evaluate the following limits:
(c) $\lim _{x \rightarrow 0} \frac{1-\cos (a x)}{\sin ^{2} x}$,
(d) $\lim _{x \rightarrow 0} \frac{x^{3}}{\sin (a x)-a x}$.
$\left[2,-\frac{3}{4}\right]$
(e) Use L'Hôpital's rule to show that $\lim _{x \rightarrow 0}(x \ln x)=0$ (with $x>0$ ). This result implies that for $x \rightarrow 0$, ' $x$ decreases more quickly than $\ln (x)$ diverges', i.e. 'linear beats log'.

## Optional Problem 4: L'Hôpital's rule [4]

Points: (a)[0,5](E); (b)[0,5](E); (c)[1](M); (d)[1](M); (e)[1](M)
Use L'Hôpital's rule (possibly multiple times) to evaluate the following limits as functions of the real number $a$ : [Check your results: $[a, b]$ means that the limit $L(a)=b$.]
(a) $\lim _{x \rightarrow a} \frac{x^{2}+(2-a) x-2 a}{x^{2}-(a+1) x+a}$
$[2,4]$
(b) $\lim _{x \rightarrow 0} \frac{\sinh (x)}{\tanh (a x)}$
(c) $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x^{2}}-1}{\left(\mathrm{e}^{a x}-1\right)^{2}}$
$\left[2, \frac{1}{2}\right]$
(d) $\lim _{x \rightarrow 0} \frac{\cosh (a x)+\cos (a x)-2}{x^{4}}$
(e) Use L'Hôpital's rule to show that for $\alpha \in \mathbb{R}$ and $0<\beta \in \mathbb{R}$ we have

$$
\lim _{x \rightarrow 0}\left(x^{\beta} \ln ^{\alpha} x\right)=0 \quad(\text { with } x>0)
$$

i.e. 'any positive power law beats any power of log'.

