Back-of-the-Envelope Physics

Winter Term 2022/23

Sheet 13

1. Consider a black-hole binary with circular orbit at a distance R from the earth. The black holes have mass m each and a mutual distance r.
a) Show that the metric perturbation h from the gravitational radiation at the position of the earth can be estimated to be $h \sim r_{s}^{2} / r R$. Estimate the maximum of h numerically for $r_{s}=100 \mathrm{~km}$ and $R=10^{9}$ light years.
b) Show that the total power radiated from a black-hole binary can be written in the form $d \mathcal{E} / d t \sim(v / c)^{5} v^{5} / G$, where v is the speed of a black hole on its orbit. Estimate the maximum power numerically.
2. Two black holes with mass m orbit each other at distance r. Estimate the time t it takes until the merger occurs.
3. Show that

$$
\begin{equation*}
\cos \alpha+\cos \beta=2 \cos \frac{\alpha-\beta}{2} \cos \frac{\alpha+\beta}{2} \tag{1}
\end{equation*}
$$

Use this formula to discuss the superposition of two plane waves with phase factor $\alpha=k_{1} x-\omega_{1} t$ and $\beta=k_{2} x-\omega_{2} t$, respectively. Assume that k_{1} is close to k_{2}, such that $k_{1}-k_{2} \ll\left(k_{1}+k_{2}\right) / 2 \equiv k$, and similarly for ω_{i}. Describe how this superposition may be interpreted as a toy model of a wave packet and derive expressions for the corresponding phase velocity v_{p} and group velocity v_{g}.
4. Consider a lake with bottom at $z=-h$, (undisturbed) surface at $z=0$, and infinite extent in the x and y directions. Let the velocity potential φ of a water wave be given by

$$
\begin{equation*}
\varphi(x, z)=A \cos (k x-\omega t) \cosh k(z+h) \tag{2}
\end{equation*}
$$

a) Compute the velocity field $\vec{v}(t, x, y, z)$ and check that it fulfills the condition for incompressible flow.
b) Obtain the amplitude field $\zeta(t, x)$ describing the moving water surface. Assume that $\zeta \ll \lambda=2 \pi / k$.

