Back-of-the-Envelope Physics

Winter Term 2022/23

Sheet 10

- 1. Show that Maxwell's equations and the Lorentz-force equation of motion are invariant under parity P and time reversal T. In the process, determine the transformation properties of the fields \vec{E} , \vec{B} under P and T.
- 2. a) Show that the convective derivative of the velocity field $\vec{v}(t, \vec{x})$ can be written as

$$D_t \vec{v} \equiv \partial_t \vec{v} + (\vec{v} \cdot \vec{\partial}) \vec{v} = \partial_t \vec{v} + \vec{\Omega} \times \vec{v} + \frac{1}{2} \vec{\partial} \vec{v}^2$$
 (1)

where $\vec{\Omega} \equiv \vec{\partial} \times \vec{v}$ is the vorticity field.

b) Show that Euler's equation in a gravitational potential ϕ , $D_t \vec{v} = -(\vec{\partial}P)/\varrho - \vec{\partial}\phi$, implies Bernoulli's theorem. This states that in a stationary flow $(\partial_t \vec{v} = 0)$

$$\frac{P}{\rho} + \frac{1}{2}\vec{v}^2 + \phi = \text{const} \tag{2}$$

along a streamline. Also, (2) holds everywhere if the stationary flow is irrotational $(\vec{\Omega} \equiv 0)$.

- 3. Consider a cylindrical tube with inner radius a and length $l \gg a$. The z-axis is chosen to coincide with the symmetry axis of the cylinder. An incompressible fluid with dynamical viscosity μ is flowing through the tube in the z-direction. It is driven by a pressure difference ΔP between the two ends of the tube, resulting in a homogeneous pressure gradient $-\Delta P/l$ in the z-direction inside the tube. Assume that the flow has reached a steady state.
 - a) Using dimensional analysis, estimate the volume of the fluid per time, \dot{V} , flowing through the cross section of the tube.
 - b) Compute the radial velocity profile $v_z(r)$ inside the tube from the Navier-Stokes equation. Assume the boundary condition $v_z(a) = 0$.
 - c) Integrate the result of b) to obtain the exact result for \dot{V} .
- 4. Compute the speed of sound c_s for a gas with equation of state $P(\varrho) = \text{const} \cdot \varrho^{\kappa}$. What is κ for air, assuming adiabatic compression? Also derive the temperature dependence of c_s using the ideal gas law.