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Imaging in treatment planning

• The anatomical identification of the target is typically based on X-ray imaging, or Computed Tomography (CT)

• Functional information based on Positron Emission Tomography (PET) and anatomical or functional information based
on Magnetic resonance imaging (MRI) can complement the anatomical target identification (i.e., secondary imaging)

Bussink et al. Nat. Rev. Clin. Oncol. 2011
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Imaging in treatment planning

▪ The functional identification of the target can be used for “dose painting”

▪
18FDG-PET: glucose uptake and metabolism

▪
18F-HX4-PET: molecular retention correlated to tumor hypoxia

Grootjans et al. Nat. Rev. Clin. Oncol. 2015

FDG-PET F-HX4-PETCT

Anatomical target
Metabolically active 

target
Hypoxic target



▪ The treatment planning is an inverse problem and requires numerical optimization to define the beam parameters (i.e.,
inverse treatment planning), based on:

▪ Definition of the treatment geometry (i.e., target and critical organs identification)
▪ Physical characterization of the patient (i.e., tomographic image reconstruction of the properties of the radiation in

tissue)

▪ photon attenuation (X-ray CT)
▪ ion stopping power relative to

water (ion CT)

X-ray CT proton CT helium CT carbon CT

Meyer et al. Phys Med Biol. 2019
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• Treatment planning aims to match the dose value of the PTR (planning target region) to its prescribed value while limiting
dose values in the surrounding OAR (organ at risk) and HT (healthy tissue) to tolerable limits

• In particular, OARs are highly sensitive to radiation exposure and require lower dose values than HT

PTR

OAR
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• Intensity modulated radiation treatment (IMRT) and volumetric modulated arc therapy (VMAT)

Nguyen, B. T., Hornby, C., Kron, T., Cramb, J., Rolfo, A., Pham, D., ... &
Foroudi, F. (2012). Optimising the dosimetric quality and efficiency of
post‐prostatectomy radiotherapy: A planning study comparing the
performance of volumetric‐modulated arc therapy (VMAT) with an
optimised seven‐field intensity‐modulated radiotherapy (IMRT)
technique. Journal of Medical Imaging and Radiation Oncology, 56(2),
211-219.

Durante, M., & Loeffler, J. S. (2010). Charged particles in radiation 
oncology. Nature reviews Clinical oncology, 7(1), 37-43.

Fundamentals
in treatment planning

• High precision conformation as overlay of multiple discrete
(IMRT) or continuous (VAMT) 3D dose distributions

• The intensity of the radiation beam is subdivided in
multiple beam-lets

• Ion beam therapy

• High precision conformation as stack of multiple iso-energy
2D dose distributions

• The intensity of the radiation beam is subdivided in
multiple pencil beams



• Stereotactic radiation therapy (cranial SRT) and stereotactic body radiation therapy (SBRT)

• High precision and high dose conformation as overlay of multiple 3D dose distributions, delivered from fixed points
in space called nodes, arranged in spherical (intracranial applications) or ellipsoidal (extracranial applications)
configurations

• The combination of nodes and pointing vectors provides a set of “elementary beams” to plan the treatment

http://www.cyberknifendc.com
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Baumann, M., Krause, M., Overgaard, J., Debus, J., Bentzen,
S. M., Daartz, J., ... & Bortfeld, T. (2016). Radiation oncology
in the era of precision medicine. Nature Reviews Cancer,
16(4), 234-249.
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Target
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• The dose-volume histogram (DVH) is a treatment plan evaluating tool

• DVH summarizes a 3D dose distribution in a
graphical 2D format

• The volumes reported in the DVH are the
PTR and OAR

• Differential DVH

• the relative volume of PTR or OAR
that receives the indicated dose

• Cumulative DVH

• the integral relative volume of PTR
or OAR that receives at least the
indicated dose
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• Modeling of the inverse problem of treatment planning as matrix-
vector product:

• ഥ𝑓𝑗 is the dose distribution in the pixel/voxel or control point 𝑗

• 𝑔𝑖 is the unknown weight of the beam-let or pencil beam 𝑖

• Discretization of the dose distribution into a grid of dose points

• Beam-let or pencil beam: elementary radiation beam with fixed intensity

• Beam: beam-lets or pencil beams with fixed angle ϑ or fixed energy 𝑦

𝑥

𝜗

𝜌

ഥ𝑓𝑗 =෍

𝑖

𝑎𝑗𝑖𝑔𝑖

• 𝑎𝑖𝑗 is the dosimetric contribution of the beam-let or pencil beam 𝑖 to the pixel/voxel or control point 𝑗
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▪ The inverse problem of treatment planning is concerned with determining the non-negative weights 𝑔𝑖 that results in
optimal dose distribution𝑓𝑗

▪ 𝑎𝑖𝑗 can be interpreted as the dose per unit of time deposited at pixel or control point 𝑗 by the beam-let or pencil
beam 𝑖, and 𝑔𝑖 is the time the beam-let or pencil beam 𝑖 is kept on

▪ 𝑎𝑖𝑗 is referred to as the dose calculation matrix

▪ model-based algorithms (convolution-superposition methods based on dose kernels scaled according to the
electron density or relative stopping power of the heterogeneity)

▪ correction-based algorithms (semiempirical approaches to account for tissue heterogeneity)

▪ Monte Carlo simulations

Fundamentals
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Oelkfe, U., & Scholz, C. (2006). Dose calculation algorithms. In New technologies in 
radiation oncology (pp. 187-196). Springer, Berlin, Heidelberg.



▪ In photon beam therapy (IMRT), M beams (different angles) are needed to conform the dose distribution to the target

▪ In ion beam therapy, M beams (different energies) are needed to conform the dose distribution to the target

▪ The model of the inverse problem becomes a 𝐹 = 𝐴𝐺 matrix-matrix product with:

▪ 𝐹 is the matrix of optimal dose distribution for each m=1:M (JxM matrix)

▪ 𝐴 is the matrix of the geometrical contribution of the beam-let or pencil beam to the pixel (JxI matrix), referred to as
dose calculation matrix

▪ 𝐺 is the unknown (intensity) weight matrix of each beam-let or pencil beam, for each m=1:M (IxM matrix)

▪ The inverse problem of treatment planning is concerned with determining the non-negative weight matrix 𝐺 that results in
optimal dose distribution𝐹
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ො𝑔 = arg𝑚𝑖𝑛𝑔 𝐹 𝐴𝑔|𝑓

forward-calculation of the dose ҧ𝑓

prescribed dose 𝑓

initial beam 
parameters

objective function* (Newton's method)

convergence?
optimal beam 

weights

yes

no

updated weights

ഥ𝑓𝑗 =෍
𝑖
𝑎𝑖𝑗𝑔𝑖

* the objective function can be either voxel-based or organ/DVH-based, the violation of the DVH constraints can an be 
adopted as penalty function



Treatment planning

• Newton's method of objective function minimization is based on the approximation of ψ(f) as a quadratic function in the
neighborhood of the minimum fmin

• The objective function can be approximated by its Taylor series expansion as:

where the Gradient vector and the Hessian matrix (H) are defined as:

• Implementations of inverse treatment planning differ from objective function approximations
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• Newton's method finds the minimum fmin when the gradient of ψ(f) is equal to zero:

• The inverse Hessian matrix can be not exact (HH-1 ≠ identity matrix)

• Iterative algorithms are adopted to compute an approximation of the inverse Hessian matrix (quasi-Newton methods)

• Implementations of inverse treatment planning differ from inverse Hessian matrix approximations

0)()( min

2

min =+ fff ff 

( ) )()( min

1

min

2 fff ff  −=
−

)(1

1 nfnn fHff −= −

+

Treatment planning



• Being f=Ag, and therefore g=A-1f, the objective function minimization is expressed as:

• A-1 is the inverse dose calculation matrix

• The two gradient vectors are related according to:

• Implementations of inverse treatment planning differ from inverse dose calculation matrix approximations
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• Closed-form least square optimization

• Numerical (iterative) optimization or iterative inverse treatment planning

j
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Xing, L., & Chen, G. T. (1996). Iterative methods for inverse treatment 
planning. Physics in Medicine & Biology, 41(10), 2107.



Machine learning in treatment 
planning

• Conventional radiotherapy treatment planning consists of inverse optimization to determine the radiation beam
weights (i.e., 𝑔𝑖) based on the treatment planning X-ray CT image and the dose prescription (i.e., 𝑓𝑗)

• The optimized radiation beam parameters need to be manually adjusted with trial and error (time-consuming and
labor-intensive)

• Artificial intelligence, including machine learning and deep learning, has been recently proposed to automate
radiotherapy treatment planning and improve treatment planning quality and efficiency

• Automated treatment planning includes

• Automated beam orientation selection (i.e., pre-defined angles of the beam-lets)

• Automated dose distribution prediction (i.e., forward-calculation of the dose)

• Automated radiation beam parameters estimation (i.e., the weights)

Wang, M., Zhang, Q., Lam, S., Cai, J., & Yang, R. (2020). A review on application of deep learning algorithms in 
external beam radiotherapy automated treatment planning. Frontiers in oncology, 10, 2177.



Recurrent and residual 
neural networks

• In recurrent neural networks, outputs from the current layers are taken as inputs for the previous layer or the current layer
itself (i.e., feedback networks)

• In residual neural networks, skip or residual connections are added to connect neurons in non-adjacent layers to preserve
features as the network depth increases

• Residual networks are an approximation of recurrent networks
… … … … …

• Considering subsequent layers as a
temporal sequence, recurrent neural
networks process time-dependent
inputs

• A fully recurrent neural network,
once unfolded through time, can be
seen as a very deep feed-forward
network in which all the layers share
the same weights

recurrence

residue



• A 3D dose prediction is obtained based on a deep residual neural network (“Res-Net”), trained on images describing patient
geometry (input) and manually optimized dose distribution (target)

Fan, J., Wang, J., Chen, Z., Hu, C., Zhang, Z., & Hu, W. (2019). Automatic 
treatment planning based on three‐dimensional dose distribution predicted 

from deep learning technique. Medical physics, 46(1), 370-381.

Predicted 
dose

Voxel-based optimization 
of the treatment planning

Prescribed 
dose

DVH-based optimization of 
the treatment planning

Dose distribution prediction

• The output is used to optimize the treatment plan (i.e.,
beam-let angles and intensities) based on a voxel-by-
voxel optimization, instead of a dose-volume histogram
optimization based on the prescribed dose distribution

• The predicted dose distribution per se does not
account for the physics of the beamlets
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• Deconvolutional layers to up-
sample the feature maps and
recover the image details (i.e.,
“antiRestNet”)

• Links between convolutional and
deconvolutional layers with
multiple skip-layer connections
(tackling the problem of gradient
vanishing and passing of image
details)

Dose distribution prediction



Dose distribution prediction

• A modified seven-level hierarchy U-Net architecture is trained to predict 2D dose distribution using the treatment planning
CT image, labeled PTV and OARs for IMRT of prostate cancer patients

Nguyen, D., Long, T., Jia, X., Lu, W., Gu, X., Iqbal, Z., & Jiang, S. (2019). A feasibility study for predicting optimal radiation
therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Scientific reports, 9(1), 1-10.

• Contours of PTV and OARs treated as channels

• Fully convolutional network, originally
designed for segmentation purposes

• Large number of max pooling operations to
allow for the convolution filters to find higher
level global features

• Transposed convolution operations (i.e.,
deconvolution or up-convolution) to return the
image to its original size

• Copying the maps from the first half of the U-
net in order to preserve the lower-level local
features



Dose distribution prediction

• The true dose is the dose distribution explicitly informed about the physics of the beamlets

• The predicted dose is informed by treatment planning data



Dose distribution prediction

• A fully convolutional residual network (DoseNet) is trained to predict 3D dose distribution for non-coplanar prostate
stereotactic body radiotherapy patients

Kearney, V., Chan, J. W., Haaf, S., Descovich, M., & Solberg, T. D. (2018). DoseNet: a volumetric dose prediction algorithm using 3D fully-
convolutional neural networks. Physics in Medicine & Biology, 63(23), 235022.

• Treatment planning
CT image, structures
and dose prescription
as input



Dose distribution prediction

• A 3D dose distribution can be predicted by training artificial neural networks based on patient-specific geometric (i.e., CT
image and structures) and planning parameters (i.e., the closest distance to planning target volume (PTV) and organ-at-
risks (OARs), number of beams irradiating the voxel …)

• Feed-forward networks with a limited number of layers and nodes

• Two-layer feed-forward network, ten nodes in the first layer, one single node in the second layer1

• Multiple feed-forward networks with 1-3 hidden layers, each layer with 10-50 nodes2

1Shiraishi, S., & Moore, K. L. (2016). Knowledge‐based prediction of three‐dimensional dose 
distributions for external beam radiotherapy. Medical physics, 43(1), 378-387. 

2Campbell, W. G., Miften, M., Olsen, L., Stumpf, P., Schefter, T., Goodman, K. A., & Jones, B. L. 
(2017). Neural network dose models for knowledge‐based planning in pancreatic SBRT. 

Medical physics, 44(12), 6148-6158.

• Two separated artificial neural networks are
trained for voxels within and outside the PTV
due to very different dose distribution
patterns in the two regions

• Weak generalizability

Parameters ANN Dose value



Dose distribution prediction

• A GAN is trained using contoured CT images and clinically acceptable dose distribution from the treatment plans of
oropharyngeal cancer patients

• Recasting the dose prediction problem as an image colorization problem solved with two neural networks

• a generator performing the task (planner)

• a discriminator evaluatingthe performance of the generator (radiation oncologist)

Mahmood, R., Babier, A., McNiven, A., Diamant, A., & Chan, T. C. (2018, November). Automated treatment planning in radiation therapy using gener ative 
adversarial networks . In Machine Learning for Healthcare Conference (pp. 484-499). PMLR.



Semi-supervised learning

• The model is trained by relying on target information only partially available

• The generative adversarial network (GAN) is one of the most widely used

• A generative network (generator, encoder) and a discriminative network (discriminator, decoder) are trained
simultaneously to fight against each other

• The discriminator is trained to distinguish real and synthetic samples

• The generator is trained to produce examples that are realistic enough to fool the discriminator
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Fluence map and delivery 
parameters generation

• A residual neural network is trained to directly generate
beam fluence/intensity maps (i.e., the weights 𝑔𝑖 for each
𝑎𝑖𝑗 ) from the organ contours and a volumetric dose

distributions, without inverse planning

• The clinically-acceptable dose distribution is predicted
with a deep neural network (modified U-Net
architecture) from organ contours for intensity-
modulated radiotherapy ofprostate patients

Lee, H., Kim, H., Kwak, J., Kim, Y. S., Lee, S. W., Cho, S., & Cho, B. (2019). Fluence-map generation for prostate 
intensity-modulated radiotherapy planning using a deep-neural-network. Scientific reports, 9(1), 1-11.



Fluence map and delivery 
parameters generation

• Organ contours, containing PTV and OARs, and the volumetric dose distributions viewed from the beam’s eye view (BEV) of
a single beam are used as input data

• Fluence map at each corresponding beam direction are adopted as desired output data



Outlook

• Treatment planning consists in the solution of an inverse problem

• Treatment planning in high precision 3D conformal radiotherapy relies on optimization algorithms

• Analytical methods can only be applied to geometrically simple cases

• Numerical methods are required for geometrically complex cases

• Many degrees of freedom
• Many beam-lets or pencil beams
• High degree of flexibility in dose distribution

• The role of machine learning in treatment planning is relevant to the automation of tasks to support (or accomplish) the
inverse treatment planning



Exam

• Day: February 21st

• Time:10.30-13.00
• Room: A 348, Theresienstraße 37


