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The anatomical identification of the target is typically based on X-ray imaging, or Computed Tomography (CT)

Functional information based on Positron Emission Tomography (PET) and anatomical or functional information based
on Magnetic resonance imaging (MRI) can complement the anatomical target identification (i.e., secondary imaging)

tuowie. Imaging in treatment planning

PET image

CTimage

Bussink et al. Nat. Rev. Clin. Oncol. 2011
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= The functionalidentification of the target can be used for “dose painting”

= 1BEDG-PET: glucose uptake and metabolism
= 18F-HX4-PET: molecular retention correlated to tumor hypoxia

FDG-PET F-HX4-PET

Grootjans et al. Nat. Rev. Clin. Oncol. 2015
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in treatment planning

= The treatment planning is an inverse problem and requires numerical optimization to define the beam parameters (i.e.,
inverse treatment planning), based on:

= Definition of the treatment geometry (i.e., target and critical organs identification)
= Physical characterization of the patient (i.e., tomographic image reconstruction of the properties of the radiation in
tissue)

= photon attenuation (X-ray CT)
= jon stopping power relative to
water (ion CT)

o e

Relative range difference compared to the reference [%]

Meyer et al.Phys Med Biol. 2019
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* Treatment planning aims to match the dose value of the PTR (planning target region) to its prescribed value while limiting
dose valuesin the surrounding OAR (organ at risk) and HT (healthy tissue) to tolerable limits

* In particular, OARs are highly sensitive to radiation exposure and require lower dose values than HT
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in treatment planning

* Intensity modulated radiation treatment (IMRT) and volumetric modulated arc therapy (VMAT)

* High precision conformation as overlay of multiple discrete
(IMRT) or continuous (VAMT) 3D dose distributions

e The intensity of the radiation beam is subdivided in

multiple beam-lets
Nguyen, B. T., Hornby, C., Kron, T., Cramb, J., Rolfo, A., Pham, D., ... &

Foroudi, F. (2012). Optimising the dosimetric quality and efficiency of
post-prostatectomy radiotherapy: A planning study comparing the
* |lon beam thera Py performance of volumetric-modulated arc therapy (VMAT) with an
optimised seven-field intensity-modulated radiotherapy (IMRT)
technique. Journal of Medical Imaging and Radiation Oncology, 56(2),
211-219.

* High precision conformation as stack of multiple iso-energy
2D dose distributions Faces of dipole magnets Tumor

* The intensity of the radiation beam is subdivided in
multiple pencil beams

First magnet Second magnet

(horizontal (vertical
scanning) scanning) Last layer First layer
(minimum (maximum
energy) energy)

Durante, M., & Loeffler, J. S. (2010). Charged particles inradiation
oncology. Nature reviews Clinical oncology, 7(1), 37-43.




LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

in treatment planning

» Stereotacticradiationtherapy (cranial SRT) and stereotactic body radiation therapy (SBRT)
* High precision and high dose conformation as overlay of multiple 3D dose distributions, delivered from fixed points
in space called nodes, arranged in spherical (intracranial applications) or ellipsoidal (extracranial applications)

configurations

 The combination of nodes and pointingvectors provides a set of “elementary beams” to plan the treatment

http://www.cyberknifendc.com
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* The dose-volume histogram (DVH) is a treatment plan evaluatingtool
A
e DVH summarizes a 3D dose distribution in a - =
graphical 2D format = E
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* The volumes reported in the DVH are the c
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* Discretization of the dose distributionintoa grid of dose points

* Beam-let or pencil beam: elementary radiation beam with fixed intensity

* Beam: beam-lets or pencil beams with fixed angle ¥ or fixed energy

* Modeling of the inverse problem of treatment planning as matrix-

vector product:
fi = Z i gi

i

. f] is the dose distribution in the pixel/voxel or control point j

* g;istheunknown weight of the beam-let or pencil beam i

* ayj is the dosimetric contribution of the beam-let or pencil beam i to the pixel/voxel or control point j
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= The inverse problem of treatment planning is concerned with determining the non-negative weights g; that results in
optimal dose distribution f;

" a;j can be interpreted as the dose per unit of time deposited at pixel or control point j by the beam-let or pencil
beam i, and g; is the time the beam-let or pencil beam i is kept on

" aq;jisreferred to as the dose calculation matrix

= model-based algorithms (convolution-superposition methods based on dose kernels scaled according to the
electron density or relative stopping power of the heterogeneity)

= correction-based algorithms (semiempirical approachesto account for tissue heterogeneity)

= Monte Carlo simulations

Oelkfe, U., & Scholz, C. (2006). Dose calculation algorithms. In New technologies in
radiation oncology (pp.187-196).Springer, Berlin, Heidel berg.
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= |n photon beam therapy (IMRT), M beams (different angles) are needed to conform the dose distribution to the target
= Inion beam therapy, M beams (different energies) are needed to conform the dose distributionto the target
= The model of the inverse problem becomes a F = AG matrix-matrix product with:

= Fis the matrix of optimal dose distribution for each m=1:M (JxM matrix)

= A is the matrix of the geometrical contribution of the beam-let or pencil beam to the pixel (Jx/ matrix), referred to as
dose calculation matrix

= (@ isthe unknown (intensity) weight matrix of each beam-let or pencil beam, for each m=1:M (IxM matrix)

= Theinverse problem of treatment planning is concerned with determining the non-negative weight matrix G that results in
optimal dose distribution F
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initial beam
parameters
> forward-calculation of the dose f f] @

v

objective function®* (Newton's method) (7/ prescribed dose f /

no ¢

updated weights g = argming F(Aglf)

Optlmél beam
weights

* the objective function can be either voxel-based or organ/DVH-based, the violation of the DVH constraintscan an be
adopted as penalty function
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 Newton's method of objective function minimization is based on the approximation of Y(f) as a quadratic function in the
neighborhood of the minimum fmin

* The objective function can be approximated byits Taylor series expansion as:
) ap(f Y+ TV (f )+ £V (f ) f
l//( min T ) Nl//( min)+ fl//( min)+§ fl//( min)

where the Gradientvector and the Hessian matrix (H) are defined as:

o Oy Oy
of, 2 of,° of , of,
Vf()”(.l:min) — V fgy(fmin) = 2 2
oy Oy Oy
of of.ofy —  of’

f= fmin f= fmin

* Implementations of inverse treatment planningdiffer from objective function approximations
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 Newton's method finds the minimum fmin when the gradient of y(f) is equal to zero:

Vo (fo) + Vi () f =0
f = _(VZfW(fmin))_lva( fmin)

* The inverse Hessian matrix can be not exact (HH! # identity matrix)

* lterativealgorithms are adopted to compute an approximation ofthe inverse Hessian matrix (quasi-Newton methods)

_ 1 -1
fn+1 - 1:n —-H V1":”(fn)
* Implementationsof inverse treatment planningdiffer from inverse Hessian matrix approximations
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* Being f=Ag, and therefore g=A-lf, the objective function minimization is expressed as:

fn+1 — fn B Iq_lvfl)”( fn)

gn+1 gn 1H 1Vfl//(f ) gn 1H 1A 1VgW(f )

* Aljstheinverse dose calculation matrix

* The two gradient vectors are related according to:

* Implementationsof inverse treatment planningdiffer from inverse dose calculation matrix approximations
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* Closed-form least square optimization

) Hessian
_ : n=(ATA AT,
Imin = argmin |(f; — Z ajig; G = j
7 Gradient
* Numerical (iterative) optimization or iterative inverse treatment planning
f}- — Zl ajigin Xing, L, & Chen, G. T. (1996). Iterative methods for inversetreatment
gin+1 = n -|— planning.Physicsin Medicine & Biology, 41(10), 2107.

= i 2 i
2 i
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Conventional radiotherapy treatment planning consists of inverse optimization to determine the radiation beam
weights (i.e., g;) based on the treatment planningX-ray CT image and the dose prescription (i.e., f;)

The optimized radiation beam parameters need to be manually adjusted with trial and error (time-consuming and
labor-intensive)

Artificial intelligence, including machine learning and deep learning, has been recently proposed to automate
radiotherapy treatment planningand improve treatment planning quality and efficiency

Automated treatment planningincludes
* Automated beam orientation selection (i.e., pre-defined angles of the beam-lets)
* Automated dose distribution prediction (i.e., forward-calculation of the dose)

* Automatedradiation beam parameters estimation (i.e., the weights)

Wang, M., Zhang, Q., Lam, S., Cai,J., & Yang, R. (2020). A review on application of deep learningalgorithms in
L _ —— _ A——— o )
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* Inrecurrent neural networks, outputs from the current layers are taken as inputs for the previous layer or the current layer
itself (i.e., feedback networks)

recurrence

* Considering subsequent layers as a
temporal sequence, recurrent neural
networks process time-dependent
inputs

e A fully recurrent neural network,
once unfolded through time, can be
seen as a very deep feed-forward
network in which all the layers share D e e )
the same weights

residue

* In residual neural networks, skip or residual connections are added to connect neurons in non-adjacent layers to preserve
features as the network depth increases

* Residual networks are an approximation of recurrent networks
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Dose distribution prediction

A 3D dose prediction is obtained based on a deep residual neural network (“Res-Net”), trained on images describing patient
geometry (input) and manually optimized dose distribution (target)

* The output is used to optimize the treatment plan (i.e.,
beam-let angles and intensities) based on a voxel-by-
voxel optimization, instead of a dose-volume histogram
optimization based on the prescribed dose distribution

e The predicted dose distribution per se does not
account for the physics of the beamlets

uonRNQIASIP 3SOpP Pa1dipald
“sAuoningusipasop paziwndo Ajjenuep

Prescribed DVH-based optimization of
dose the treatment planning

Predicted Voxel-based optimization
dose of the treatment planning

Fan, )., Wang, J,, Chen, Z., Hu, C., Zhang, Z., & Hu, W. (2019). Automatic
treatment planning based on three-dimensional dosedistribution predicted
from deep learningtechnique. Medical physics, 46(1), 370-381.

uonngasip asop paziwindo Ajjeannewoiny
SAUONINQLIISIP 3SOpP Pa1d1pald
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* Deconvolutional layers to up- tdentity Convolation
Tnput and & Coavolution P block
sample the feature maps and ' gt ||} beck ///1
recover the image details (i.e., g . \ [IH W| '
”a ntiREStNet”) ’ Deconvelution “ Deconvolution Sum "?Y .
layer block iy

* Links between convolutional and
deconvolutional layers  with
multiple skip-layer connections PTv
(tackling the problem of gradient
vanishing and passing of image
details)

Sum

Sum

Sum

- Dose
128x128 P [ distribution

16x16

1 /4
¥ |

OAR, CT

"1”“1‘1#

Sum

Sum

Sum
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A modified seven-level hierarchy U-Net architecture is trained to predict 2D dose distribution using the treatment planning
CT image, labeled PTV and OARs for IMRT of prostate cancer patients

o ltal,
e Contoursof PTV and OARs treated as channels

2%2
¥
¥

 Fully convolutional network, originally
designed for segmentation purposes

* Large number of max pooling operations to
allow for the convolution filters to find higher
level global features

 Transposed convolution operations (i.e.,
deconvolution or up-convolution) to return the
image to its original size

% feature map P 3x3 convolution, ReLU, Batch Normalization P 3x3 convolution, ReLU

2x2 transposed convolution with 2x2

D Bgpiesdsature g s stride, ReLU, Batch Normalization

¥ 2x2 max pooling

* Copying the maps from the first half of the U-
net in order to preserve the lower-level local

featu res Nguyen, D., long, T., Jia, X., Lu, W., Gu, X., Igbal, Z., & Jiang, S. (2019). A feasibility study for predicting optimal radiation

= copy layer
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Dose distribution prediction

The predicted dose is informed by treatment planningdata

The true dose is the dose distribution explicitlyinformed about the physics of the beamlets

Contours

PTV

Bladder

Body

L Fem
Head
R Fem
Head

Rectum

True Dose

1.0
0.8
L= B0 1%
0.4
0.2
0.0

Difference Map (True - Predicted)

0.3
0.2
0.1

0.0

—0.1
-0.2
-0.3

Predicted Dose

Hﬁf




LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

e A fully convolutional residual network (DoseNet) is trained to predict 3D dose distribution for non-coplanar prostate
stereotactic body radiotherapy patients

 Treatment planning 1 % 5x5x5 Conwolution % Residual Block —>Concatenated Biock T
CT image, structures “ﬁ,‘”‘m‘“"‘ T—.‘
and dose prescription J] !
asinput :l

‘ B4xB4x32x32

| == "

X
=
= Sl

212818564 l sﬁs T

)

I { — %
R

Kearney, V., Chan, J. W., Haaf,S., Descovich, M., & Solberg, T. D. (2018). DoseNet: a volumetric dose prediction algorithmusing 3D fully-
convolutional neural networks. Physics in Medicine & Biology, 63(23),235022.
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A 3D dose distribution can be predicted by training artificial neural networks based on patient-specific geometric (i.e., CT

image and structures) and planning parameters (i.e., the closest distance to planning target volume (PTV) and organ-at-
risks (OARs), number of beams irradiating the voxel ...)

Feed-forward networks with a limited number of layers and nodes

Two-layer feed-forward network, ten nodesin the first layer, one single node in the second layer!

Multiple feed-forward networks with 1-3 hidden layers, each layer with 10-50 nodes?

* Two separated artificial neural networks are
trained for voxels within and outside the PTV

due to very different dose distribution
patternsin the two regions

Parameters

ANN Dose value

1Shiraishi,S., & Moore, K. L. (2016). Knowledge-based prediction of three-dimensional dose
H HHR distributions for external beam radiotherapy.Medical physics, 43(1), 378-387.
. 7’ ’
Wea k genera ||Za bl I Ity 2Campbell, W. G., Miften, M., Olsen, L., Stumpf, P., Schefter, T., Goodman, K. A., & Jones, B. L.
(2017). Neural network dose models for knowledge-based planningin pancreatic SBRT.
Medical physics, 44(12),6148-6158.
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* A GAN is trained using contoured CT images and clinically acceptable dose distribution from the treatment plans of
oropharyngeal cancer patients

* Recasting the dose prediction problem as an image colorization problem solved with two neural networks
* agenerator performing the task (planner)

* adiscriminatorevaluatingthe performance of the generator (radiation oncologist)

Baseline
models

CT image Prepmcessing 10 pipeline

- - |
-f N N\ ANl
LI ¥ J : L J It \ e

Clinical dose
distribution

[
]
]
]
Contoured il
]
]
[}
[

-..-..-..-----"

-
e
"

Mahmood, R., Babier, A., McNiven, A., Diamant,A., & Chan, T. C. (2018, November). Automated treatment planninginradiationtherapy usinggenerative
adversarial networks. In Machine Learning for Healthcare Conference (pp. 484-499). PMLR.
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* The modelistrained by relying on target information only partially available
* The generative adversarial network (GAN) is one of the most widely used

A generative network (generator, encoder) and a discriminative network (discriminator, decoder) are trained
simultaneously to fight against each other

* The discriminatoris trained to distinguish real and syntheticsamples

 The generatoris trained to produce examples that are realistic enough to fool the discriminator

_—
—

\ 4

v

real or
synthetic

[ real data

Latent representation

—
—




LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

parameters generation

A residual neural network is trained to directly generate
beam fluence/intensity maps (i.e., the weights g; for each
a;j) from the organ contours and a volumetric dose
distributions, without inverse planning

Clinical Synthetic

The clinically-acceptable dose distribution is predicted
with a deep neural network (modified U-Net

Contour Clinical - synthetic

architecture) from organ contours for intensity- Axial view
modulated radiotherapy of prostate patients
E3
“E‘ 60
Clinical Synthetic E
é 40

Contour Clinical - synthetic
Lee, H., Kim, H., Kwak, J., Kim, Y. S., Lee, S. W., Cho, S., & Cho, B. (2019). Fluencemap generation for prostate Saglttal view
intensity-modulated radiotherapy planningusing a deep-neural-network. Scientific reports, 9(1), 1-11. = PTV =il CTV

Left femoral head
~j- Clinical plans

Penile bulb

80} °

20

Rectum =fll=Bladder == Small bowel

ontour Clinical - synthetic

Coronal view

40 60
Relative dose (%)

20

Right femoral head

== Avoiding structure == Body
« @ - Synthetic plans
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parameters generation

* Organ contours, containing PTV and OARs, and the volumetric dose distributions viewed from the beam’s eye view (BEV) of
a single beam are used as input data

* Fluence map at each corresponding beam direction are adopted as desired output data

e Cony 3x3, Rl batch norm -'- Decoene , 2u2, stride 2, Rell Balch norm
Corng 252, stride 2, Rell), batch nanm Corw 1x1 - SHip conrecticn

BrTV Rectum [MBladder Right femoral head
Left femoral head M Avoiding structure  [|Body
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e Treatment planningconsists in the solution of an inverse problem
* Treatment planningin high precision 3D conformal radiotherapy relies on optimization algorithms
* Analytical methods can only be applied to geometrically simple cases
* Numerical methods are required for geometrically complex cases
* Many degrees of freedom

* Manybeam-lets or pencil beams
* High degree of flexibilityin dose distribution

* The role of machine learning in treatment planning is relevant to the automation of tasks to support (or accomplish) the
inverse treatment planning
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* Day: February 215t
* Time:10.30-13.00
* Room: A 348, Theresienstralle 37




