Inverse problems and machine learning in medical physics

Tomographic image reconstruction for ion imaging

Dr. Chiara Gianoli
13/12/2022

chiara.gianoli@physik.uni-muenchen.de

Detector configuration and ion trajectories

- The concept of ion trajectory for different detector configuration plays a crucial role in the forward-projection model, which is a foundation in ion imaging

$$
\overrightarrow{W E T} \neq A * \overrightarrow{R S P_{t}} \quad \text { (} t \text { for "ground truth") }
$$

- However, in clinical scenarios the intrinsic inconsistencies of the forward-projection model are in the same order of magnitude of the inaccuracies of the semi-empirical calibration of the X-ray CT
- Relying on Monte Carlo simulations, the normalized root mean square error between the ion radiography and the forward-projection of the ground truth ion CT image is $1-2.5 \%$ for list-mode detector configuration and up to 2.5-5\% for integration-mode detector configuration

- Tomographic image reconstruction is applied to several ion radiographies, with projection angles covering 180°
- The ordered subsets simultaneous algebraic reconstruction technique (OS-SART) coupled with total variation superiorization currently represents the state-of-the-art in ion imaging ${ }^{1,2,3}$
- Information redundancy mitigates the intrinsic inaccuracies of the forward-projection model ${ }^{4}$

[^0]- The ordered subsets (OS) approach is introduced to accelerate numerical image reconstruction
- In OS approach, instead of accessing all projections simultaneously for updating the image, the image is updated relaying on a subset of projections
- ART can be interpreted as OS-SART with only one projection per subset and SART can be interpreted as OS-SART with only one subset
- An update performed using a single subset is called a sub-iteration
- An iteration is completed when all subsets have been processed once
- The convergence acceleration is expressed in terms of number of iterations (not sub-iterations)

- The idea of was originally proposed for emission tomography and then transferred to transmission tomography (the SART and the ML-EM produce the maximum likelihood estimate in the Gaussian and Poisson data, respectively)
- The subset of projections $S(s)$ is employed for updating of the image, and this update, together with a different subset of projections $S(s+1)$, is then used for calculating the next update

$$
\overrightarrow{f^{(s+1)}}=\overrightarrow{f^{(s)}}-\frac{\sum_{i \in S(s)}\left(a_{i j} \cdot\left(\frac{\overrightarrow{f^{(s)}} \cdot{\overrightarrow{a_{i j}}}^{T}-\vec{g}}{\sum_{j} a_{i j}}\right)\right)}{\sum_{i} a_{i j}}
$$

- The best ordering of the subsets is defined according to the maximum angular distance ("as orthogonal as possible") from the previously used projections
- This ordering further accelerates convergence as compared to sequential or random orderings
- The increased convergence speed (in function of the number of iterations) and the reduced memory requirement (due to a reduced dimension of the system matrix) comes at the cost of an increased noise of the reconstructed image

- Because of the intrinsic inconsistencies of the forward-projection model, the optimal solution minimizing the objective function of the tomographic image reconstruction algorithm is not necessarily the solution that best reconstructs the ground truth image
- The fundamental approach for the mitigation of the intrinsic inconsistencies of the forward-projection model is to stop the tomographic image reconstruction algorithm before the solution diverges (albeit with a lower objective function), thus being referred to as semi-convergence
- Another approach is to use superiorization techniques to shift the solution at each iteration to one that is superior to the current solution
- A superior solution is defined in terms of a certain merit function φ

superiorized algorithm

$$
x^{k+1}=f\left(x^{k}\right)
$$

$$
x^{k+1}=f\left(x^{k}+\beta_{k} v^{k}\right) \text { so that } \varphi\left(x^{k}+\beta_{k} v^{k}\right) \leq \varphi\left(x^{k}\right)
$$

- In transmission imaging (i.e., ion imaging), the merit function φ is typically the total variation
- For a two-dimensional (2D) image representation in i and j of the image vector x^{k} is defined as:

$$
\varphi\left(x^{k}\right)=\sum_{i} \sum_{j} \sqrt{\left(x_{i+1, j}^{k}-x_{i, j}^{k}\right)^{2}+\left(x_{i, j+1}^{k}-x_{i, j}^{k}\right)^{2}}
$$

- $\quad \beta_{k} v^{k}$ is the perturbation term, with β_{k} real non-negative numbers (typically $0<\beta_{k}<1$) and v^{k} the perturbation vector, typically defined as non-ascending direction of the merit function φ at x^{k}

$$
v^{k}=-\frac{\nabla \varphi\left(x^{k}\right)}{\left\|\nabla \varphi\left(x^{k}\right)\right\|_{2}}=-\frac{s^{k}}{\left\|s^{k}\right\|}
$$

- The perturbation vector is calculated as the negative of the normalized sub-gradient s^{k} (generalized concept of derivative for convex functions which are not necessarily differentiable) of the total variation $\varphi\left(x^{k}\right)$ for the image vector x^{k}

Tomographic image reconstruction

- Another approach is to use regularization technique to add a penalty function to the objective function
- The penalty function enforces a desired feature on the reconstructed image

$$
x_{\min }=\operatorname{argmin}_{x} F(x)+\lambda \phi(x)
$$

- $\phi(x)$ is the penalty function (i.e., total variation or smoothness-related functions) and λ is a parameter controlling its weighting
- The regularization changes the problem!

Defrise, M., Vanhove, C., \& Liu, X. (2011). An algorithm for total variation
regularization in high-dimensional linear problems. Inverse Problems, 27(6), 065002.

- The optimal value of λ depends on the level of noise in the data
- λ too small under-regularizes (i.e., not substantially improve image quality)
- λ too large over-regularizes, resulting typically in an oversmoothed image

Tomographic image reconstruction for list-mode detector configuration

- The superiorization of the algorithm for tomographic image reconstruction introduces a "perturbation" of the solution in tomographic domain in order to reduce, and not necessarily minimize, a merit function φ (i.e., the total variation)
- The superiorization changes the algorithm by adding a shifting step but not the problem!

A. Reference
(Ground truth)
C. OS-SART-TVS reconstructions

- In integration-mode detector configuration, the Bragg peak signal for each pencil is discretized according to the multiple layers (i.e., channels) or according to the multiple initial energies in a single layer
- Due to lateral inhomogeneity traversed by the pencil beam, the Bragg peak signal results in a linear combination of elementary Bragg peak signals

- The Bragg peak of the component with the larger WET (i.e., the shorter range) takes advantages from the Bragg peaks of the components with smaller WET
- Linear decomposition ${ }^{1,2}$ (inverse problem) is applied to retrieve the WET histogram as WET occurrence for each WET component by solving the system of linear equations $\overrightarrow{B P}=L U T * \overrightarrow{W E T}$
- $\overrightarrow{B P}$ is the discretized Bragg peak signal
- $\overrightarrow{W E T}$ is the unknown vector of WET occurrences
- LUT is the look-up-table of individual Bragg peak signals for each WET component
- The least square optimization is based on Euclidean distance minimization

$$
\operatorname{argmin}_{\overrightarrow{W E T}} \frac{1}{2}\|L U T * \overrightarrow{W E T}-\overrightarrow{B P}\|_{2}^{2}
$$

- An histogram of WET occurrences for each WET component is obtained

Tomographic image reconstruction for

 integration-mode detector configuration- Defining $p_{i k}$ the WET components and $w_{i k}$ the WET occurrences, the tomographic image reconstruction for integrationmode detector configuration deals with the additional channel dimension of the WET histogram ($\mathrm{WET}_{\text {hist }}$)
- The typical approach, the WET histogram is reduced to a single WET component
- $W E T_{i}=\max \left\{p_{i k}\right\}$ the WET component with maximum WET occurrence $\left(W E T_{\text {mode }}\right.$ or $\left.W E T_{\max }\right)$
- $W E T_{i}=\operatorname{mean}\left(p_{i k} w_{i k}\right)$ the weighted averaged WET components $\left(W E T_{\text {mean }}\right)$

$$
W E T_{i}=\sum_{j} a_{i j} R S P_{j}
$$

- Therefore, the integration line is assumed as straight or coinciding to the mean ion trajectory of the pencil beam
- Analytical or numerical algorithms for tomographic image reconstruction are applied

Tomographic image reconstruction for integration-mode detector configuration

- Alternatively, $W E T_{\text {hist }}$ is handled within numerical tomographic image reconstruction (ART\&SART)
- WET components and WET occurrents are entirely exploited
- The integration line is defined according to the scattering model (conical Gaussian) for each WET component
- The WET components are spatially assigned (the mean ion trajectory is valid only for $\mathrm{WET}_{\text {max }}$ and $\mathrm{WET}_{\text {mean }}$)

- The SART algorithm is considered for numerical tomographic image reconstruction

$$
f_{j}^{n+1}=f_{j}^{n}+\frac{\sum_{i} a_{i j} \cdot \frac{g_{i}-\sum_{j} a_{i j} \cdot f_{j}^{n}}{\sum_{j} a_{i j}}}{\sum_{i} a_{i j}}
$$

- The SART algorithm is modified to handle the additional channel dimension

$$
m_{i k}=\sum_{k} w_{i k} a_{(i k) j} \quad g_{i}=\sum_{k} w_{i k} g_{i k}
$$

where $a_{(i k) j}$ describe the conical Gaussian for each channel (indexing j the pixel/voxel, k the channel and i the measurement)

$$
f_{j}^{n+1}=f_{j}^{n}+\frac{\sum_{i} m_{i j} \cdot \frac{g_{i}-\sum_{j} m_{i j} \cdot f_{j}^{n}}{\sum_{j} m_{i j}}}{\sum_{i} m_{i j}}
$$

Tomographic image reconstruction for integration-mode detector configuration

Tomographic image reconstruction for integration-mode detector configuration

- Comparison between list-mode and integrationmode detector configurations
- The self-consistent tomographic image reconstruction pretends to know the exact trajectories of the protons (to overcome the illposed nature of the inverse problem in ion imaging)

Gianoli et al. 2019 Phys. Med.

Tomographic image reconstruction (list-mode detector configuration)

- The MLP is the estimation of the proton trajectory that can be easily adopted in the system matrix of numerical reconstruction
- Alternatively, the estimation of the proton trajectory can be used to implement a "modified" FBP, based on a distancedriven binning of projections for individual source positions

- The projection is binned (subdivided) according to the source to detector distance
- The binning provides the sinogram an additional dimension, whose size is defined by the number of bins

- The filtering, enabled by the distance-driven binning, is applied to each binned projection of the sinogram (without filtering the method is simply a back-projection along the MLP)
- The back-projection respects the binning,

\square

> Back
projection

Exercise \#1

- Analytical calculation of the sinogram or Radon Transform where each projection is calculated as line integrals of the image intensity
- Choose the image (phantom.png)
- Choose the number of projection lines $(n \rho=128)$ and the number of projection angles ($n \vartheta=180$ with spacing $\Delta \vartheta=1$ degree)
- For loop over projection angles
- Rotate the image matrix according to the projection angle and integrate the image matrix along the straight integration lines (instead of rotating the integration lines)
- Store the resulting vector as a column in the sinogram matrix

Exercise \#1

- Analytical calculation of the system matrix
- Choose the number of projection lines $(n \rho=128)$ and the number of projection angles ($n \vartheta=180$ with spacing $\Delta \vartheta=1$ degree)
- For loop over projection angles
- For loop over projections
- Create image matrix made of a column in correspondence of the projection
- Rotate the image matrix according to the projection angle
- Store the resulting vector as a column in the system matrix
- Analytical calculation of the sinogram or Radon Transform as forward-projection of the image to be compared to the previous sinogram
- Are they different? Why?
国

Exercise \#1

- Implementation of the numerical tomographic image reconstruction algorithm SART
- Take a sinogram and the system matrix
- Initialize the vectorized image as vector of zero
- For loop over iterations
- Updating formula of the SART

[^0]: ${ }^{1}$ Penfold et al. 2010 Med. Phys. ${ }^{2}$ Meyer et al. 2019 Phys. Med. Biol. ${ }^{3}$ Meyer et al. 2021 Phys. Med. Biol. ${ }^{4}$ Gianoli et al. 2019 Phys. Med.

