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Tomographic imaging

• A tomographic image is a volumetric representation of the physical variables describing the object of interest

• The variables describe the physical properties of the object of interest in terms of the effects on the energy source

• Depending on the energy source, transmission imaging (external energy source) and emission imaging (energy source
inside the object of interest) are defined
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Transmission imaging

X-ray Computed Tomography (CT) ion Computed Tomography (iCT)

Physical properties Total attenuation Integral stopping power

Energy sources Photon beam Ion beam

Variables Attenuation coefficients Stopping power

energy source



Emission imaging

Positron emission tomography (PET)

PET SPECT

Physical properties Emission of annihilation photons Photon emission

Energy sources Radioactive nuclei (β+ emitters) Radioactive nuclei (γ emitters)

Variables Emitted counts (time 
coincidence)

Emitted counts (acceptance 
angle)

Single photon emission tomography (SPECT)

energy source energy source



Tomographic imaging

• Tomographic image reconstruction is an inverse problem that aims at finding the cause of the phenomenon

• Causes of the phenomenon are the physical properties of the object of
interest

• Consequences of the phenomenon are the measured (observed)
effects on the energy source

• The measurements are collected in several projections at different
projection angles with respect to the rotational axisof the imaging system

• To find out “what is inside” the object of interest is observed from many
points of view… projection

https://en.wikipedia.org/wiki/Tomography



Radiographic and tomographic 
imaging

• The rotational axis of the imaging system is the axis of the cylindrical scanner (the object of interest is the patient and does
not typically rotate)

• In transmission imaging, the projection is synonymous of radiography

• In emission imaging, the projection is synonymous of view and the projection is typically visualized as sinogram

radiography CT sinogram view PET

https://wiki.cancerimagingarchive.net/ Fahey, F. H. (2002). Data acquisition in PET imaging. Journal of nuclear medicine technology, 30(2), 39-49.



Imaging scanners

• The acquisition of emission imaging is combined with transmission imaging in modern PET/CT and SCPECT/CT scanners

https://www.siemens-healthineers.com/ https://www.philips.co.in/healthcare/solutions/advanced-molecular-imaging/pet-ct https://www.gehealthcare.com/products/molecular-imaging/nuclear-medicine/

CT scanner PET/CT scanner SPECT/CT scanner



• The projection is defined as the line integral along 𝑙 of the
function 𝑓(𝑥, 𝑦) describing the object of interest at a radial
distance 𝜌 from the origin

• The projection is expressed in polar coordinates (𝜌, 𝜗) (hough
transform )

• The projection of a point in polar coordinates (𝜌, 𝜗) is a
sinusoidal function (i.e., sinogram)

The projection
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• Tomographic image acquisition can be modelled as a Radon Transform, or sinogram, of the variable describing the physical
properties of the object of interest

• The Radon Transform converts an image from spatial domain to sinogram domain, by integrating the variables along the
integration lines, as a function of the projection angles

• Tomographic image reconstruction is based on the Radon Transform
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Tomographic image reconstruction: 
the Radon Transform

Radon Transform

sinogramimage



• The projection as a line integral is converted to an image integral by introducing the Dirac’s δ function

• Dirac’s δ function δ(t) is δ(t) = 0 everywhere except in t = 0

• The Radon transform can be written in continuous or discrete forms

• The radiography iswritten as:

Tomographic image reconstruction: 
the Radon Transform
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• The analytical image reconstruction is based on the Fourier Slice Theorem (or Central Section Theorem)

• The Fourier Slice Theorem puts in correspondence the 2D Radon Transform with the Fourier Transform (FT) of the 2D
image

• The 2D FT of the image evaluated along the projection line 𝜌 in frequency domain (𝑤𝑥, 𝑤𝑦) coincides with the 1D FT of

the Radon Transform for the same projection line in spatial domain (𝑥, 𝑦) :

^ indicates frequency domain

• The analytical image reconstruction is based on the discrete form of Fourier Slice Theorem, according to different
implementations
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Analytical image reconstruction



• The 2D Fourier Transform (FT) converts an image from 2D spatial domain to 2D frequency domain, by decomposing the
image into sine and cosine components (or basis functions)

• Two sinusoidal components in spatial domain corresponds to two delta components in frequency domain

Analytical image reconstruction: 
the Fourier Transform
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• The 2D FT of an image can be represented as real and imaginary parts

• The real part represents the amplitude of the sinusoidal components

• The imaginary part represents the phase of the sinusoidal components
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Analytical image reconstruction: 
the Fourier Transform

2D frequency domain2D image domain

FT



• The different algorithms for analytical image reconstruction are derived following these equivalences:

• The image results as the inverse 2D FT of the 1D FT of the Radon Transform filtered by an high-pass filter (Ramp filter)
along each projection line in frequency domain

• The Ramp filter (high frequencies amplification) derives from the Jacobian determinant of the variable
substitution, from Cartesian coordinates to semi-polar coordinates

Analytical image reconstruction
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• The algorithm for Fourier reconstruction consists in the 1D Fourier transform of the Radon Transform, filtered by an high
pass filter (Ramp filter) and interpolated in frequency domain, and then inverse 2D Fourier transform

• The algorithm suffers from approximations in filter discretization and interpolation in frequency domain

Analytical image reconstruction

Ramp filter
as  multiplication in 

frequency domain (1D)
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Interpolation 
from polar to Cartesian 
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Analytical image reconstruction

Taubmann O, Berger M, Bögel M, et al. Computed Tomography. 2018 Aug 3. In: Maier A, Steidl S, Christlein V, et 
al., editors. Medical Imaging Systems: An Introductory Guide [Internet]. Cham (CH): Springer; 2018. Chapter 8. 

Available from: https://www.ncbi.nlm.nih.gov/books/NBK546157/ doi: 10.1007/978-3-319-96520-8_8
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• The algorithms for filtered back-projection and convolution back-projection are derived by continuing the previous
equivalence as:

• A multiplication in frequency domain is equivalent to a convolution in spatial domain

Analytical image reconstruction
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• The image results as the back-projection of the 1D FT of the Radon Transform, filtered in frequency domain by the Ramp
filter (filtered back-projection)

Analytical image reconstruction

Aggarwal, P., & Mehra, R. (2011). High speed CT image reconstruction using 
FPGA. International Journal of Computer Applications, 22(4), 7-10.

• The image results as the back-projection of the Radon Transform, filtered
in spatial domain by an high pass filter (convolution back-projection)

• The Ramp filter is typically weighted/windowed towards the high
frequencies to mitigate the noise on the reconstructed image

• Fundamental trade-off between noise and spatial resolution in
imaging!

Lee, S. W., Lee, C. L., Cho, H. M., Park, H. S., Kim, D. H., Choi, Y. N., & Kim, H. J. (2011). Effects 
of reconstruction parameters on image noise and spatial resolution in cone-beam 
computed tomography. Journal of the Korean Physical Society, 59(4), 2825-2832.
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• The back-projection spreads the filtered projection onto the image along the direction defined by the projection angle, for
each projection angle

Analytical image reconstruction
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Analytical image reconstruction

• Back Projection (BP) and Filtered Back Projection (FBP) of the projections at angles 𝜗 = 0°, 𝜗 = 45° and 𝜗 = 90° , number
of integration lines𝑛𝜌 = 128 (equal to the number of rows and columns of the image)
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• Image reconstructed according to Back Projection (BP) and Filtered Back Projection (FBP) by setting the number of
projection angles 𝑛𝜗 = 180 with spacing𝜗 = 1° and the number of integration lines𝑛𝜌 = 128

Analytical image reconstruction

𝑥

𝑦

𝑥

𝑦

FBPBP



• Image reconstructed according to Filtered Back Projection (FBP) by setting the number of integration lines 𝑛𝜌 = 128 and
the number of projection angles 𝑛𝜗 = 18with spacing 𝜗 = 10°

Analytical image reconstruction
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• The discrete form of the Fourier Slice Theorem relies on the Nyquist theorem of sampling

• The Nyquist theorem establishes a sufficient condition on the sampling frequency 𝑓𝑠 for capturing (sampling) all the
information of the continuous image up to the frequency 𝑓

• The fs that guarantees the sufficient condition is: 𝑓𝑠 = 2𝑓

• In other words, as the faster variation of the image in frequency domain requires at least 2 samples to be caught, the
smaller variation in spatial domain is caught by at least 2 samples (two pixels!)

• The Nyquist theorem of sampling is therefore satisfied for: ∆𝜗 = 𝑎𝑟𝑐𝑡𝑎𝑛
1

𝑁

2

where N is the number of pixels of the image

• An analytical image reconstruction that violates this sufficient condition generates “streaks artifacts” (or star-artifacts) in
the 2D image

Analytical image reconstruction



• Intuitive explanation of the Nyquist theorem of sampling for temporal signals

Analytical image reconstruction

http://195.134.76.37/applets/AppletNyquist/Appl_Nyquist2.html

http://195.134.76.37/applets/AppletNyquist/Appl_Nyquist2.html


• Intuitive explanation of the Nyquist theorem of sampling for spatial 2D signals (images)

• The smallest angle able to catch the smallest variation (2 pixels) within the field of view (inscribed circle)

Analytical image reconstruction
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• Analytical image reconstruction is based on the continuous form of the Radon Transform

• The Fourier Slice Theorem, provided with the Nyquist theorem of sampling, enables the implementation and application
of analytical reconstruction algorithms

• The hypothesis of continuity for the discrete 2D image and the 2D sinogram can be hardly verified in presence of
geometrical constraints (i.e., geometry of the projection lines, angular coverage and angular sampling) and
dosimetric constraints (i.e., noise)

• The imaging trade-off between noise and spatial resolution is controlled by the weighting/windowingof the Ramp filter

Outlook


