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Introduction to deformable image 
registration

▪ Deformable image registration is a numerical optimization that aims at determining a spatial transformation that relates
positions in one image (reference or fixed image) to the corresponding positions in another image (target or moving
image)

▪ The aim is to compare and integrate the information given by different images

Moving image
Fixed image

Transformation



Image registration algorithm

▪ The numerical optimization is based on the metric, chosen according to the two image modalities, and iterative updates of
the transformation parameters

▪ The moving image (undergoing transformation) requires interpolation based on the voxel grid of the fixed image

Fixed image Moving image

Interpolation

Metric calculation

Transformation update

Transformation

▪ Input: fixed image and
moving image

▪ Output: transformation
parameters



Metric calculation

▪ The metric is defined on the gray levels of the two images

▪ The gray levels of mono-modality images expresses the same information and they are directly comparable (image
differences, mean square errors, root mean square errors, correlation coefficients…)
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▪ The gray levels of multi-modality images expresses different information and “information processing” is need to
compare them

▪ Mutual information (MI)

▪ Normalized Mutual Information (NMI)



Mutual information

▪ In information theory, the mutual information of two random variables X and Y, 𝐼(𝑋; 𝑌), is a measure of the mutual
dependence between the two variables

▪ Mutual information quantifies the "amount of information“ (in bit, if the logarithm base is 2) obtained about one random
variable through observing the other random variable
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▪ 𝑝(𝑥) and 𝑝(𝑦) are the marginal probability functions of X and Y,
respectively

▪ 𝑝(𝑥, 𝑦) is the joint probability function of X and Y

▪ 𝐼(𝑋; 𝑌) = 𝐼(𝑌;𝑋) ≥ 0 symmetric and non-negative

▪ 𝐼(𝑋; 𝑌) = 0 if X and Y are independent random variables, so that
𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦)



Mutual information

▪ The mutual information can be expressed in terms of Shannon entropy 𝐻(𝑋) as a measure of uncertainty of a random
variable
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▪ 𝐻(𝑋) and 𝐻(𝑌) are the marginal entropies
▪ 𝐻 𝑌 𝑋 is the conditional entropy of Y given X measuring the amount of uncertainty remaining about Y after X is

known (and vice versa)

▪ 𝑝 𝑦 𝑥 and 𝑝(𝑥|𝑦) are the conditional probability
functions

▪ The conditional probability functions and the joint
probability function are related according to: 𝑝 𝑥, 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥) and 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)



▪ 𝑝(𝑥) (to calculated 𝐻(𝑋)) is the histogram of gray level occurrences of the fixed image

▪ 𝑝(𝑦) (to calculated 𝐻(𝑌)) is the histogram of gray level occurrences of the moving image

▪ 𝑝 𝑥, 𝑦 (to calculate 𝐻(𝑋, 𝑌)) is the joint histogram of the gray level occurrences of the two images 

Mutual information
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Mutual information

▪ Realistic joint histograms for different rigid
translations (Δ)

▪ The mutual information is a measure of the joint
histogram dispersion

▪ To reduce the influence of background, the
normalized mutual information can be calculated

𝑁𝑀𝐼 =
𝐻(𝑋) + 𝐻(𝑌)

𝐻(𝑋, 𝑌)



Transformation parameters

▪ The parametrization for rigid registration is given by 6 parameters (3 for translation and 3 for rotations)

▪ The order of operations (translation and rotations) matters…

▪ The parametrization for affine transformation is given by 12 parameters (3 for translation, 3 for stretching/scaling, 3 for
shearing and 3 for rotations)

Translation Rotation across x Rotation across y Rotation across z



Transformation parameters

▪ The parametrization for deformable registration is given by 3 translational parameters for each voxel (2 translational
parameters for each pixel)

▪ The parameter matrix, provided with and additional dimension with respect to the image, is typically referred to as
“deformation field”

x 
translation 
parameters

y 
translation 
parameters

z 
translation 
parameters



▪ To reduce the amount of parameters, the deformation field can be defined in control points (grid coarser than the voxel
grid) and modeled elsewhere in terms of coefficients and basis functions

▪ The B-spline coefficients 𝑃(𝑖, 𝑗, 𝑘) are optimized on the B-spline grid in (𝑖, 𝑗, 𝑘) and subsequently calculated according to
the B-spline basis functions (pre-calculated) in (𝑥, 𝑦, 𝑧)

Transformation parameters

Deformation Field

BSpline

Coeffiecients



▪ Push-forward formalism: the deformation indicates the voxel of the moving image to be pushed-forward

▪ The gray levels of the moving image are maintained but can create hole and overlap

Formalism in parameterization

3 -2 1 2

Moving image

Push this pixel away of
3 positions forwards
(positive)

Push this pixel away of
2 positions backwards
(negative)



▪ Pull-back formalism: the deformation field indicates the voxel of the moving image to be pulled-back

▪ The gray levels of the moving image are not maintained as they can be repeated or missed (hole and overlap are
excluded) but no hole and overlap are created

Formalism in parameterization

Moving image

3 -2 1 2

Pull here the pixel of 3
positions forwards
(positive)

Pull here the pixel of 2
positions backwards
(negative)



Optimization

Fixed image Moving image

Interpolation

Metric calculation

Transformation update

Transformation

▪ The numerical optimization aims at finding the “best” transformation parameters according to an objective function
defined by the chosen metric

▪ Different numerical optimization algorithms can be adopted for deformable image registration



Gradient descent

▪ First-order iterative optimization algorithm for finding the local minimum of the objective function using gradient descent

▪ Update steps proportional to the negative of the gradient (or approximate gradient) of the objective function at the
current point

▪ Initialize 𝑥0

▪ Compute𝛻𝑓(𝑥𝑛)

▪ Update 𝑥𝑛+1 = 𝑥𝑛− 𝛼𝛻𝑓(𝑥𝑛) (𝛼 is the step size)

▪ Stop (stopping criteria on 𝑛 or 𝑥𝑛 and 𝑥𝑛+1)



Newton method

▪ Second-order iterative optimization algorithm for finding the local minimum of the objective function using first and
second derivatives of the objective function
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▪ Update steps account for also for curvature (second derivative) of the objective function at the current point



▪ Simplex has 𝑛 + 1 vertices, each vertex is described by 𝑥𝑛 ∈
𝑅𝑛

▪ Update of the vertex position 𝑥𝑛 based on the evaluation of
the objective function 𝑓:𝑅𝑛 → 𝑅 at each vertex position

▪ Replacement of the worst vertex by the reflected centroid of
the remaining 𝑛 vertices across the opposite best face of the
simplex

▪ Expansion or contraction and shrinkage

▪ The simplex moves towards the minimum of the objective
function

Nedler-Mead algorithm

▪ “Direct” (without derivative calculation) iterative optimization algorithm for finding the local minimum of the objective
function based on adjustment of the simplex



The role of imaging in radiation 
oncology

Treatment 
planning

Treatment 
delivery

Off-line In-room

Treatment 
verification

Treatment 
adaptation

reproduce the geometrydefine the geometry

check the geometry

▪ The clinical use of image registration in radiotherapy can be classified according to the following applications

▪ Treatment planning

▪ Patient positioning

▪ Treatment adaptation

▪ Long-term treatment
verification



▪ Between the image of the patient and anatomical atlases (i.e., organ
segmentation in treatment planning)

▪ Same image modality (mono-modal), different patients (inter-
patient)

▪ Between images of the patient from different imaging modalities such as
CT and MRI, PET/CT and PET/MRI (i.e., multi-modality treatment
planning)

▪ Different image modalities (multi-modal), same patient (intra-
patient)

Atlas Patient

Atlas to patient Contour to patient

MRI/PET CT/PET Multi-modality 
treatment planning

Thorwarth, D., Leibfarth, S., & Mönnich, D. (2013). 
Potential role of PET/MRI in radiotherapy treatment 

planning. Clinical and Translational Imaging, 1, 45-51.

Image registration 
in treatment planning



Rigid registration for patient 
positioning

▪ The in-room patient anatomy (treatment delivery scenario) is matched to the (model of) patient anatomy of the treatment
planning CT (treatment planning scenario)

▪ The patient position in treatment delivery is rigidly aligned to the treatment planning scenario prior to treatment delivery

z

y

x
z

y x

Treatment 
planning

Treatment 
delivery



Rigid registration for patient 
positioning

▪ Patient positioning can rely on in-room optical systems enabling surface alignment or point alignment of external
landmarks placed directly on patient skin (referenced with tattoo) or on immobilization devices



Rigid registration for patient 
positioning

▪ Patient positioning can rely on in-room X-ray imaging, thus enabling point alignment (“feature-based”, requiring image
processing for feature/point identification) or anatomical alignment (“intensity-based”, directly exploiting the image
intensities)



Rigid registration for patient 
positioning

▪ Patient positioning can rely on in-room X-ray imaging, thus enabling point alignment (“feature-based”, requiring image
processing for feature/point identification) or anatomical alignment (“intensity-based”, directly exploiting the image
intensities)

▪ Point alignment of internal (implanted) and external landmarks as imaged by 2D MeV/KeV “continuous” fluoroscopic
imaging (dynamic treatment delivery)

▪ Anatomical alignment based on 2D or 3D MeV (“mega-voltage”) electronic portal imaging in photon therapy (the X-
ray source coincides with the therapeutic radiation source)

▪ Anatomical alignment based on 2D or 3D KeV (“kilo-voltage”) 
imaging from auxiliary imaging systems (i.e., cone beam CT)



▪ When 3D in-room X-ray imaging is available, the anatomical alignment is based on 3D-3D rigid image registration algorithm

▪ The treatment planning scenario is adopted as reference (fixed image) and the treatment delivery scenario is adopted
as target (moving image)

Fixed image Moving image

Interpolation

Metric calculation 
(tomography)

Transformation update

Transformation

3D-3D rigid registration algorithm



▪ When relying on 2D in-room X-ray imaging, the anatomical alignment requires 2D-3D rigid image registration algorithm

▪ The treatment planning scenario (3D X-ray image) must be adopted as moving image, thus undergoing transformation
(roto-translation) during numerical optimization

▪ In static treatment delivery the inverse rigid transformation is applied to the treatment couch prior to treatment
delivery

▪ The inverse transformation converts the treatment planning scenario into the reference (fixed image)

▪ In dynamic treatment delivery the direct rigid transformation is applied to the radiation source during treatment
delivery

▪ The treatment delivery scenario is actually the reference (fixed image)

2D-3D rigid registration algorithm



2D-3D rigid registration algorithm

Fixed image Moving image

Interpolation

Metric calculation 
(radiography)

Transformation update

Transformation

Forward-projection

Transformation 
inversion

Digitally 
Reconstructed 

Radiography (DRR)



Digitally Reconstructed 
Radiography (DRR)

▪ The DRR is defined as the forward-projection of the treatment planning CT

▪ When 2D in-room X-ray imaging is available, the DRRs (a minimum of 2 DRRs is required!) is used for patient positioning
based on 2D-3D rigid registration but can have also a role in treatment verification

▪ Treatment is eventually adapted based on a 
re-planning CT (if 3D in-room X-ray imaging 
is not available)



▪ Motion managements in treatment planning, delivery and verification of moving targets

▪ Motion encompassing
▪ Gating
▪ Breath hold
▪ Tumor tracking

Riboldi, M., Orecchia, R., & Baroni, G. (2012). Real-time 
tumour tracking in particle therapy: technological 
developments and future perspectives. The lancet 

oncology, 13(9), e383-e391.

Target in exhale Target in inhale

Insights about static/dynamic 
treatment



• Image acquisition synchronized with a respiratory-related signal, as provided by infrared localization of a marker(s)

• Time-labelled CT raw data (slab projections) and PET raw data (annihilation counts) classified into different breathing
phases, namely PET gating and CT sorting, respectively

CT PET

CT raw data

PET raw data

timerespiratory-related signal

slab adjacent slab…

X-rays

annihilation 
photons

Insights about dynamic treatment



4D CT clinical data

Insights about dynamic treatment



▪ Dynamic treatment planning for moving targets requires time-resolved imaging and deformable image registration

▪ Same image modality (mono-modal), same patient (intra-patient)

▪ The geometry is defined on a reference breathing phase and deformable image registration is used to map the same
geometry on the different breathing phases

▪ The treatment planning is calculated on each breathing phase

▪ The dose is then calculated
on the reference breathing
phase by means of dose
warping (pull-back or push-
forward?) and time
weighted summation

Insights about dynamic treatment



▪ Between images of the same patient in the treatment planning scenario and in the treatment delivery scenario

▪ To provide an up-to-date estimation of
the delivered dose

▪ To eventually provide an up-to-date
image for treatment re-planning, along
with the up-to-date contours

Rigaud, B., Simon, A., Castelli, J., Gobeli , M., Ospina Arango, J. D., Cazoulat, G., ... & De Crevoisier, R. 
(2015). Evaluation of deformable image registration methods for dose monitoring in head and neck 

radiotherapy. BioMed research international, 2015.

Image registration 
in treatment adaptation



▪ Treatment adaptation and contour propagation

▪ Deformable image registration of the treatment planning CT (moving image) to the “CT of the day” (fixed image) to
obtain a deformation field to be applied to contours (time consuming)

Rigid alignment of 
contour

Contour propagation

Treatment planning CT of the day

Contours

CT of the day

Image registration 
in treatment adaptation



• Machine learning has been recently proposed in radiation oncology

• Automatic contouring (i.e., auto-segmentation) of targets and organs at risks for treatment planning

• Treatment adaptation as“virtual CT generator”

• Based on CBCT for treatment adaptation

• Deformable image registration maps the treatment planning CT (i.e., treatment planning scenario) onto the
CBCT (i.e., treatment delivery scenario)

• Image quality of the CBCT is inappropriate for treatment planning (compromised by artifacts and
scattering effects)

• Based on MRI for treatment planning (i.e., “MRI-only radiotherapy”)

Machine learning in treatment 
planning and adaptation



• 3D U-Net architecture with 8 levels, taking the CT (single channel) as input and giving the segmentation masks (21
channels) as output

Auto-segmentation

Nikolov, S., Blackwell, S., Zverovitch, A., Mendes, R., Livne, M., De Fauw, J., ... & 
Ronneberger, O. (2018). Deep learning to achieve clinically applicable segmentation of 

head and neck anatomy for radiotherapy. arXiv preprint arXiv:1809.04430.



• A cycle generative adversarial network (CycleGAN) is proposed as unsupervised learning without fully relying on paired CT-
CBCT images (supervised training is very difficult in these scenarios)

• Synthesized CT images are obtained from CBCT images for adaptive radiation therapy with artifacts removed or greatly
reduced and intensities corrected while keeping the anatomical accuracy

• The synthesized CT images are used for dose calculation in adaptive radiation therapy

Virtual CT generation

Liang, X., Chen, L., Nguyen, D., Zhou, Z., Gu, X., Yang, M., ... & Jiang, S. (2019). Generating 
synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using 

CycleGAN for adaptive radiation therapy. Physics in Medicine & Biology, 64(12), 125002.

CBCT deformed 
CT

CycleGAN
CT



• Generator (U-Net)

• U-Net-type architectures with
encoder/decoder arms

• Fully convolutional framework provided
with skip connections

• Discriminator (patchGAN)

• Encoder classifiers

Virtual CT generation



• Cycle-GAN includes two generators

• mapping from CBCT to CT

• mapping from CT to CBCT

Virtual CT generation

• Cycle-GAN includes two discriminators

• The first aims to distinguish real CT from fake CT

• The second aims to distinguish real CBCT from fake
CBCT



• Two cycles are included in Cycle-GAN

• In the first cycle, the CBCT is used as input to the first generator, which generates the synthetized CT. Then, the second
generator takes the synthetized CT as input and generates the cycle CBCT, which is supposed to be equal to the CBCT

• Meanwhile, the first discriminator identifies real and synthetized CT images

• The CT label is 1 and the synthetized CT label is 0

• In the second cycle, the CT is used as input to the second generator which generates the synthetized CBCT. Then, the
first generator takes the synthetized CBCT as input and generates the cycle CT, which is supposed to be equal to the
CT

• Meanwhile, the second discriminator identifies real and synthetized CBCT images

• The CBCT label is 1 and the synthetized CBCT label is 0

Virtual CT generation



• The Cycle-GAN is a variant of the GAN that introduces a cycle-consistency loss using two generators and two discriminators

• GAN training proceeds in alternating:

• (1) the discriminator is trained for one or more epochs while keeping the generator constant (i.e., minimization of the
discriminator loss) to optimize the faking capability of the generator

• (2) the generator is trained for one or more epochs while keeping the discriminator constant (i.e., maximization of the
adversarial loss) to optimize the fooling capability of the discriminator

• Repeat (1) and (2)

Virtual CT generation



• The soft tissue contrast offered by MRI is exploited without recurring to inter-modality image registration

• The patient exposure to ionizing radiation is reduced, along with treatment cost and workload, thus enabling on-line daily
re-planning in MR-guided radiotherapy systems

MRI-only radiotherapy

• Conditional generative adversarial network
(cGAN) as supervised version of GAN

• Generator based on U-Net architecture

• Discriminator based on convolutional
“PatchGAN” classifier

Tenhunen, M., Korhonen, J., Kapanen, M., Seppälä, T., Koivula, L., Collan, J., ... & 
Visapää, H. (2018). MRI-only based radiation therapy of prostate cancer: workflow 

and early clinical experience. Acta Oncologica, 57(7), 902-907.



• Image registration is used at different stages in radiation oncology

• Patient positioning is based on rigid registration

• Multi-modality treatment planning, atlas-based segmentation in treatment planning and treatment adaptation are
based on deformable image registration

• Deep learning is adopted to replace the role of deformable image registration with advantages in term of quality and
efficiency

Outlook


