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Deformable image registration is a numerical optimization that aims at determining a spatial transformation that relates

positions in one image (reference or fixed image) to the corresponding positions in another image (target or moving
image)

The aimis to compare and integrate the information given by different images
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= The numerical optimization is based on the metric, chosen according to the two image modalities, and iterative updates of
the transformation parameters
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Transformation update

= The movingimage (undergoing transformation) requires interpolation based on the voxel grid of the fixed image
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= The metricis defined on the gray levels of the two images

= The gray levels of mono-modality images expresses the same information and they are directly comparable (image
differences, mean square errors, root mean square errors, correlation coefficients...)

1 2
MSE(x,y) = U—K Z(xi,j,k — Yi,j,k)
ik

i, j,k(xi,j,k ‘ Yi,j,k)

CC(x,y) =

Zi,j,k xi,j,kz . Zi,j,k yU,kz

= The gray levels of multi-modality images expresses different information and “information processing” is need to
compare them

= Mutualinformation (Ml)

= Normalized Mutual Information (NMI)
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= In information theory, the mutual information of two random variables X and Y, I(X;Y), is a measure of the mutual
dependence between the two variables

= Mutual information quantifies the "amount of information” (in bit, if the logarithm base is 2) obtained about one random
variable through observing the other random variable
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= p(x) and p(y) are the marginal probability functions of X and Y,
respectively

conditional density of
¥, g en =g

marginal density of ¥

= p(x,y)isthejoint probability function of Xand Y

= J(X;Y) =1(Y;X) = 0 symmetric and non-negative

= J(X;Y)=0if X and Y are independent random variables, so that
p(x,y) =p()p(y)

marginal density of x
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= The mutual information can be expressed in terms of Shannon entropy H(X) as a measure of uncertainty of a random
variable

H(X) = — Zp(x)log(p(x)) Zp(x)log( )

xeX xeX

p(x)
I(X;Y)=HX)—-HX|Y) =H(Y)—-HYI|X) =HX)+H(Y) -HX,Y)

* H(X)and H(Y) are the marginal entropies
= H(Y|X) is the conditional entropy of Y given X measuring the amount of uncertainty remaining about Y after X is
known (and vice versa)

H(X) H(Y)

= p(y|lx) and p(x|y) are the conditional probability
functions

= The conditional probability functions and the joint
probability function are related according to: p(x,y) =

p(ylx)p(x) and p(x,y) = p(x|[y)p(y) H(X,Y)
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= p(x) (to calculated H (X)) is the histogram of gray level occurrences of the fixed image
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= p(y) (to calculated H(Y)) is the histogram of gray level occurrences of the moving image
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= p(x,y) (to calculate H(X,Y)) is the joint histogram of the gray level occurrences of the two images
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= Realistic joint histograms for different rigid
translations(A)

= The mutual information is a measure of the joint
histogram dispersion

= To reduce the influence of background, the
normalized mutual information can be calculated

CHX) + H(Y)
NMI = HXTS

Mutual information

k L MRI/CT
: [
(b)
MRI/PET
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= The parametrization forrigid registrationis given by 6 parameters (3 for translation and 3 for rotations)
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= The order of operations(translation and rotations) matters...

shearing and 3 for rotations)
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= The parametrization for affine transformation is given by 12 parameters (3 for translation, 3 for stretching/scaling, 3 for
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= The parametrization for deformable registration is given by 3 translational parameters for each voxel (2 translational
parameters for each pixel)

NN N W
NN N NN
SO N NN NN
NN N NN NN
SUSN N N NN
NI R AV RYEN
e

= The parameter matrix, provided with and additional dimension with respect to the image, is typically referred to as
“deformation field”

X y z

translation translation translation
parameters parameters parameters
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= To reduce the amount of parameters, the deformation field can be defined in control points (grid coarser than the voxel
grid) and modeled elsewhere in terms of coefficients and basis functions
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= The B-spline coefficients P(i,j, k) are optimized on the B-spline grid in (i, j, k) z:nd subsequently calculated according to
the B-spline basis functions (pre-calculated)in (x,y, z)
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= Push-forward formalism: the deformation indicatesthe voxel of the movingimage to be pushed-forward

= The gray levels of the moving image are maintained butcan create hole and overlap
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= Pull-back formalism: the deformation field indicatesthe voxel of the moving image to be pulled-back

= The gray levels of the moving image are not maintained as they can be repeated or missed (hole and overlap are
excluded) but no hole and overlap are created
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= The numerical optimization aims at finding the “best” transformation parameters according to an objective function
defined by the chosen metric

Transformation

y

Interpolation

a

Metric calculation

\ 4
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Transformation update

= Different numerical optimization algorithmscan be adopted for deformable image registration
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= First-order iterative optimization algorithm for finding the local minimum of the objective function using gradient descent

= Update steps proportional to the negative of the gradient (or approximate gradient) of the objective function at the
current point

= Initialize x
= ComputeVf(x,)
» Updatex,+1 = x, — aVf(x,) (a is the step size)

= Stop (stoppingcriteriaonn or x,, and x,,11)
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= Second-order iterative optimization algorithm for finding the local minimum of the objective function using first and
second derivatives of the objective function

FOon+80) % fea) + FCe)x 5 7 ()

A(f o) + ' Gen) A + 5 7 () Ax)
dAx

= f'(xp) + f"(xp)Ax = 0

f(xn)

A= T )

Xni1 = Xn + Ax

= Update steps account for also for curvature (second derivative) of the objective function at the current point
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= “Direct” (without derivative calculation) iterative optimization algorithm for finding the local minimum of the objective
function based on adjustment of the simplex

= Simplex has n + 1 vertices, each vertex is described by x,, €
Rn
the objective function f: R™ — R ateach vertex position

= Replacement of the worst vertex by the reflected centroid of
the remaining n vertices across the opposite best face of the
simplex

= Expansion or contractionand shrinkage

= The simplex moves towards the minimum of the objective
function
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oncology =

= The clinical use of image registration in radiotherapy can be classified according to the following applications

= Treatmentplanning define the geometry reproduce the geometry

|
|
. ) . I
= Patient positioning Treatment I Treatment
i >
_ planning I delivery
= Treatmentadaptation |
T !
= Long-term treatment :
verification Treatment !
adaptation '
A Treatment

verification

Off-line check the geometry
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in treatment planning

= Between the image of the patient and anatomical atlases (i.e., organ
segmentationin treatment planning)

= Same image modality (mono-modal), different patients (inter-

patient
= Between images of the patient from different imaging modalities such as e 95 ".‘-i
CT and MRI, PET/CT and PET/MRI (i.e., multi-modality treatment ‘ i e
planning)

= Different image modalities (multi-modal), same patient (intra-
patient)

MRI/PET CT/PET I Mutti-modality
treatmentplanning

Thorwarth, D., Leibfarth, S., & Monnich, D. (2013).
Potential role of PET/MRI inradiotherapy treatment
planning.Clinical and Translational Imaging, 1,45-51.
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= Thein-room patient anatomy (treatment delivery scenario) is matched to the (model of) patient anatomy of the treatment
planning CT (treatment planningscenario)

= The patientpositionin treatment delivery is rigidly aligned to the treatment planningscenario prior to treatment delivery

Treatment Treatment
planning delivery
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= Patient positioning can rely on in-room optical systems enabling surface alignment or point alignment of external
landmarks placed directly on patient skin (referenced with tattoo) or on immobilization devices
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= Patient positioning can rely on in-room X-ray imaging, thus enabling point alignment (“feature-based”, requiring image
processing for feature/point identification) or anatomical alignment (“intensity-based”, directly exploiting the image
intensities)
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= Patient positioning can rely on in-room X-ray imaging, thus enabling point alignment (“feature-based”, requiring image

processing for feature/point identification) or anatomical alignment (“intensity-based”, directly exploiting the image
intensities)

= Point alignment of internal (implanted) and external landmarks as imaged by 2D MeV/KeV “continuous” fluoroscopic
imaging (dynamic treatment delivery)

= Anatomical alignment based on 2D or 3D MeV (“mega-voltage”) electronic portal imaging in photon therapy (the X-
ray source coincides with the therapeuticradiation source)

= Anatomicalalignmentbased on 2D or 3D KeV (“kilo-voltage”)
imaging from auxiliaryimaging systems (i.e., cone beam CT)
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= When 3D in-room X-ray imaging is available, the anatomical alignmentis based on 3D-3D rigid image registration algorithm

= The treatment planning scenario is adopted as reference (fixed image) and the treatment delivery scenario is adopted
as target (moving image)

Transformation

v

Interpolation

Metric calculation
(tomography)
]

A
A

Transformation update
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=  When relyingon 2D in-room X-ray imaging, the anatomical alignmentrequires 2D-3D rigid image registration algorithm

= The treatment planning scenario (3D X-ray image) must be adopted as moving image, thus undergoing transformation
(roto-translation) during numerical optimization

= |n static treatment delivery the inverse rigid transformation is applied to the treatment couch prior to treatment
delivery

= The inverse transformation converts the treatment planningscenario into the reference (fixed image)

= In dynamic treatment delivery the direct rigid transformation is applied to the radiation source during treatment
delivery

= The treatment delivery scenario is actually the reference (fixed image)
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= The DRRis defined as the forward-projection of the treatment planning CT

= When 2D in-room X-ray imaging is available, the DRRs (a minimum of 2 DRRs is required!) is used for patient positioning
based on 2D-3D rigid registration but can have also a role in treatment verification

Virtnal ([*5

CT Image
Volume
= Treatmentis eventuallyadapted based ona
re-planning CT (if 3D in-room X-ray imaging
is not available) Digitally

Reconstructed [
Radiograph
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treatment

= Motion managements in treatment planning, delivery and verification of moving targets

Targetin exhale Targetininhale

= Motionencompassing

= Gating
e hold } @

Riboldi, M., Orecchia, R., & Baroni, G. (2012). Real-time
tumour trackingin particletherapy: technological
developments and future perspectives. The lancet

oncology, 13(9), e383-e391.

= Tumor tracking (((‘ @ @ (((‘
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* Image acquisition synchronized with a respiratory-related signal, as provided by infrared localization of a marker(s)

 Time-labelled CT raw data (slab projections) and PET raw data (annihilation counts) classified into different breathing
phases, namely PET gating and CT sorting, respectively

annihilation
photons

Ay YA /\\/\\

respiratory-related signal tlme

\
]
: k CT raw data I |:| [I [I I ﬂ I |:| [I
slab adjacent slab...
— :
— I T
PET raw data
cT PET | |
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4D CT clinical data
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= Dynamictreatment planningfor moving targets requires time-resolved imaging and deformable image registration
= Same image modality (mono-modal), same patient(intra-patient)

= The geometry is defined on a reference breathing phase and deformable image registration is used to map the same
geometry on the different breathing phases

= The treatment planningis calculated on each breathingphase

= The dose is then calculated
on the reference breathing
phase by means of dose
warping (pull-back or push-
forward?) and time
weighted summation
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= Between images of the same patientin the treatment planningscenario and in the treatment delivery scenario

= To provide an up-to-date estimation of
the delivered dose
. Deformable image registration (1)
= To eventually provide an up-to-date
image for treatment re-planning, along

with the up-to-date contours .
- calculation

(2)

Summation (4)
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in treatment adaptation

= Treatmentadaptation and contour propagation

= Deformable image registration of the treatment planning CT (moving image) to the “CT of the day” (fixed image) to
obtain a deformation field to be applied to contours (time consuming)

Treatment planning CT of the day CT of the day

Rigid alignment of :
Contours & 8 Contour propagation
contour
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e planning and adaptation

 Machinelearning has been recently proposed in radiation oncology
* Automaticcontouring(i.e., auto-segmentation) of targets and organs at risks for treatment planning
* Treatmentadaptation as“virtual CT generator”
e Based on CBCT for treatment adaptation

 Deformable image registration maps the treatment planning CT (i.e., treatment planning scenario) onto the
CBCT (i.e., treatment delivery scenario)

* Image quality of the CBCT is inappropriate for treatment planning (compromised by artifacts and
scattering effects)

* Based on MRI for treatment planning(i.e., “MRI-only radiotherapy”)
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Ronneberger, 0.(2018). Deep learningto achieveclinically applicable segmentation of
head and neck anatomy for radiotherapy. arXiv preprintarXiv:1809.04430.
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generation

A cycle generative adversarial network (CycleGAN) is proposed as unsupervised learning without fully relying on paired CT-
CBCT images (supervised trainingis very difficult in these scenarios)

Synthesized CT images are obtained from CBCT images for adaptive radiation therapy with artifacts removed or greatly
reduced and intensities corrected while keeping the anatomical accuracy

The synthesized CT images are used for dose calculation inadaptiveradiation therapy

Axial

CBCT deformed

CycleGAN
CcT

Liang, X., Chen, L., Nguyen, D., Zhou, Z., Gu, X., Yang, M., ... & Jiang,S. (2019). Generating
synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using
CycleGAN for adaptiveradiation therapy. Physics in Medicine & Biology, 64(12),125002.
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* Generator (U-Net) |

M —
* U-Net-type architectures with H ‘ | | _ PO A | E
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e Cycle-GAN includes two generators * Cycle-GAN includes two discriminators
* mapping from CBCT to CT e The first aims to distinguish real CT from fake CT
 mapping from CT to CBCT * The second aims to distinguish real CBCT from fake
CBCT

Coneniork :
CBCTtocr —* SynthesizedCT

CTto CBCT |
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* Two cycles are includedin Cycle-GAN

* Inthefirst cycle, the CBCT is used as input to the first generator, which generates the synthetized CT. Then, the second
generator takes the synthetized CT as input and generates the cycle CBCT, which is supposed to be equal to the CBCT

* Meanwhile, the first discriminatoridentifies real and synthetized CT images
 The CT labelis 1 and the synthetized CT label is 0
* In the second cycle, the CT is used as input to the second generator which generates the synthetized CBCT. Then, the
first generator takes the synthetized CBCT as input and generates the cycle CT, which is supposed to be equal to the
CT

* Meanwhile, the second discriminatoridentifiesreal and synthetized CBCT images

 The CBCT labelis 1 and the synthetized CBCT labelis O
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* The Cycle-GAN is a variant of the GAN thatintroduces a cycle-consistency loss using two generators and two discriminators

* GAN trainingproceeds in alternating:

* (1) the discriminator is trained for one or more epochs while keeping the generator constant (i.e., minimization of the
discriminatorloss) to optimize the faking capability of the generator

* (2) the generator is trained for one or more epochs while keeping the discriminator constant (i.e., maximization of the
adversarial loss) to optimize the fooling capability of the discriminator

 Repeat(1) and(2)
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* The soft tissue contrast offered by MRI is exploited without recurring to inter-modality image registration

* The patient exposure to ionizing radiation is reduced, along with treatment cost and workload, thus enabling on-line daily

re-planningin MR-guided radiotherapy systems

e Conditional generative adversarial network
(cGAN) as supervised version of GAN

* Generator based on U-Net architecture

* Discriminator based on convolutional
“PatchGAN” classifier

Tenhunen, M., Korhonen, J., Kapanen, M., Seppala, T., Koivula, L., Collan, J., ... &
Visapad, H. (2018). MRI-only based radiation therapy of prostate cancer: workflow
and early clinical experience. Acta Oncologica, 57(7), 902-907.
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* Image registrationis used at different stages in radiation oncology
* Patient positioningis based on rigid registration

* Multi-modality treatment planning, atlas-based segmentation in treatment planning and treatment adaptation are
based on deformable image registration

* Deep learning is adopted to replace the role of deformable image registration with advantages in term of quality and
efficiency




