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Part I

Critical phenomena and renormalization group
1 Phase transitions, universality and the scaling hypothesis

Aims:

• Get familiar with phase transitions in classical or quantum systems

• Phenomenology: Power laws, critical exponents, universality

• Link phenomenology to scaling hypothesis

1.1 Classification of phase transitions

• Consider macroscopic (quantum) system with Hamiltonian H in contact with heat bath (temperature T )
and particle reservoir (at chemical potential µ). The grand canonical partition function is

Z(T, µ) = Tr
[
e−(H−µN)/T

]
(1)

where N is the number operator and the trace is over Fock-space with any number of particles. In the
thermodynamic limit with volume V →∞ while n = ⟨N⟩ /V = const., we expect that the free energy is
extensive,

F = −T log [Z(T, µ)] = V f (T, µ) (2)

• We can add more coupling constants like magnetic field h, doping p etc.. In general, with k coupling
constants g1,2,3...,k, we have to consider f (g1, g2, ..., gk).

• In the k-dimensional coupling space, f (g1, g2, ..., gk) is almost everywhere analytic (locally described by
convergent power series, f(g) = a0 + a1(g − g0) + a2(g − g0)2 + ...).

• Phases: Domains in coupling space where f is analytic. Phases can often be described by one or more
order parameters, that are only non-vanishing in a particular phase.

• Phase transitions: Points, lines or other manifolds with dimension < k so that f exhibits some kind of
non-analyticity.

• Note: Non-analyticity of f (g1, g2, ..., gk) can only come from infinite summation in Tr..., so infinite
systems are required.

• Classification of phase transition:

– First order (discontinuous): There is at least one i ∈ 1, ..., k so that at the phase boundary ∂f/∂gi
is discontinuous.

– Second order (continuous): For all i ∈ 1, ..., k, the derivative ∂f/∂gi is continuous.

• Quantum phase transitions:

– Occur at T = 0 if some non-thermal control parameter (e.g. B-field) is varied
– Driven by quantum fluctuations, not thermal fluctuation.
– Same classification as above, for more details see Sec. 3.
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Figure 1: Sketches of the magnetization of a classical Ising model for dimension D ≥ 2.

1.2 Example: Paramagnet-Ferromagnet transition

• Consider g1 = T and g2 = h (magnetic field), for concreteness think about the nearest neighbor classical
Ising model in D-dimensions (si = ±1, the sum is over nearest neighbors)

H = −J
∑
⟨ij⟩

sisj − h
∑
i

si, (3)

At h = 0, we have a Z2 symmetry for H under si → −si for all i.

• The partition function for the Ising model is known exactly for D=1 (see Ex. 1.1) and for D=2 at h = 0
[Onsager,1944] (see Ex. 1.3 for a calculation of Tc for the square-lattice case)

• Magnetization per site can be calculated from free energy

m (T, h) = −∂f (T, h)
∂h

= lim
V→∞

1
V

∑
i

⟨si⟩ . (4)

and plot it as a function of h with T as a parameter (Fig. 1a). If we are in D ≥ 2, there is a critical
temperature T = Tc > 0 below which we find a discontinuity at h = 0 (Fig. 1b). Tuning h across this
discontinuity, m jumps, so that we have a 1st order phase transition.

• Next, we focus on the limit of vanishing field,

m0 ≡ − lim
h→0+

∂f (T, h)
∂h

= lim
h→0

lim
V→∞

1
V

〈∑
i

si

〉
(5)

(note the order of limits) and find a result as in Fig. 1c. We say that m0 is the order parameter which
vanishes on one side of the phase transition point.

• Spontaneous symmetry breaking: The state has smaller symmetry than the Hamiltonian. This
occurs because under the Z2-symmetry, we would have m0 → −m0.

• Critical exponent: Slightly below the critical temperature T ≲ Tc, we can fit the measured magnetization
to m0 ∝ (Tc − T )β (for T ≤ Tc).
The dimensionless number β > 0 is a critical exponent (do not confuse it with inverse temperature).

• Universality: β depends only on dimensionality and symmetries of the model, see table below.

– Symmetry groups encoded by names [Ising = Z2, Heisenberg = O(3) for continuous rotation of a
classical spin]

– Understanding of universality is one main achievement of the RG.
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Figure 2: (a) Phase diagram of a simple fluid in the temperature pressure plane. (b) Curves of constant pressure in the
temperature-density plane. The green region for T < Tc is the coexistence region for liquid and gas.

– Note: The dimensionful quantity Tc is not universal.

Ising (Z2 sym.) Heisenberg (O(3)-sym.)
D=2 D=3 D=3

β 1/8 = 0.125 0.327 0.36
ν 1 0.63 0.7
η 1/4 = 0.25 0.0364 0.027

• Examples for different members of 3D-Ising universality class (same β):

– Uni-axial ferromagnet in 3D (see above, control T, h, observable: m)
– Simple fluid (Fig. 2). Control T, p, observable: density n = −∂f/∂µ. Focus on gas-liquid transition.

∗ Gas and liquid have same symmetry
∗ Difference to magnet:

´
drn(r) = const., leads to coexistence of gas and liquid at 1st order line.

∗ Exponent β defined via shape of green coexistence curves: nliquid − ngas∝(Tc − T )β

∗ Where is the Z2 symmetry? Lattice gas approximation, correspondence si = +1=̂occupied site
and −1=̂empty site → Ising model, emergent Z2 symmetry close to critical point.

• Other thermodynamic observables with their respective critical exponents (historical notation). Definition
of “reduced temperature”: t ≡ (T − Tc)/Tc.

magnetization at h = 0 specific heat
m(t) = −∂f

∂h |h=0 ∝ |t|β (t < 0) C(t) = T−1
c

∂2f
∂t2 |h=0 ∝ |t|−α

magnetic susceptibility critical (t = 0) isotherm
χ(t) = ∂2f

∂h2 |h=0 ∝ |t|−γ m(t = 0, h) = −∂f
∂h |t=0 ∝ |h|1/δsgn(h)

1.3 Correlation function, anomalous dimension and correlation length exponent

• Split local magnetization into average and fluctuating part,

s(r) = m+ δs(r) (6)

where

m = ⟨s(r)⟩ =
Tr
[
s(r)e−(H−µN)/T

]
Tr
[
e−(H−µN)/T ] (7)

and ⟨δs(r)⟩ = 0.
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Figure 3: Connected correlation function in real-space close to a phase transition point with regions of power-law and
exponential decay.

• Correlation function covers spatial correlations of local order parameter with non-decaying contribution
subtracted (“connected” correlation function):

G(r) = ⟨δs(r)δs(0)⟩ = ⟨s(r)s(0)⟩ −m2 (8)

Hallmark of approaching continuous phase transition: Microscopic degrees of freedom become increasingly
correlated over larger length scales and behave as a single entity.

• Large-r behavior of correlation function defines two other critical exponents (Fig. 3):

G(r →∞) ∝
{

1/rD−2+η : t = 0
e−r/ξ/

√
ξD−3rD−1 : t ̸= 0

(9)

The values of η, ν for some universality classes are given in the above table.

• At criticality t = 0:

– There is no characteristic length scale in the decay of G(r)
– G(r) decays with a power-law, defines universal anomalous dimension η > 0
– Later: η = 0 characterizes critical points with non-interacting critical fluctuations (“Gaussian ap-

proximation”)

• Away from criticality t ̸= 0:

– Correlations are characterized by finite emergent correlation length ξ

ξ ∝ |t|−ν (10)

where ν is the universal correlation length exponent.
– ξ is length scale for exponential decay, G(r) ∝ e−r/ξ.
– Exponential decay sets in beyond r ∼ ξ.
– For r ≪ ξ, find power-law decay as in the critical case (Fig. 3).

1.4 Scaling hypothesis

• Experimental finding: Critical exponents α, β, γ, δ, ν, η are not independent.
They can be computed from two numbers yt and yh characteristic for each universality class:

α = 2−D/yt β = (D − yh)/yt γ = (2yh −D)/yt δ = yh/(D − yh) ν = 1/yt η = D + 2− 2yh

• This can be understood from a scaling hypothesis for the free energy and the correlation function.

• The scaling hypothesis was postulated in the 1960s by Widom and Kadanoff and was later justified via
the RG.
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Scaling hypothesis for free energy

• Assume that close to the critical point, we have a regular and singular part of the free energy f(t, h) =
fsing(t, h) + freg(t, h). The singular part contains the non-analyticity.

• Scaling hypothesis (for singular part) with an arbitrary dimensionless scale factor b takes the form of
homogeneity relation:

fsing(t, h) = b−Dfsing (bytt, byhh) (11)

• Finding β = β(yt, yh) (magnetization at zero field): Since b was arbitrary, let byt = 1/|t| and thus
b = |t|−1/yt .

fsing(t, h) = |t|D/ytfsing

(
±1, h

|t|yh/yt

)
︸ ︷︷ ︸
≡Φ±

(
h

|t|yh/yt

)
(12)

Assume that around the phase transition, derivatives of f(t, h) are dominated by its singular part (“≃”
signs):

m (t, h) ≃ −∂fsing
∂h

= |t|(D−yh)/ytΦ′±
(

h

|t|yh/yt

)
(13)

We can let h = 0 and read off β = (D − yh) /yt as in the table above. In a similar manner one can find
α and γ.

• Finding δ = δ(yt, yh) (critical isotherm): We need to let t → 0 in Eq. (13). To find something finite, we
request that Φ′±(x) ∼ xD/yh−1. Then m(t = 0, h) ∝ hD/yh−1 and we can read off δ = yh/(D − yh).

Scaling hypothesis for correlation function

• To relate {ν, η} to {yt, yh}, we conjecture a scaling hypothesis for the singular part of the correlation
function

Gsing(r; t, h) = b−2(D−yh)Gsing (r/b; bytt, byhh) (14)

and put again byt = 1/|t|. We also set h = 0:

Gsing(r; t, h = 0) = |t|2(D−yh)/ytGsing
(
r|t|1/yt ;±1, 0

)
︸ ︷︷ ︸
≡Ψ±(r|t|1/yt ;±1,0)

(15)

• For |t| ≠ 0, expect Gsing(r) ∝ e−r/ξ which yields ξ ∝ |t|−1/yt and thus the expression ν = 1/yt follows.

• For |t| = 0, to get a finite (non-zero) Gsing(r; t = 0, h = 0), we request:

Ψ±
(
r|t|1/yt ;±1, 0

)
∝
(
r|t|1/yt

)−2(D−yh)
(16)

We compare to Eq. 9, we read off D − 2 + η = 2(D − yh) from which the expression in the table follows.

• Remark: Scaling hypothesis yields experimentally testable...

– scaling relations, e.g.
2− α = 2β + γ = β (δ + 1) (17)

– hyperscaling relations (relating power-laws for thermodynamic observables with the G(r)-exponents)

2− α = Dν

γ = (2− η)ν
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Dynamical critical exponent

• For time-dependent G(r, τ), the correlation time τc is the decay time of order-parameter fluctuations. It
relates to the correlation length via a power law:

τc ∝ ξz ∝ |t|−νz (18)

• z is the dynamical critical exponent, it controls the relative speed of divergence of the temporal and
spatial correlation length.

• Critical slowing down: Order parameter fluctuations decay slower and slower as one gets closer and
closer to the critical point.
See Ex. 1.2 for an application involving z.

Exercises

Exercise 1.1. Classical Ising model in 1D: Exact solution

Consider the nearest-neighbor classical Ising model of Eq. (3) on a ring of N sites (in D = 1 dimensions) with
periodic boundary conditions.

1. Show that the partition function can be written as Z = Tr
[
TN

]
with the transfer matrix given by

T =
(
e(J+h)/T e−J/T

e−J/T e(J−h)/T

)
(19)

2. Using the eigenvalues of T, show that in the thermodynamic limit (N → ∞) the free energy per spin
reads

f (h, T ) = −J − T ln
[
cosh (h/T ) +

√
sinh2 (h/T ) + e−4J/T

]
. (20)

Show that one can approximate

f (h, T ) =
{
−J − Te−2J/T : h = 0,
−J − |h| − Te−4J/T e−2|h|/T : h ̸= 0,

(21)

if T ≪ J or T ≪ J, |h|, respectively. Argue that there is a critical line at (T = 0, h) but no phase
transition at any finite temperature.

3. Roughly sketch the magnetization per spin m(T, h) = −∂f
∂h as a function of h for various T (no new

calculation needed).

4. Confirm that the spin-spin correlation function can be expressed as

⟨sjs1⟩ = 1
Z

Tr
[
STj−1STN−j+1

]
, with S =

(
1 0
0 −1

)
. (22)

Confirm that for N →∞, we have ⟨sjs1⟩ = ⟨s1⟩2 + c
(
λ−/λ+)j−1 where c is a constant independent of j

that does not need to be determined. Set h = 0 and find the correlation length ξ as a function of T by
matching Gj = ⟨sjs1⟩−⟨s1⟩2 ∝ e−r/ξ. Hint: There is no need to compute the eigenvectors of T explicitly.

Exercise 1.2. Kibble-Zurek mechanism

Let a continuous phase transition with control parameter t be equipped with universal critical exponents ν, z as
defined above. In contrast to the discussion for the equilibrium case above, the control parameter is now varied
in time τ from the disordered (t > 0) towards the ordered (t < 0) side following the linearized approximation

t(τ) ∝ −λτ (23)

so that the equilibrium critical value t = 0 is crossed at τ = 0. It can be expected that instead of a spatially
homogeneous order parameter, the driving at finite velocity λ results in a random configuration of ordered
domains of finite size l.
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1. Argue that the time-evolution of the system can be divided in three stages where the dynamics is essen-
tially adiabatic far away from τ = 0 for |t| > t̃ and frozen otherwise. Show that

t̃ ∝ λ1/(1+νz). (24)

2. Show that the typical domain size l depends on the driving velocity λ as

l ∝ λ−ν/(1+νz). (25)

The remarkable prediction of Eq. 25 connects static critical exponents z, ν to the observable l measured
in a dynamic protocol. It can be used in experiment, see e.g. [Ebadi et al., Nature 595, 227 (2021)]
around Fig. 3 for a recent example involving a quantum phase transition of the 2+1 dimensional Ising
universality class.

Exercise 1.3. Classical Ising model in 2D: Critical temperature from duality
Consider the nearest-neighbor Ising model (3) at vanishing magnetic field h = 0 for a square lattice in D=2
with periodic boundary conditions and N sites. The goal is to find the critical temperature Tc from a duality
argument. To simplify notation, set K = J/T .

1. High-temperature expansion: Show that the partition function can be written as

Z =
∑

{si}=±1

∏
n.n.

eKsisj = (coshK)Nb
∑

{si}=±1

∏
⟨i,j⟩

(1 + sisjv) = 2N (coshK)Nb
∑
r

n(r)vr (26)

where Nb = N/2 is the number of bonds and v = tanhK. If a bond in the expansion is denoted by a
black line as in Fig. 4(a), argue that only closed graphs as in (c) contribute to the partition function. The
number of closed graphs with r bonds is n(r). In what sense does Eq. (26) represent a high-temperature
expansion?

2. Low-temperature expansion: Starting from the ferromagnetic ground state, show that the partition func-
tion can be written as

Z = eKNb
∑
r

m(r)e−2Kr (27)

with m(r) the number of distinct ways to arrange r unsatisfied bonds ⟨i, j⟩ with sisj = −1 on the lattice.

3. Consider the dual lattice “D” with lattice points (blue ⋆) at the crossings of dashed lines that cut
orthogonally through the midpoints of bonds of the original lattice, see Fig. 4(e) and argue that m(r) =
nD(r) and n(r) = mD(r). Use this to show the following relation between partition functions on the
original and dual lattice,

Z(K) = 2−NDeKNb (coshK⋆)−ND,b ZD(K⋆) (28)

where the couplings are related by e−2K = tanhK⋆ ≡ v⋆.

4. Use the fact that the dual lattice of the square lattice is again a square lattice and the assumption that
there is only a single critical temperature Tc to conclude sinh 2K⋆

c = 1.
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Figure 4: Duality for Ising model on D=2 square lattice: Graphs with r=1,2,3 bonds are shown in (a),(b),(c) and a
domain wall around 2 minority spins is shown in (d). Panel (e) shows that domain walls correspond to closed graphs on
the dual (blue-starred) lattice.

2 Mean-field theory and Gaussian approximation

Aims:

• Simple microscopic description of phase transitions

• Mean-field theory (MFT): Neglect fluctuations

• Gaussian approximation: Include fluctuations which are exactly tractable

2.1 Mean-field theory

• Recall D-dimensional nearest-neighbor Ising model, Eq. (3), H = −J
∑
⟨ij⟩ sisj − h

∑
i si. Set β ≡ 1/T

(don’t confuse with critical exponent!).

• (Thermal-) fluctuation: More than one most likely configuration {si} contributes to the partition function

Z =
∑

{si}=±1
e−βH[{si}] (29)

• Idea: Split si into average value m ∈ R and fluctuation, see Eq. (6):

si = ⟨si⟩︸︷︷︸
m

+ δsi (30)

• Mean-field approximation: Neglect terms in H quadratic in the fluctuation:

sisj = (m+ δsi) (m+ δsj) = m2 +m (δsi + δsj)+δsiδsj ≃ m2 +m (δsi + δsj) = −m2 +m (si + sj) (31)

and obtain (with
∑
⟨ij⟩ counting bonds!)

HMF = NzJ

2 m2 −
∑
i

(h+ zJm) si

z = coordination number, N = #sites

• Partition function in mean-field approximation:

ZMF (T, h;m) =
∑

{si}=±1
e−βHMF (32)

=
∑

{si}=±1
e−β

NzJ
2 m2+

∑
i
β(h+zJm)si (33)

= e−β
NzJ

2 m2 ∏
i

 ∑
si=±1

eβ(h+zJm)si

 (34)

= e−β
NzJ

2 m2 {2 cosh [β (h+ zJm)]}N (35)
= e−βNLMF (T,h;m) (36)
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Figure 5: Mean-field approximation for the Ising model. Panel (a) shows the graphical solution of Eq. (39) and panel
(b) the Landau function above (red) and below (blue) the critical temperature.

Note: m is yet to be determined! With the approximation the sum of exponentials factorizes and one
obtains the partition function of a single spin in an effective field heff = h+ zJm.

• Landau-function:
LMF (T, h;m) = zJ

2 m2 − T ln [2 cosh [β (h+ zJm)]] (37)

determines the probability density e−βNLMF (T,h;m) to observe order parameter m.

• MFT-prediction for physically realized value of m (denoted by m0): The most probable value. ⇒ Find
minimum of LMF (T, h;m).

∂LMF (T, h;m)
∂m

|m=m0
!= 0 (38)

which defines m0(T, h) and leads to

m0
!= tanh [β (h+ zJm0)] (39)

• Free energy density: Once m0 is determined as a function of T, h, we find:

fMF (T, h) = LMF (T, h;m0 (T, h)) (40)

• Remarks:

– For h ̸= 0, there is always at least one non-trivial solution, see Fig. 5a. If there are two solutions
(for T < Tc and, possibly, h ̸= 0), one has to find the one with the smaller LMF (T, h;m0).

– First-order phase transition: For T < Tc and changing h across 0, the minimum m0 jumps disconti-
nously. This corresponds to a first-order phase transition.

– Eq. (39) can also be found directly from the self-consistency equation

m0 = 1
ZMF (T, h;m0)

∑
{si}=±1

sje
−βHMF

= 1∑
sj=±1 e

β(h+zJm0)sj

∑
sj=±1

sje
β(h+zJm0)sj

– Before m0 is determined, LMF (T, h;m) is not a proper free energy as it contains magnetization m
which is not a control parameter like T or h. In particular, in some situations the global minimum
of LMF (T, h;m) with respect to m can be different from the local minimum which yields the correct
condition (39).
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Mean-field critical temperature

• Set h = 0 to find critical temperature: Compare the slopes on the left and the right-hand-side of Eq. (39).
Obtain two non-zero m0-solutions below a critical temperature

Tc,MF ≡ zJ. (41)

• Example: Hyper-cubic lattice in D-dimensions: z = 2D → TDc,MF = 2DJ .
Compare to exact results: For D=1, TD=1

c = 0; for D=2, TD=2
c = 2.269J (which derives from sinh (2J/Tc) =

1, see Ex. 1.3). For D ≥ 3, Monte-Carlo simulations are required.

D 1 2 3 4 5 6 7
TDc /T

D
c,MF 0 0.57 0.752 0.835 0.878 0.903 0.919

• General rule:

– The lower D, the more important are fluctuations that disorder the system and thus reduce Tc.
– In large D, fluctuations tend to average out.

Mean-field thermodynamic critical exponents

• For temperatures T ≃ Tc,MF , the minimum of LMF (T, h;m) is close to m = 0. Expand Landau-function
in m (see Fig. 5b):

LMF (T, h;m) = f + r

2m
2 + u

4!m
4 − hm+ ... (42)

with (ln [2 cosh x] = ln 2 + x2

2 −
x4

12 +O(x6))

f = −T ln 2 (43)

r = Tc,MF

T
(T − Tc,MF ) ≃ T − Tc,MF (44)

u = 2T (Tc,MF /T )4 ≃ 2Tc,MF (45)

• Find m0 from ∂LMF (T,h;m)
∂m |m=m0

!= 0 and neglect higher order terms (...):

rm0 + u

6m
3
0 = h (46)

• Read off critical exponents in MFT:

– Mean-field exponents are independent of dimension D.
– We find, e.g. βMF = 1/2 far from the exact results βIsingD=2 = 0.125 or βIsingD=3 = 0.327.

Ising mean-field critical exponents
α β γ δ

0 (C jumps) 1/2 1 3

• Remark: Critical exponents ν, η are defined via G(r). These cannot be described in MFT if a spatially
homogeneous order parameter is assumed.
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2.2 Continuum φ4-field theory for the Ising model

Heuristic derivation of continuum field theory

• Heuristic steps to continuum field theory (detail in Ex. 2.1):

– Consider again

Z =
∑

{si=±1}
exp [−βH] =

∑
{si=±1}

exp

βJ∑
⟨ij⟩

sisj + βh
∑
i

si

 (47)

– Smooth discrete spins si = ±1 over a region Vr of volume [1/Λ0]D to obtain the field φ(r) instead
of the spins.

– The field φ and space coordinate r are now continuous. This is beneficial for subsequent approxi-
mations.

– Motivation: We could not do the sum
∑
{si=±1} e

−csisj , but we know how to do Gaussian integrals
over N -component real field, (2π)−N/2 ´ +∞

−∞ dφe−
1
2φ

TMφ = 1/
√

detM .

• Functional integral (c.f. field-theory I): Integrate over probability e−SΛ0 [φ(r)] of φ(r) configurations in
the thermodynamic ensemble:

Z =
ˆ
D [φ] e−SΛ0 [φ] (48)

• Expand SΛ0 [φ]: Close to the critical point, φ(r) ∼ m is small and fluctuations are smooth.

• Obtain the Ginzburg-Landau-Wilson action (form can be guessed by symmetry):

SΛ0 [φ] =
ˆ
dDr

[
f0 − h0φ(r) + r0

2 φ
2(r) + c0

2 [∇φ(r)]2 + u0
4! φ

4(r)
]

(49)

(FT )= V f0 − h0φ(k = 0) + 1
2

ˆ
k

[
r0 + c0k

2
]
φ(−k)φ(k) (50)

+ u0
4!

ˆ
k1,2,3,4

(2π)Dδ (k1 + ...+ k4)φ(k1)φ(k2)φ(k3)φ(k4)

with (see Ex. 2.1, a = lattice-constant of hyper-cubic lattice)

f0 ≡ −a−Dln2 (51)
h0 ≡ βha−1−D/2 (52)

r0 ≡ T − Tc
a2Tc

(53)

c0 ≡ 1/(2D) (54)
u0 ≡ 2aD−4 (55)

• Remarks:

– There should be a cut-off at the momentum integrals at k ≤ Λ0.
Reason: No information on the spin fluctuations below coarse graining length scale 1/Λ0.

– Conventions used: φ(r) ≡
´

k e
ik·rφ(k) and 1

V

∑
k → (2π)−D

´ +∞
−∞ dDk ≡

´
k

– Dimension of the fields [φ(k)] = [a]1+D/2 and [φ(r)] = [a]1−D/2.
– Identity

´
k e

ik·r = δ(r) is only strictly correct for Λ0 →∞.
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Recovering mean-field theory

• Use the saddle point approximation which approximates φ(r)→ φ̄ (homogeneous field):

Z ≃
ˆ +∞

−∞

dφ̄√
2π
e−SΛ0 [φ̄] =

ˆ +∞

−∞

dφ̄√
2π

exp
[
−V

(
f0 + r0

2 φ̄
2 + u0

4! φ̄
4 − h0φ̄

)]
(56)

• In the limit V →∞, the integrand is strongly peaked. Let φ̄ attain its most probable value φ̄0:

0 != ∂SΛ0 [φ̄]
∂φ̄

|φ̄=φ̄0 = r0φ̄0 + u0
6 φ̄

3
0 − h0 = 0 (57)

This is the same as the MF equation (42) if we identify (proportionality factors will be worked out in the
exercise)

φ̄ ∝ m (58)
r0, u0, h0 ∝ r, u, h (59)

• Relation between the Landau function and the saddle-point action:

SΛ0 [φ̄ ∝ m] = βNLMF (T, h;m) (60)

• Conclusion:
MFT = Saddle-point approximation for functional integral representation where spatial fluctuations of
order parameter are ignored.

2.3 Gaussian approximation

Truncating the action

• Split φ(r) in homogeneous part and fluctuation (c.f. idea of MFT, but still exact):

φ(r) = φ̄0 + δφ(r)
φ(k) = (2π)D δ(k)φ̄0 + δφ(k)

• In MFT above, we discarded the quadratic order fluctuation terms δsiδsj in Hamiltonian because we
had no way to compute them.
Now: Keep δφ(k)δφ(−k) in action, can now be evaluated using Gaussian functional integral.

• Assume h0 = 0 (such that r0φ̄0 + u0
6 φ̄

3
0 = 0).

Obtain the Gaussian approximation of the φ4-action Eq. (49):

SΛ0 [φ̄0 + δφ] = V

[
f0 + r0

2 φ̄
2
0 + u0

4! φ̄
4
0

]
+
[
r0φ̄0 + 4u0

4! φ̄
3
0

]
︸ ︷︷ ︸

→0

δφ(k = 0)

+ 1
2

ˆ
k

[
r0 + c0k

2 + 4 · 3
2 · 2u0

4! φ̄
2
0

]
δφ(k)δφ(−k)

The factor 4·3
2 stems from choosing two out of the four fields in the interaction term.

• Substitute the saddle point value φ̄2
0 = 0 or φ̄2

0 = −6r0/u0 for r0 ≷ 0:

SΛ0 [φ] =

V f0 + 1
2
´

k
[
r0 + c0k

2] δφ(k)δφ(−k) : T > Tc

V
[
f0 − 3

2
r2

0
u0

]
+ 1

2
´

k
[
−2r0 + c0k

2] δφ(k)δφ(−k) : T < Tc
(61)
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Thermodynamics in Gaussian approximation

• β, γ, δ: Related to the homogeneous part of the magnetization, φ̄2
0

This is the same in the Gaussian approximation as in the MFT → exponents do not change.

• α: (Heat-capacity exponent) Need to calculate Z =
´
D [φ] e−SΛ0 [φ] using a Gaussian integral (see Ch.

2.3.3 in [Kopietz]). Result:

α =
{

2−D/2 : D < 4
0 : D ≥ 4

(62)

Correlation function in Gaussian approximation: η, ν

• Gaussian approximation: Have access to spatial order parameter spatial fluctuations (beyond MFT):

φ(r) = φ̄0 + δφ(r) (63)

• We find [with φ(r) ≡
´

k e
ik·rφ(k)]

G(r) = ⟨δφ(r)δφ(0)⟩ =
ˆ

k,k′
eik·r

〈
δφ(k)δφ(k′)

〉︸ ︷︷ ︸
(2π)Dδ(k+k′)G(k)

=
ˆ

k
eik·rG(k) (64)

• From last semester (quadratic field theory with complex field - where is the inverse propagator?), we
know:

G0(k) = 1
c0

1
ξ−2 + k2 (65)

The subscript 0 stands for “Gaussian approximation” and we defined

c0ξ
−2 ≡

{
r0 : T > Tc,

−2r0 : T < Tc.
(66)

• In Ex. 2.2 we find the FT in Eq. (64)

G0(r) = 1
c0

ˆ
k
eik·r

1
ξ−2 + k2

D>2∼
{

1/rD−2 r ≪ ξ

e−r/ξ/
√
ξD−3rD−1 r ≫ ξ

(67)

which confirms our postulate in Eq. (9).

• Read off ν from the definition of ξ (recall r0 ∼ t) and η from the power-law in G(r) at the critical point
at which ξ =∞:

ν = 1/2, η = 0 (68)

Validity of Gaussian approximation

• Q: Is Gaussian approximation correct for critical exponents at least for large D?
(Tc,MF improves with increasing D but is never exact in mean-field unless D →∞.)

• Assess error of neglecting quartic term ∝ u0 in the full Ginzburg-Landau-Wilson action Eq. (50):

SΛ0 [φ] = V f0 + 1
2

ˆ
k

[
r0 + c0k

2
]
φ(−k)φ(k) + u0

4!

ˆ
k1,2,3,4

(2π)Dδ (k1 + ...+ k4)φ(k1)φ(k2)φ(k3)φ(k4)

(69)

• Move to T ≳ Tc so that r0 = c0/ξ
2 (ξ is the correlation length in Gaussian approximation).
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• Rewrite SΛ0 [φ] with dimensionless momenta k̃ = kξ and dimensionless fields φ̃(k̃) ≡
√
c0/ξ2+Dφ(kξ).

We obtain

SΛ0 [φ] = V f0+1
2

ˆ
k̃

[
1 + k̃2

]
︸ ︷︷ ︸
≃1 for small k

φ̃(−k̃)φ̃(k̃)+ 1
4!

(
u0ξ

4−D

c2
0

) ˆ
k̃1,2,3,4

(2π)Dδ
(
k̃1 + ...+ k̃4

)
φ̃(k̃1)φ̃(k̃2)φ̃(k̃3)φ̃(k̃4)

(70)

• Relative strength of quartic part:
ũ0 = u0ξ

4−D/c2
0. (71)

• For D < 4: Regardless of how small u0, if ξ ∝ |t|−ν diverges as t→ 0, the relative strength of the quartic
part diverges. → Gaussian approximation to critical exponents (defined in the limit t→ 0) is not reliable.

• Critical dimensions:

– Upper critical dimension Dup: For D > Dup, the critical exponents of the Gaussian approximation
are exact.

– Lower critical dimension Dlow: The largest dimension where one has Tc = 0.

• Ising model: Dlow = 1, Dup = 4.

Exercises

Exercise 2.1. Derivation of continuum φ4-field theory for Ising model

In this exercise, you formally derive the continuum field theory Eq. (50) starting from the partition function
Eq. (47).

1. Use the identity

e
1
2 sT [A−1]s =

√
detA

ˆ
D [x] e−

1
2 xT Ax+xT s (72)

to rewrite the J-part of the partition function. Here, x and s are real vectors with N entries xi and si,
respectively and

´
D [x] ≡ ΠN

i=1
´ +∞
−∞ dxi/

√
2π and A is a real, symmetric and positive-definite N × N

matrix with entries aij . Show that

Z = 1√
detJ̃

ˆ
D [x] exp

[
−1

2xT J̃−1x +
N∑
i=1

ln [2 cosh (xi + βh)]
]
≡ 1√

detJ̃

ˆ
D [x] e−S̃[x] (73)

where J̃ij = βJij . Convince yourself that the average of xi is a re-scaled version of the si, ⟨x⟩S̃ = J̃ ⟨s⟩.
Define φ ≡ J̃−1x which can be interpreted as a spatially fluctuating order parameter as ⟨φi⟩S̃ = ⟨si⟩ = m.
Confirm:

Z =
√

detJ̃
ˆ
D [φ] exp

[
−1

2φ
T J̃φ+

N∑
i=1

ln
[
2 cosh

([
J̃φ
]
i
+ βh

)]]
≡
√

detJ̃
ˆ
D [φ] e−S[φ] (74)

2. Assume a hyper-cubic lattice in D-dimensions where Tc = 2DJ and the lattice constant is a. Close
to the critical point T ≃ Tc, the integral is dominated by configurations where φi is small. Expand
S [φ] accordingly neglecting terms of order O(φ6

i ) and assume small fields h. Use the Fourier-transform
φj = 1

N

∑
k e

ik·rjφk with
∑
j e

ik·rj = Nδk,0 and Jk =
∑
j e
−ik·rjJ(rj) where J(ri − rj) = Jij is the

translational invariant coupling. You should obtain

S [φ] = −N ln2− β2hJk=0φk=0 + β

2
1
N

∑
k
Jk (1− βJ−k)φ−kφk

+ β4

12
1
N3

∑
k1,2,3,4

δk1+k2+k3+k4,0Jk1Jk2Jk3Jk4φk1φk2φk3φk4 +O
(
φ6
i , h

2, hφ3
i

)
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3. For the situation above, long-wavelength (small k) contributions will dominate. Expand Jk to leading
non-trivial order k2 and then take the limit of infinite volume N ≡ V/aD →∞. In this case use

1
V

∑
k
→ (2π)−D

ˆ +∞

−∞
dDk ≡

ˆ
k
,

V δk,k′ → (2π)D δ
(
k− k′

)
and re-scale the fields as a1+D/2φk ≡ φ(k). Up to a unimportant shift to f0, you should recover Eq. (50)
with the given values for h0, r0, c0 and u0.

Comment: In step 1, you might wonder if the matrix A is positive-definite for realistic systems - it usually is
not, consider a simple nearest neighbor chain with its cos(ak) dispersion, i.e. with eigenvectors of both signs.
The above derivation can still be applied if we restrict to spin configurations s varying smoothly, i.e. with a
maximal wavevector Λ0, ensuring a positive-definite A in this subspace. That is the technical origin of the
cutoff Λ0 mentioned in the lecture.

Exercise 2.2. Fourier transformation of model propagator

Find the D-dimensional Fourier transform G0(r) =
´

k e
ik·rG0(k) for

G0(k) = 1
ξ−2 + k2 (75)

assuming D > 2 and approximate the integral for the two regimes r ≪ ξ and r ≫ ξ. You should express your
result using KD ≡ ΩD/(2π)D where ΩD ≡ 2πD/2/Γ(D/2) is the surface area of a unit-sphere in D-dimensional
space (Can you show this?).

18



3 Quantum phase transitions

Aims:

• What is different from classical phase transitions when quantum mechanics is involved?

3.1 Overview

• Quantum phase transitions (QPT) are driven by quantum fluctuations.

• Quantum fluctuations are generated by non-commuting parts of the Hamiltonian that compete in mini-
mizing ground-state energy.

• QPT are controlled by a non-thermal control parameter r.

• QPT only occur at T = 0 (see below).

• Paradigmatic example: Transversal magnetic field in easy-axis Ising ferromagnet (Lithium holmium flu-
oride, LiHoF4, D = 3 cubic lattice), approximation of physics using the transverse-field Ising model
(TFIM, also called “quantum Ising model”):

ĤTFIM = −J
∑
⟨i,j⟩

σ̂zi σ̂
z
j − Γ

∑
i

σ̂xi (76)

Control parameter: r = Γ/J . The two non-commuting terms in ĤTFIM compete between ferromagnetic
state |↑↑ ... ↑⟩ (or |↓↓ ... ↓⟩) and paramagnetic state |→→⟩.
(Mean-field analysis in Γ− T -plane: Ex. 3.1)

without long-range order at T>0 
(e.g. TFIM in 1D)

with long-range order at T>0 
(e.g. TFIM in 3D)

non-thermal control ordered at T=0

ordered

QCPQCP

(a) (b)

Figure 6: Generic phase diagram for quantum system showing QPT like the TFIM.

• QPT classification (similar to thermal phase transitions):

– first order (simple ground-state level crossing)
– second order (“continuous”, with diverging length- and time scale).

• Further examples for QPT:

– Anderson localization: Electrons in disordered, non-interacting D = 3 systems can undergo a tran-
sition between insulator (localized wavefunction at E = EF ) and metal (delocalized). Reason:
Quantum interference of scattered waves.
Control parameter: Disorder strength or Fermi energy EF .

– Quantum Hall effect: Transition between quantum Hall plateaus σxy = ne2/h.
Control parameter: Magnetic field or Fermi energy EF .

– Mott-Hubbard transition: Interacting electrons can transit between itinerant (metal) phase and a
localized phase.
Control parameter: Interaction strength (tuned by pressure, doping,...).
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3.2 Quantum-to-classical mapping

Classical kinetic energy does not drive phase transition:

• Typical classical Hamiltonian: Kinetic part depends only on momenta p, potential part only on positions
q:

H (p, q) = Hkin (p) +Hpot (q) (77)

• Classical partition function: A high-dimensional phase-space integral, which factorizes:

ZC =
ˆ
dpdq exp [−βH (p, q)] =

ˆ
dp exp [−βHkin (p)]︸ ︷︷ ︸

→freg

ˆ
dq exp [−βHpot (q)] (78)

• If Hkin(p) ∼ p2 as usual, kinetic contribution to ZC is just a product of independent Gaussian integrals.
It cannot produce singularity in free energy f and is thus regular.

• Conclusion: Phase transition must originate from the q-(configuration) integral (c.f. Ising model indeed
lacks kinetic part).

Quantum case

• No factorization in path integral: if
[
Ĥkin, Ĥpot

]
̸= 0, then:

eĤkin+Ĥpot ̸= eĤkineĤpot (79)

• Feynman’s trick to compute path integral: Use Trotter formula and insert suitable basis, e.g. from
bosonic/fermionic coherent states (see Cond-Mat-Field-theory I lecture)

ZQ = Tre−βĤ

= Tr lim
N→∞

[
e−βĤ/N

]N
[∆τ = β/N ] = Tr lim

∆τ→0

[
e−∆τĤ

]β/∆τ

=
ˆ
D [q(r, τ)] exp [−S (q)]

Observation: q(r, τ) is D+1-dimensional with r in D-dim space and one extra imaginary-time coordinate
τ ∈ [0, β].

– Example 1: Single Ising spin in transverse magnetic field Ĥ = −h̃σ̂z − Γσ̂x (0-D quantum model)

ZQ ≃ Tr
[
e−βĤ/N

]N
≃ Tr

[
1 + ∆τ h̃σ̂z + ∆τΓσ̂x

]N
= Tr

(
1 + ∆τ h̃ ∆τΓ

∆τΓ 1−∆τ h̃

)N
(80)

The matrix can be expressed as the transfer matrix of the 1D classical Ising model in a longitudinal
magnetic field, c.f. Ex. 1.1.

T =
(
eβc(J+h) e−βcJ

e−βcJ eβc(J−h)

)
(81)

– Example 2: Interacting fermions

S
[
ψ̄, ψ

]
=
ˆ β

0
dτ

∑
ij

ψ̄(ri, τ) [∂τδij + hij ]ψ(rj , τ) +
∑
ijkl

Vijklψ̄(ri, τ + η)ψ̄(rj , τ + η)ψ(rk, τ)ψ(rl, τ)


20



– Example 3: Partition function of TFIM in Eq. (76) maps to partition function of anisotropic classical
2D Ising model, see Ex. 3.2.
Thus expect generalized Landau-Ginzburg-Wilson action Eq. (49) for order parameter φ.

S [φ] =
ˆ
dDr
ˆ β

0
dτ

[
f0 + r0

2 φ
2 + c0

2 [∇rφ]2 + u0
4! φ

4 − h0φ+ c1
2 [∂τφ]2

]
(82)

• Zero temperature limit: T → 0 ⇔ β →∞

– Extension of imaginary-time integration becomes infinite.
– Quantum partition function ZQ is equivalent to D + 1-dimensional classical partition function ZC

in infinite D + 1-dimensional space.
– Conclusion: QPT in D-space dimensions is equivalent to a classical (thermal) phase transition in
D + 1 space dimension. (e.g. “The QPT is in the 2+1D Ising universality class.”)

Remarks on quantum-to-classical mapping

• Role of temperature T :

– Classical: T just multiplies coupling constants to become dimensionless, e.g.: Ising model J/T ≡ K.
– Quantum: T controls length of τ -dimension in path-integral expression for partition function.

• After mapping: Classical D + 1-dimensional system may be unusual, e.g. anisotropic between r- and
τ -direction.

• Critical exponents for D-dim quantum systems may already be known from D + 1-classical systems.

• Dynamics of quantum system: Requires analytic continuation G(τ)→ G(t = iτ)

– ok for scaling arguments and power-laws
– spoils precise mapping of dynamic time-dependent quantities

• If resulting action S [q] becomes negative or complex, it cannot be interpreted as a classical action.
[Sign-problem!]

3.3 Scaling around continuous QPT

Scaling at T = 0

• Dynamical critical exponent z: Require z ̸= 1 for possible anisotropic scaling in D+ 1 dimensional space,
r→ br, τ → bzτ . This also means for the correlation lengths:

ξ ∼ |r − rc|−ν ,
ξτ ∼ ξz ∼ |r − rc|−zν .

• Scaling hypothesis for free energy. Extend Eq. (11), fsing(t) = b−Dfsing (bytt), for quantum case:

fsing (r − rc) = b−(D+z)fsing (byr [r − rc])

• From scaling hypothesis, repeat derivation of scaling form of observable O (= thermodynamic quantity,
correlation function,...):

O (r − rc, k, ωn) = ξdOO (kξ, ωnξτ ) (83)

where k is momentum and ωn is a Matsubara frequency (=momentum along τ -axis).

• Remarks:
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without long-range order at T>0 (TFIM in 1d) with long-range order at T>0 
(e.g. TFIM in 3d)

non-thermal controlordered at T=0

quantum disorderedthermally disordered

thermally 
disordered

ordered

classical critical

QCP

(example for              )

thermal fluctuations
quantum critical fan

(a) (b)

!

(c)

!

Figure 7: Finite temperature phase diagrams in the presence of a quantum critical point.

– dO = dO(D, z, yr, ...) is scaling dimension that depends on O. For correlation function O → G, we
had dG = 2− η.

– Interpretation: Close to criticality, there is no other length scale than ξ, no other time-scale than
ξτ . These scales have to control the k- and ωn-dependence.

– Scaling form also holds for real frequencies, iωn → ω + i0.

Effect of T > 0 and phase diagram in r − T−plane

• For T > 0, the τ -direction becomes finite, τ ∈ [0, β]: “Slab”-geometry with and infinite extent in r (see
Fig. 7a).

• Consequence of slab-geometry for phase-diagram:

1. Absence of ordered phase in D dimensions (Fig. 7b), order for r < rc only in D + 1 dimensions, i.e.
at T = 0 where β =∞.

2. Phase transition in D-dimensional classical universality class (Fig. 7c).
Expect r-dependent critical temperature Tc(r). Crossover to classical behavior when ξτ

!= β (green
region).

• Consequence for scaling of observables:

– Appearance of characteristic energy scale Lτ = β, characteristic length scale L1/z
τ .

– Competition of Lτ = β with imaginary-time correlation length ξτ ∼ |r − rc|−zν of infinite system
(see Fig. 7a).

• Formal description: “Finite-size scaling” (see Sec. 4)

fsing (r − rc, T ) = b−(D+z)fsing (byr [r − rc] , T bz)

• This yields scaling forms like in Eq. (83), but expressed in terms of Lτ :

O (r − rc, k, ω, T ) = LdO/z
τ O

(
kL1/z

τ , ωLτ , Lτ/ξτ
)

(84)

• Quantum critical fan (red region in Fig. 7b,c):

– Region above QCP for which last argument in Eq. (84) is negligible:

Lτ/ξτ ∼ |r − rc|νz/T ≪ 1 (85)

Shape depends on νz ≷ 1.
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– Simplified scaling form independent of r − rc but dependent on yr, z, ...:

O (k, ω, T ) = LdO/z
τ O

(
kL1/z

τ , ωLτ
)

(86)

– Predicted scaling collapse of experimental or numerical data, e.g. for uniform (k = 0) susceptibilities
χ(ω, T ). Note: No fine-tuning to r = rc needed!

• Interpretation of quantum critical fan:

– At T = 0 temporal fluctuation time-scale goes like τc ∼ ξτ ∼ ξz, c.f. Eq. (18).
– Quantum mechanics: Relate τc to fluctuation energy scale or gap ∆ = ℏ/τc ∝ ξ−z ∝ |r − rc|νz with

power νz > 0.
– T > 0: Will system notice gap? Depends on T ≶ ∆.
– Quantum critical fan: System does not notice gap, ∆≪ T [equivalent to condition (85)].
– Physics in fan is dominated by thermal excitations of the quantum critical ground state.

Exercises

Exercise 3.1. Mean-field theory for quantum spin-1/2 transverse field Ising model (TFIM)

In this exercise, we perform a mean-field analysis for the (quantum!) TFIM of Eq. (76). We work on the
hyper-cubic lattice with coupling J ≡ 1 to the z = 2D nearest neighbors.

1. Derive the mean-field Hamiltonian ĤMF of the TFIM, use σ̂zi = mz + δσ̂zi where mz = ⟨σ̂zi ⟩ and neglect
terms quadratic in δσ̂zi . Find the partition function ZMF and the self-consistency condition for possible
non-trivial mz (Γ, T ):

tanh
(
βz
√

[mz]2 + (Γ/z)2
)

=
√

[mz]2 + (Γ/z)2 (87)

2. Solve the self-consistency condition for the special cases (i) Γ = 0 and (ii) T = 0. For T = 0, calculate
mz explicitly, sketch mz(Γ, T = 0) and determine the value for the critical exponent in mz ∝ (Γc − Γ)βΓ .

3. Use your results from the previous part and suitable expansions close to the critical points on the T - and
Γ-axis to sketch the phase boundary in the Γ− T−plane.
[Hint: To see how the phase boundary (Γc, Tc) emerges from the critical point (0, Tc[Γ = 0]) found above,
set (Γc, Tc) = (0 + δΓc, Tc[Γ = 0] + δTc) and assume small δΓc, δTc. Do the same close to (Γc[T = 0], 0).]
What kind of phase transitions (quantum/classical) would you expect in an exact (non mean-field) treat-
ment? Why is the mean-field phase diagram even qualitatively incorrect for the TFIM in D = 1?

Exercise 3.2. Transverse field Ising model in 1D (I): Mapping to 2D classical system

Consider the 1D TFIM in Eq. (76) in one spatial dimension (1D) with J = 1 and Lx sites

Ĥ = −
∑
i

σ̂zi σ̂
z
i+1 − Γ

∑
i

σ̂xi (88)

and assume periodic boundary conditions (ring geometry). In this exercise, we show the equivalence of the
quantum partition function Z1D,q = Tr1De

−βqĤ for low enough Tq = 1/βq and the partition function of a 2D
classical Ising model (without magnetic field, with anisotropic coupling constants Kx = Jxβc, Ky = Jyβc),

Z2D,c = Tr2De
Kx

∑
i,j
σi,jσi+1,j+Ky

∑
i,j
σi,jσi,j+1 . (89)

In the last expression, σi,j = ±1 denotes the value of the classical spin at position (i, j). Our strategy is to
start from Z2D,c and leverage the transfer matrix approach to Z1D,c to 2D.
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1. Express eKx

∑
i
σiσ̃i+1 and eKy

∑
i
σ̃iσi as matrix elements of two operators Ox, Oy in the 2Lx-dimensional

Hilbert space of a spin-1/2 chain spanned by the basis |σ1, σ2, ..., σLx⟩, {σi}i=1,...,Lx
= ±1. Use these

results to show
Z2D,c = (2 sinh [2Ky])LyLx/2 Tr1D

([
eKx

∑
i
σ̂z

i σ̂
z
i+1e

∑
i
K̄yσ̂x

i

]Ly
)

(90)

where tanh K̄y ≡ e−2Ky .

2. Use the Trotter-formula Z1D,q ≃ Tr1D
[
e−βqĤ/Ly

]Ly

for Ly large enough to establish the mapping between
Z1D,q and an anisotropic Z2D,c. Use the mapping to argue that Ĥ has a (quantum) critical point only in
limit Lx →∞ and Tq → 0.

3. It is known that anisotropy in the 2D classical Ising model does not change the critical exponents. In gen-
eralization of the result of Ex. 1.3, the critical temperature is given implicitly by sinh (2Kx) sinh (2Ky) = 1.
Use this to find the exact critical transverse field Γc. By which factor does the mean-field solution of
Ex. 3.1 overestimate the exact Γc?

Exercise 3.3. Transverse field Ising model in 1D (II): Exact eigenenergies

Here we are interested in finding the exact eigenenergies of the 1D TFIM in Eq. 88. We will find the gap ∆ as
a function of Γ and confirm the value of Γc found in Ex. 3.2

1. Consider the Jordan-Wigner transformation in 1D that maps spin-1/2 to fermionic operators ci, c†i :

σ̂xi =
(
1− 2c†ici

)
σ̂zi = −

∏
j<i

(
1− 2c†jcj

) (
ci + c†i

)

Confirm that this mapping indeed fulfills the spin algebra by computing σ̂αi σ̂
β
i′ for α, β = {x, z}, i = i′

and i ̸= i′.

2. Insert the Jordan-Wigner transformation in the 1D TFIM Hamiltonian and use a Fourier-transformation
ck = 1√

Lx

∑
j cje

−ikj to obtain

Ĥ =
∑
k

(
2 [Γ− cos k] c†kck + i sin k

[
c†−kc

†
k + c−kck

]
− Γ

)
(91)

3. Solve this c-particle number non-conserving Hamiltonian using a Bogoliubov transformation, ck = ukγk+
ivkγ

†
−k where γ(†)

k again fulfill fermionic anti-commutation relations if uk, vk are real numbers satisfying
u2
k + v2

k = 1, u−k = uk and v−k = −vk. They can be parameterized by an angle, uk = cos (θk/2) and
vk = sin (θk/2). Find (k-dependent!) θk such that

Ĥ =
∑
k

Ekγ
†
kγk + const. (92)

and obtain the single-particle energy Ek = 2
√

1− 2Γ cos k + Γ2. What is the critical value of Γ at which
Ek becomes gapless (at which k?).
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4 Wilsonian renormalization group

Aims:

• Renormalization group (RG) = Set of ideas, not one coherent theory.
Requires experience for application (→ examples and exercises).

• Study interacting systems, but beyond perturbation theory.

• Connect physics at different energy scales (high to low energy / short to large length)

• Provides simplified effective models valid for each scale.
Example for hierarchy of length scales: Lattice spacing a ≪ correlation length ξ ≪ system size L.

• Obtain justification for scaling hypothesis and thus for universality of critical exponents.

• Approximate calculation of critical exponents for ϕ4-theory (beyond Gaussian approximation, using ϵ ≡
4−D ≪ 1 expansion and perturbative arguments in u0).

• Deeper understanding of phase diagrams and emergent scales [i.e. Kondo temperature TK ].

• Here: Only condensed matter application (skip high-energy physics viewpoint).

4.1 Basic RG idea

• Partition function as path integral over field Φ (bosonic/fermionic/mixed), coupling constants g =
(g1, g2, g3, ...). (E.g. Ex. 2.1 for the derivation of ϕ4-theory from Ising model):

Z (g) =
ˆ
D [Φ] e−SΛ0 [Φ,g] (93)

• RG-Idea: Integration over Φ in Eq. (93) in iterative fashion.

– Organize such that we move towards low-energy / long-distance effective theory (start integrating
large energy scales).

– Need simplifying assumptions for generic case.

• Two steps:

1. Mode elimination:
For momentum-shell RG in Fig. 8a (other incarnations - see below):
Define “shell” of high-energy modes close to the UV cutoff Λ0, e.g. in k-space k ∈ (Λ,Λ0] with

Λ = Λ0/b, b > 1. (94)

Those are the high-energy (fast, “>”) modes that should be integrated out:

Φ(k) = Θ(Λ− k)Φ(k)︸ ︷︷ ︸
Φ<

+ Θ(k − Λ)Φ(k)︸ ︷︷ ︸
Φ>

(95)

and define
Z =

ˆ
D
[
Φ<]ˆ D [Φ>] e−S[Φ<+Φ>,g] =

ˆ
D
[
Φ<]e−S<

Λ [Φ<,g<] (96)

Remark:

(a) Integration in the last step can only be carried out approximately in practice.
(b) Set of coupling constants g is usually enlarged and must be truncated.
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(a) Momentum-shell RG (b) Real-space RG

Figure 8: Different incarnations of the RG mode-elimination step.

2. Rescaling:
Re-scale momenta and fields such that S<Λ [Φ<,g<] has the same form as SΛ0 .
In momentum-shell RG: Stretch momenta from k ∈ [0,Λ] to k′ ∈ [0,Λ0]:

k → k′ = bk
Φ<(k) → Φ′(k′) = ζ−1

b Φ<(k′/b)

Arrive at action S′Λ0
[Φ′,g′]. Read off the RG-trafo of coupling constants:

g′ = R(b; g) (97)

Remark: For quantum system, also eliminate (large) Matsubara frequencies iω, re-scale with possibly
different factor:

iω → iω′ = iωbz (98)

• Remark: RG-trafo R is semi-group [associativity holds (a · (b · c) = (a · b) · c), but no inverse]:

– Associativity: Can combine RG steps for b and b′ to b′′ = b′b. This yields

g′′ = R(b′;R(b; g)︸ ︷︷ ︸)
g′

= R
(
b′b; g

)
(99)

– No inverse: Due to truncation of coupling space. This means that different microscopic models can
give rise to same long-wavelength properties.

• Iterating the RG transformation:

g(n) = R(b; g(n−1)) = R(bn; g) (100)

• In limit n → ∞, it holds Λ = Λ0/b
n n→∞→ 0. We then have integrated out all degrees of freedom and

obtain Z.
Note: As the RG cannot be carried out exactly, this is usually not what it is used for in practice.

• Incarnations of mode-elimination step:

1. Momentum-shell RG (Wilson), as outlined above. Requires translation invariant systems. See
Sec. 4.4.

2. Real-space RG (Migdal-Kadanoff): For spin systems, eliminate certain lattice sites by partial traces
over Hilbert space. See Sec. 4.2 for clean 1D system, and Ex. 4.2 for disordered 1D system. Hard
to generalize to D = 2, 3, ....

3. Numerical RG (Wilson): For impurity models (interacting site + non-interacting bath), numerical
implementation, for some “poor-man” version, see Sec. 4.5.

4. Functional RG (Wegner, Wetterich): Formally exact version of momentum-shell RG (1), go from
the level of coupling parameters g(n)

i to correlation functions GΛ(K1,K2, ...) or vertex functions
ΓΛ(K1,K2, ...) which depend smoothly on cutoff Λ. See part II.
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4.2 Example: Real-space RG for Ising model in 1D

• Recall 1D classical Ising model

H = −J
N∑
i=1

sisi+1 − h
N∑
i=1

si − E0 (101)

where E0 is an energy offset and the number of sites N is assumed to be even.

• Recall transfer matrix solution (Ex. 1.1) for partition function:

ZN
(
f̃ , g, h̃

)
=

∑
{si}=±1

e−βH = Tr
[
TN

]

T = ef̃
(
eg+h̃ e−g

e−g eg−h̃

)

and g = βJ , h̃ = hβ, f̃ = βE0/N .

RG step

• Mode elimination step (Fig. 8b): Carry out trace
∑
{si} =

∑
{si even}

∑
{si odd} only for even sites i:

ZN ′

(
f̃ ′, g′, h̃′

)
= Tr

[(
T ′
)N ′]

(102)

with N ′ = N/2 and

T ′ ≡ T 2 = e2f̃
(
e2g+2h̃ + e−2g eh̃ + e−h̃

eh̃ + e−h̃ e2g−2h̃ + e−2g

)
. (103)

• Important observation: Z after mode elimination has same form as the initial Z, but for lattice of lattice
constant a′ = 2a and for only N ′ = N/2 sites.

• We want to write T ′ using the form of T with parameters {f̃ ′, g′, h̃′}:

T ′
!= ef̃

′
(
eg

′+h̃′
e−g

′

e−g
′

eg
′−h̃′

)
(104)

• Relation between primed and unprimed parameters (short calculation):

f̃ ′ = 2f̃ + 1
4 ln

[
16 cosh2

(
h̃
)

cosh
(
2g + h̃

)
cosh

(
2g − h̃

)]
g′ = 1

4 ln

cosh
(
2g + h̃

)
cosh

(
2g − h̃

)
cosh2

(
h̃
)


h̃′ = h̃+ 1

2 ln

cosh
(
2g + h̃

)
cosh

(
2g − h̃

)


Remarks:

– Existence of exact relations are peculiar toD = 1. For D = 2, 3, ... new couplings would be generated.
– The above equations already contain rescaling step. Indeed, the contribution 2f̃ on the rhs of f̃ ′

comes from the reduced number of sites N ′ = N/2. However, no field (spin) rescaling was needed
(ζb = 1).
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unstable
fixed point

stable
fixed point

critical point (ordered spins)disordered spins

Figure 9: RG flow of the dimensionless coupling x = tanh(J/T ) for the Ising model in 1D.

• Consider special case h̃ = 0 (→ h̃′ = 0):

f̃ ′ = 2f̃ + ln
[
2
√

cosh (2g)
]

g′ = ln
[√

cosh (2g)
]

For the g′ equation, we exponentiate eg′ =
√

cosh (2g) and find with

eg
′ ± e−g′ =

√
cosh (2g)

(
1± 1

cosh (2g)

)
(105)

that

tanh g′ =
1 + 1

cosh(2g)

1− 1
cosh(2g)

(106)

We use cosh (2g) = 2 cosh2 (g)− 1 = 2 sinh2 (g) + 1 to finally obtain (similar for f̃ ′):

tanh g′ = tanh2 g (107)

f̃ ′ = 2f̃ + ln [2 cosh (g)] + ln
[ cosh (g)

cosh (g′)

]
(108)

Iteration and fixed points

• Recall the definition of g = J/T with T the temperature. Define xn ≡ tanh g(n) ∈ [0, 1].
RG step in terms of xn, see also Fig. 9:

xn+1 = x2
n (109)

• Fixed point: Configuration x⋆ that does not change under the action of the RG, here Eq. (109).

– Fixed point at x⋆ = 0 is stable (corresponds to T⋆ =∞, disordered spins, ξ = 0)
– Fixed point at x⋆ = 1 is unstable (T⋆ = 0, ordered spins, ξ =∞)

• Stable / unstable fixed point: Perturbation away from fixed point is reduced / increased under the action
of the RG transformation.

• One may interpret either the coupling constant T or J as changing under RG:
If we choose T :

– T stays at T = 0 at the unstable fixed point.
– T > 0 increases under the flow to reach the stable fixed point T =∞.
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Correlation length ξ

• Correlation length defined via the long-distance tail of correlation function G(ri − rj).

• We can chose ri,j from the non-decimated sites. We show that site-decimation does not affect the
correlation function (H̃ = βH):

G(ri − rj) =
∑
s1,s2,s3,...,sN

δsiδsje
−H̃(s1,s2,s3...,sN )∑

s1,s2,s3,...,sN
e−H̃(s1,s2,s3...,sN )

=
∑
s1,s3,...,sN−1 δsiδsj

∑
s2,s4,...,sN

e−H̃(s1,s2,s3...,sN )∑
s1,s3,...,sN−1

∑
s2,s4,...,sN

e−H̃(s1,s2,s3...,sN )

︸ ︷︷ ︸
e−H̃′(s1,s3,...,sN−1)

=
∑
s1,s3,...,sN−1 δsiδsje

−H̃′(s1,s3,...,sN−1)∑
s1,s3,...,sN−1 e

−H̃′(s1,s3,...,sN−1)

• Correlation length is defined in units of lattice constant a. The lattice constant does change under RG
step.
After the decimation, ri, rj have moved closer together:

ξ′ ≡ ξ(x′) above= ξ(x)/2. (110)

On the other hand, we have x′ = x2 from the RG transformation. This leads to

ξ(x2) = ξ(x)/2 (111)

• The equation has the solution
ξ(x) = − a0

ln(x) (112)

where a0 is arbitrary length scale, it can be taken to physical (initial) lattice constant a.

• The result ξ ∼ −1/log (tanh[J/T ]) has already been found via the transfer matrix method in Ex. 1.1.

• Use Eq. (112) to obtain correlation length at low temperature: Use g = J/T ≫ 1 in:

x = tanh g ≃ 1− 2e−2g (113)

and then obtain from Eq. (112)
ξ ≃ a

2e
2J/T (114)

• The correlation length is finite for any T > 0 and the 1D Ising chain is disordered.

Infinitesimal form of RG recursion and beta-function

• Above, we eliminated every 2nd spin, corresponding to rescaling factor b = 2.
We can equally well work with b = 3, 4, ... to get

tanh g′ = tanhb g (115)

f̃ ′ = bf̃ + (b− 1) ln [2 cosh (g)] + ln
[ cosh (g)

cosh (g′)

]
(116)

• Analytically continue for arbitrary real b (which is a natural choice for momentum shell-RG):

b ≡ el = 1 + l +O(l2) (117)

Set g′ ≡ gl with g0 = g and likewise for xl = tanh gl.
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• For l→ 0, write the RG iteration for xl in form of a differential equation:

xl = xb0 = exp
(
ln xb0

)
= exp

(
el ln x0

)
≃ exp ([1 + l] ln x0) = exp (ln x0) exp (l ln x0) = x0 (1 + l ln x0)

xl − x0
l

= x0 ln x0 +O(l)

or, taking the limit l→ 0,

∂lx ≡
∂x

∂l
≡ β(x) = x ln x (118)

also known as the beta-function for x.

• Fixed points of the RG flow are zeros of the beta-function, β(x⋆)
!= 0.

• Infinitesimal form for RG transformation of free energy per site from Eq. (116) (short calculation):

∂lf̃l = f̃ + ln [2 cosh (gl)] + ∂l ln
[cosh (g0)

cosh (gl)

]
|l=0

= 1×f̃ + ln [2 cosh (gl)]− sinh2 (gl) ln (tanh gl)

• Canonical dimension Dg of coupling constant g (from rescaling step, also called “engineering dimension”):
Flow equations for coupling constant g of dimension 1/(length)Dg start out with

∂lg = Dgg + ... (119)

Example: For free-energy flow of the D-dimensional Ising model, we have that f̃ has units of 1/(length)D,
thus Df̃ = D and

∂lf̃ = Df̃ + ... (120)

4.3 General properties of RG flows

Fixed points and critical surface

• Recall RG transformation:

– for general couplings g = {g1, g2, ...}: g′ = R(b > 1; g), see Eq. (97)
– for correlation length ξ(g′) = ξ(g)/b, see Eq. (110)

• A fixed point g⋆ = {g⋆1, g⋆2, ...} fulfills

g⋆ = R(b; g⋆)
ξ (g⋆) = ξ (g⋆) /b

• Classification of fixed points according to the two possible solutions for ξ (g⋆):

– Trivial fixed point: ξ (g⋆) = 0
– Critical fixed point: ξ (g⋆) =∞

• Example: Square-lattice Ising model (2D) RG flow in Fig. 10 (projected onto βJ−βJ ′ plane), see Ex. 4.1:

– Three f.p. (two trivial f.p.: disordered T =∞ and ordered at T = 0, one critical f.p. with ξ =∞)
– Each f.p. (trivial and critical) has its own basin of attraction (points flowing into f.p. ).
– Basin of attraction for trivial f.p. = phases
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T=0 f.p. (ordered)

f.p. (disordered)

critical f.p.

experimental

Figure 10: RG-flow of the 2D Ising model, projected in the plane of nearest and next-nearest neighbor couplings J ,J ′.

– Basin of attraction for critical f.p. = critical surface (critical manifold), has also ξ =∞ .
Reason: ξ(g) = bξ

(
g(1)

)
= b2ξ

(
g(2)

)
= ... = bnξ

(
g(n)

)
and for g on the critical line, we have

g(n) →
n→∞

g⋆ for which ξ (g⋆) =∞. Thus ξ(g) =∞.

– For start close to critical line, flow is almost towards the critical fixed point where it lingers and is
very slow.
→ Reason to study vicinity of the critical f.p. (next).

– Careful: Critical fixed point (•) is not the same as critical point (■, on critical surface).

Local RG flow close to fixed point

• Linearized flow close to a fixed point g⋆:

δg′ = g′ − g⋆ = R(b; g)−R(b; g⋆) ≡ R(b; g⋆) · δg (121)

where the derivative-matrix R has elements

Rij(b; g⋆) ≡ ∂Ri(b; g)
∂gj

|g=g⋆ (122)

• R is a square matrix (but not necessarily symmetric).
Find the left eigenvectors vTα and eigenvalues λα,

vTα ·R(b; g⋆) = vTα · λα (123)

The
{

vTα
}

do not need to be all linearly independent, but let us assume they are (matrix is not defective).

• We project the coupling vector δg onto the vTα and obtain the scaling variables (see gray arrows in
Fig. 10):

uα ≡ vTα · δg =
∑
i

vα,i · δgi (124)

The RG transformation doesn’t mix different uα:

u′α = λαuα (125)

• b-dependence: From the associativity of RG trafo, we have

R(b; g⋆) ·R(b′; g⋆) = R(bb′; g⋆) = R(b′; g⋆) ·R(b; g⋆) (126)

– Eigenvectors: Commuting matrices have the same eigenvectors → vTα are independent of b.
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– Eigenvalues: Must satisfy λα(b)λα(b′) != λα (bb′), thus

λα(b) = byα (127)

where the RG eigenvalue yα does not depend on b.

• Consequence: RG trafo for the scaling variables uα around the fixed point u⋆α = 0 for any b = el :

u′α = byαuα, ∂luα = yαuα (128)

Warning: Due to the linearization in δg for the derivation of R in Eq. (121), there are corrections of
order O(u2

α).

Classification of couplings uα
• Assume yα ∈ R (case yα /∈ R possible but rare):

• Distinguish three cases:

– yα > 0: Relevant coupling, |uα| ≠ 0 grows exponentially under RG
– yα < 0: Irrelevant coupling, |uα| ≠ 0 decreases exponentially under RG
– yα = 0: Marginal coupling.

Go to higher order in flow equation ∂luα = 0uα+ #u2
α+ ... to decide if the coupling uα is marginally

relevant or marginally irrelevant.

Justification of scaling hypothesis for free energy f

• Consider critical fixed point with two relevant scaling variables: t ∼ (T − Tc)/Tc, h ∝ magnetic field
(c.f. Ising model).

• RG flow equations (close to fixed point):

∂lt = ytt, ∂lh = yhh (129)

or
t′ = bytt, h′ = byhh (130)

with yt > 0 and yh > 0. (We will compute yt,h approximately in Sec. 4.4 using φ4-theory.)

• Recall: RG preserves the partition function

ZN (t, h) = ZN/bD

(
t′ = bytt, h′ = byhh

)
(131)

with N or N/bD lattice sites, respectively.

• For the free energy density, we find

f(t, h) = − T
N

lnZN (t, h) = − T
N

lnZN/bD (t′, h′) = 1
bD
· −T
N/bD

lnZN/bD (t′, h′) (132)

and we read off:
fsing(t, h) = b−D · fsing

(
t′ = bytt, h′ = byhh

)
(133)

• Restriction to singular part (“sing.”) is caused by the neglect of

– higher-order contributions to flow of t, h
– marginal or irrelevant couplings (see also Ex. 4.5)

• We confirmed the scaling hypothesis from Eq. (11). Insight:
Critical exponents (i.e. ν = 1/yt) are related to the linearized RG flow close to the critical fixed point
and its eigenvalues.

• Origin of universality:
The yα are properties of the fixed point. They do not depend on the initial couplings g which will vary
with the physical system.
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Scaling hypothesis for correlation function G(r)

• Use definition of correlation function in momentum space (2π)D δ (k1 + k2)G (k1) = ⟨δφ(k1)δφ(k2)⟩.
Assume k1,2 < Λ0/b and employ the RG step δφ(k) = ζbδφ

′(k′), k = k′/b :

(2π)D δ (k1 + k2)G (k1; g) = ⟨δφ(k1)δφ(k2)⟩g

= Z−1
ˆ
D[φ]e−S[φ;g]δφ (k1) δφ (k2)

= ζ2
bZ−1

ˆ
D[φ′]e−S[φ′;g′]δφ′

(
k′1
)
δφ′

(
k′2
)

= ζ2
b (2π)D δ

(
k′1 + k′2

)
G
(
k′1; g′

){
δ(bk) = b−Dδ(k)

}
= ζ2

b b
−D (2π)D δ (k1 + k2)G

(
bk1; g′

)
By comparison, we find

G (k; g) = ζ2
b b
−DG

(
bk; g′

)
(134)

• Convention: Parameterization
ζb ≡ b1+D/2√Zb (135)

so that
G (k; g) = b2ZbG

(
bk; g′

)
(136)

Using b = el, define Zl = Zb=el . Flow equation for Zl parameterized as:

∂lZl ≡ −ηlZl . (137)

Suppose lim
l→∞

ηl = η, then Zl = e−ηl = b−η and for large enough l,

G (k; g) = b2−ηG
(
bk; g′

)
. (138)

At a fixed point g = g′ = g⋆, this equation enforces the power-law form:

G(k) = |k|−2+η (139)

• Conclusion: This confirms the postulated (real-space) power-law form in Eq. (9). The anomalous dimen-
sion η is connected to the microscopic RG via field rescaling factor ζb.

• Example: Ising model / ϕ4-theory.
Relation between yh and ζb: Consider field-term ∝ φ(k = 0) from the effective action

hφ(k = 0) = h′φ′(k′ = 0) = h′ζ−1
b φ(k = 0) (140)

Compare the pre-factors of φ(k = 0). Read off h′ = ζbh, compare to h′ = byhh. Find

ζb = byh (141)

Insert in Eq. (134). Consider only relevant couplings g = (t, h) (singular part only):

Gsing (k; t, h) = b−Db2yhGsing (bk; bytt, byhh) (142)

which is the Fourier-transformation of the scaling hypothesis in Eq. (14).
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4.4 Example: RG of ϕ4-theory and Wilson-Fisher fixed point

RG flow equations

• Recall ϕ4-theory (Ginzburg-Landau-Wilson action) from Eq. (50).
Set magnetic field to zero, assume high-temperature regime r0 > 0:

SΛ0 [φ] = V f0 + 1
2

ˆ Λ0

k

[
r0 + c0k

2
]
φ(−k)φ(k) + u0

4!

ˆ Λ0

k1,2,3,4

(2π)Dδ (k1 + ...+ k4)φ(k1)φ(k2)φ(k3)φ(k4)

(143)

• Implement mode elimination step with cutoff Λ = Λ0/b < Λ0: φ(k) = Θ(Λ− k)φ(k)︸ ︷︷ ︸
φ<

+ Θ(k − Λ)φ(k)︸ ︷︷ ︸
φ>

,

yields three contributions:

SΛ0 [φ] = SΛ
[
φ<
]

+ SΛ,Λ0

[
φ>
]

+ Smix
[
φ<, φ>

]
(144)

– “Smaller part”: SΛ [φ<] is like SΛ0 [φ] but with
´ Λ0

k φ(k)...→
´ Λ

k φ<(k)....

– “Larger part”: SΛ,Λ0 [φ>] is similar with
´ Λ0

k φ(k)...→
´ Λ0
|k|>Λ φ

>(k)...

– “Mixing term”: Of order u0. Possibilities of picking two φ<-fields out of the four φ fields
(

4
2

)
= 6:

Smix
[
φ<, φ>

]
= 6×u0

4!

ˆ Λ

k1,2

ˆ Λ0

|k3,4|>Λ
(2π)Dδ (k1 + ...+ k4)φ<(k1)φ<(k2)φ>(k3)φ>(k4)

+ ”φ<
(
φ>
)3 ” + ”

(
φ<
)3
φ>”

• Integrate over φ> to get new effective action:

e−SΛ[φ<,f<,r<,c<,u<] = e−SΛ[φ<,f0,r0,c0,u0]
ˆ
D
[
φ>
]
e−SΛ,Λ0 [φ>]−Smix[φ<,φ>] (145)

or

SΛ
[
φ<, f<, r<, c<, u<

]
= SΛ

[
φ<, f0, r0, c0, u0

]
− ln

[ˆ
D
[
φ>
]
e−SΛ,Λ0 [φ>]−Smix[φ<,φ>]

]
(146)

Expand the ln in powers of u0:

− ln [...] = − ln
[ˆ
D
[
φ>
]
e−SΛ,Λ0 [φ>]

]
︸ ︷︷ ︸

φ<−independent

− ln
[´
D [φ>] e−SΛ,Λ0 [φ>]−Smix[φ<,φ>]
´
D [φ>] e−SΛ,Λ0 [φ>]

]

= f< − f0 − ln

´ D [φ>] e−SΛ,Λ0 [φ>]
(
1− Smix [φ<, φ>] + 1

2S
2
mix [φ<, φ>] +O(u3

0)
)

´
D [φ>] e−SΛ,Λ0 [φ>]



≃ f< − f0 − ln


1−
´
D [φ>] e−SΛ,Λ0 [φ>]Smix [φ<, φ>]´

D [φ>] e−SΛ,Λ0 [φ>]︸ ︷︷ ︸
∼ u0φ

<2 +u2
0φ

<2+...

+
´
D [φ>] e−SΛ,Λ0 [φ>] 1

2S
2
mix [φ<, φ>]´

D [φ>] e−SΛ,Λ0 [φ>]︸ ︷︷ ︸
∼ u2

0φ
<4 +u2

0φ
<2+u2

0φ
<6+...


• Consider leading-in-u0 corrections to quadratic/quartic parts of SΛ [φ<, f<, r<, c<, u<]: Need to keep

[boxed] terms of order u0φ
<2 and u2

0φ
<4. The higher-order in u0-terms, which also come also φ< (φ>)3,

are discarded.
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• Hence we can replace the expectation values with respect to the interacting action SΛ,Λ0 [φ>] by expec-
tation values with respect to its Gaussian part, S0

Λ,Λ0
[φ>] = 1

2
´ Λ0
|k|>Λ

[
r0 + c0k

2]φ>(−k)φ>(k).
Notation:

⟨· · · ⟩0,> ≡
´
D [φ>] e−S

0
Λ,Λ0

[φ>] · · ·´
D [φ>] e−S

0
Λ,Λ0

[φ>] . (147)

We then have

− ln [...] ≃ f< − f0 − ln
[
1−

〈
Smix

[
φ<, φ>

]〉
0,> + 1

2
〈
S2
mix

[
φ<, φ>

]〉
0,>

]
{

ln [1 + x] ≃ x− x2/2
}
≃ f< − f0 +

〈
Smix

[
φ<, φ>

]〉
0,> −

1
2

[〈
S2
mix

[
φ<, φ>

]〉
0,>
−
〈
Smix

[
φ<, φ>

]〉2
0,>

]
• In light of Eq. (146), we compare the parts of order (φ<)2 [terms ∼ φ< or ∼ (φ<)3 vanish] and read off

1
2
(
r< + c<k2

)
= 1

2
(
r0 + c0k

2
)

+
〈
Smix

[
φ<, φ>

]〉
0,> |

φ<−amputated

= 1
2
(
r0 + c0k

2
)

+ 6u0
4!

ˆ Λ0

|q|>Λ

〈
φ>(q)φ>(−q)

〉
0,>︸ ︷︷ ︸

1/(r0+c0q2)

After comparison of both sides, we find
c< = c0 (148)

r< = r0 + u0
2

ˆ Λ0

Λ

dDq

(2π)D
1

r0 + c0q2 ≃ r0 + u0
KDΛD−1

0 (Λ0 − Λ)
2(r0 + c0Λ2

0)
(149)

In the above, KD ≡ ΩD/(2π)D where ΩD ≡ 2πD/2/Γ(D/2) is the surface area of a unit-sphere in D-
dimensional space (c.f. Ex. 2.2).

• For the new interaction constant u<, we consider the u2
0φ

<4 contribution on the rhs of − ln [...] = ....

−1
2

[〈
S2
mix

[
φ<, φ>

]〉
0,>
−
〈
Smix

[
φ<, φ>

]〉2
0,>

]
= −1

2 < 6u0
4!

ˆ Λ

k1,2

ˆ Λ0

|k3,4|>Λ
(2π)Dδ (k1 + ...+ k4)φ<(k1)φ<(k2)φ>(k3)φ>(k4)

× 6u0
4!

ˆ Λ

q1,2

ˆ Λ0

|q3,4|>Λ
(2π)Dδ (q1 + ...+ q4)φ<(q1)φ<(q2)φ>(q3)φ>(q4) >con.0,>

= −1
22
(

6u0
4!

)2 ˆ Λ

k1,2

ˆ Λ0

|k3,4|>Λ
(2π)Dδ (k1 + k2 + k3 + k4)

ˆ Λ

q1,2

ˆ Λ0

|q3,4|>Λ
(2π)Dδ (q1 + q2 + q3 + q4)

×φ<(q1)φ<(k1)φ<(q2)φ<(k2)
〈
φ>(k3)φ>(q3)

〉
0,>
〈
φ>(k4)φ>(q4)

〉
0,>

where the factor 2 comes from the Wick-theorem with the two choices of pairing k3 = −q3,4.

• We use ⟨φ>(k)φ>(q)⟩0,> = (2π)D δ (k + q)G0 (k) with G0 (k) = 1/(r0 + c0k
2) and carefully consider all

the δ-functions:

... =
ˆ Λ

k1,2

ˆ Λ

q1,2

(2π)Dδ (q1 + q2 + k1 + k2)φ<(q1)φ<(k1)φ<(q2)φ<(k2)

× −21
2

(
6u0

4!

)2 ˆ Λ0

|k3,4|>Λ
(2π)Dδ (k1 + k2 + k3 + k4) 1(

r0 + c0k2
3
) (
r0 + c0k2

4
)

The last line depends on k1 + k2. To get a momentum independent interaction strength, we approximate
k1,2 = 0 which is plausible because they are “smaller” momenta. We get

u< = u0 − 4!21
2

(
6u0

4!

)2

︸ ︷︷ ︸
3
2u

2
0

ˆ Λ0

Λ

dDk

(2π)D
1

(r0 + c0k2)2 ≃ u0 −
3
2u

2
0
KDΛD−1

0 (Λ0 − Λ)
(r0 + c0Λ2

0)2 (150)
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• Remarks:

– The approximate expressions for r<, c<, u< only involve a single momentum integral, this corre-
sponds to just one loop in the corresponding Feynman diagrams (→ “one-loop approximation”).

– Formally, terms describing a momentum dependence of a vertex u(k1,2,3) = u(0) +u(1)k1 + ... are less
relevant than u(0) because [u(1)] = [u(0)]× [length] under rescaling they have a smaller engineering
dimension than u(0). This justifies working with coupling constants (instead of coupling functions).

• Rescaling step (from r<, u< to r′, u′): Use k = b−1k′ and φ<(k′/b = k) = ζbφ
′(k′):

1
2

ˆ Λ

k

[
r< + c<k2

]
φ<(−k)φ<(k) = 1

2

ˆ Λ0

k′
ζ2
b b
−D

[
r< + c<b−2k′2

]
φ′(−k′)φ′(k′)

u<0
4!

ˆ Λ

k1,2,3,4

(2π)Dδ (k1 + ...+ k4)φ<(k1)...φ<(k4) = u<0
4!

ˆ Λ0

k′
1,2,3,4

ζ4
b b
−4D(2π)DbDδ

(
k′1 + ...+ k′4

)
φ′(k′1)...φ′(k4)

Want to keep the prefactor of the k2-term invariant, this requires ζb = b1+D/2. We then get

r′ = b2r<

u′ = b4−Du<

We change to b = el and find with Λ = Λ0e
−l:

r′ = e2l

r0 + u0
KDΛD−1

0

(
Λ0 − Λ0e

−l
)

2(r0 + c0Λ2
0)


= r0 + 2lr0 + u0

KDΛD0 l
2(r0 + c0Λ2

0)
+O(l2)

∂lrl = 2rl + ul
2

KDΛD0
rl + c0Λ2

0

and likewise
∂lul = (4−D)ul −

3
2u

2
l

KDΛD0
(rl + c0Λ2

0)2 (151)

• Clean up by defining dimensionless couplings:

r̄l ≡ rl
1

c0Λ2
0
, ūl ≡ ul

KD

c2
0Λ4−D

0
(152)

in terms of which

∂lr̄l = 2r̄l + 1
2

ūl
r̄l + 1 ∂lūl = (4−D)ūl −

3
2

ū2
l

(r̄l + 1)2 (153)

Wilson-Fisher fixed point for D > 4

• Analyze the flow given by Eq. (153) above, see Fig. 11 for flow diagrams at D = 4.5, D = 3.8 and D = 3.

– For D > 4, we only have the Gaussian critical fixed point, (ū⋆, r̄⋆) = (0, 0). (→Dup = 4)
– For D < 4, the Gaussian fixed point becomes unstable for ū > 0:

Wilson-Fisher f.p. controls the universality of the phase transition. → Gaussian approximation
breaks down.
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Wilson-Fisher f.p.

Gaussian f.p.

Figure 11: RG flow of the ϕ4-theory according to Eq. (153) for different dimensions around Dup = 4: Left D = 4.5,
middle D = 3.8, right D = 3.

Critical exponents in D < 4: ϵ−expansion

• We are interested in the physical case D = 3.
Q: Can we linearize the flow around the Wilson-Fisher fixed point and find critical exponents?
This would not be reliable, because the flow equations are approximate and only valid to order u2

l .

• A more consistent way is to set ϵ = Dup −D = 4−D > 0: The Wilson-Fisher fixed point conditions are

0 = 2r̄⋆ + 1
2

ū⋆
r̄⋆ + 1 ,

0 = ϵū⋆ −
3
2

ū2
⋆

(r̄⋆ + 1)2 .

Without the O(ū3
⋆) terms, we can only solve for r̄⋆, ū⋆ reliably up to O(ε):

ū⋆ = 2
3ϵ+O(ϵ2)

r̄⋆ =− ϵ/6 +O(ϵ2)

• The linearized flow equations around the Wilson-Fisher fixed point (δr̄l ≡ r̄l − r̄⋆, δūl ≡ ūl − ū⋆) are

∂l

(
δr̄l
δūl

)
=
(

2− ϵ
3

1
2 + ϵ

12
0 −ϵ

)(
δr̄l
δūl

)
(154)

One can find the left eigenvectors and eigenvalues (up to order O(ε)):

vT1 = (0, 1), y1 = −ϵ = D − 4 < 0 (irrelevant.)

vT2 = (1, 1− ϵ/6
4 ), y2 = 2− ϵ

3 > 0 (relevant.)

• The irrelevant scaling variable is vT1 ·
(
δr̄l
δūl

)
= δūl, the relevant scaling variable is vT2 ·

(
δr̄l
δūl

)
=

δr̄l + 1−ϵ/6
4 δūl ≡ tl.

• According to Sec. 4.3, we find

ν ≡ 1
y2

= 1
2 + ϵ

12 +O(ϵ2) (155)

• Remark:

– Recall MFT / Gaussian fixed point: νε=0 = 0.5. The above formula tells us how ν changes as we
lower D below D = 4.

– One can set ϵ→ 1 at the end of this calculation, which yields ν1−loop = 0.58 and the exact value is
νex ≃ 0.63. Systematic improvement to order O(ϵ2) is possible in a two-loop calculation (way more
complicated!).
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4.5 Example: Kondo-Effect and poor-man’s scaling

Phenomenology and Single Impurity Anderson Model

• Consider metals with magnetic impurities, e.g. Fe in Cu or Mn in Ag.

• Magnetic impurity: Localized moment (spin S=1/2) that gives Curie-Weiss contribution to magnetic
susceptibility, χimp. ≃ C

T+Θ for large T , T ≫ Θ > 0.

• Experimental observation: The electrical resistance ρ over temperature has a minimum (Fig. 12a).

• Unusual, since well-known mechanisms would lead to further decaying or constant resistance as T → 0:

– electron-electron scattering ρ ∼ T 2

– electron-phonon scattering ρ ∼ T 5

– non-magnetic impurity scattering ρ ∼ const.

• Single-impurity Anderson model (SIAM): Host metal of non-interacting (Fermi liquid quasiparticles, set
Fermi energy εF = 0) with localized d-level impurity state cdσ (degenerate for impurity spin ↑, ↓) and
hybridization to s-level itinerant electron ckσ:

H =
∑
k,σ

εkc
†
kσckσ︸ ︷︷ ︸

≡H0

+
∑
σ

εdc
†
dσcdσ + Und,↑nd,↓ +

∑
k,σ

Vkc
†
dσckσ + h.c., (156)

where nd,σ = c†d,σcd,σ.

• Atomic limit: Vk → 0. Four impurity eigenstates (see Fig. 12a, inset): Empty level E = 0, single
occupation (2x) E = εd, double occupation E = εd + U .

• Enforce single occupation to obtain local moment (and thus Curie-Weiss law): εd < 0 < εd +U . Then it
is energetically favorable to add one electron to impurity level, but not a second.

Schrieffer-Wolff transformation: From SIAM to Kondo model

• Q: What happens if Vk is switched on? Depends on ratio Vk/∆E where ∆E = εd or U + εd denote
energetical distance to empty or doubly occupied state.

• Assume Vk/∆E small, derive effective Hamiltonian Heff for single occupation nd = nd↑+nd↓ = 1, nd = 0, 2
are taken into account as virtual states in perturbation theory.

• Start with Schrödinger equation Hψ = Eψ, multiply with projection operators Pn(= P †n = P 2
n) which

project to nd = 0, 1, 2:

P0 = (1− nd,↑)(1− nd,↓), P1 = (1− nd,↑)nd,↓ + {↑↔↓}, P2 = nd,↑nd,↓, (157)

and define ψn ≡ Pnψ and Hnn′ ≡ PnHPn′ = H†n′n. H00 H01 H02
H10 H11 H12
H20 H21 H22


 ψ0
ψ1
ψ2

 = E

 ψ0
ψ1
ψ2

 (158)

• Block-Hamiltonians:

H10 =
∑
k,σ

Vkc
†
dσ(1− nd,σ̄)ckσ

H21 =
∑
k,σ

Vkc
†
dσndσ̄ckσ

H02 = 0
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• Effective Hamiltonian for ψ1: Eliminate ψ0 and ψ2 from Eq. (158) (still exact equation for energies E)

Eψ1 =
[
H11 +H12 (E −H22)−1H21 +H10 (E −H00)−1H01

]
ψ1 (159)

and the term [...], computed to order (V/∆E)2 and then E-independent, is the effective Hamiltonian Heff .

• First term: H11 = (H0 + εd)P1 and we drop the constant εd.

• Second term: Use H22 = (H0 + 2εd + U)P2,

H12 (E −H22)−1H21 =
∑
k,σ

∑
k′,σ′

V ⋆
k′c
†
k′σ′ndσ̄′cdσ′ (E −H0 − 2εd − U)−1 Vkc

†
dσndσ̄ckσ (160)

• Use from [E −H0, cqσ] = εqcqσ that cqσ
1

E−H0
= 1

E−H0−εq
cqσ (and c†qσ

1
E−H0

= 1
E−H0+εq

c†qσ).

• Move all operators to the right, obtain

H12 (E −H22)−1H21 =
∑
k,σ

∑
k′,σ′

V ⋆
k′Vk(E −H0 + εk′ − 2εd − U)−1︸ ︷︷ ︸

−1
U+εd−εk′

(
1−E−H0−εd

U+εd−εk′

)−1

c†k′σ′ckσndσ̄′cdσ′c†dσndσ̄

and we drop the small second term in parenthesis as we assume E is close to the ground-state energy of
H0 + εd in the regime of interest.

• In nd = 1 subspace: Define S = 1
2
∑
σ c
†
dστ σσ′cdσ′ with τ the vector of Pauli matrices, then Sz =

1
2 (nd↑ − nd↓) and S+ = Sx + iSy = c†d↑cd↓.

• Set σ =↑, σ′ =↓ and find

H12 (E −H22)−1H21|σ=↑,σ′=↓ ≃
∑
k,k′

V ⋆
k′Vk

U + εd − εk′
c†k′↓ck↑S

+ (161)

and similar with S+ → S− for σ =↓, σ′ =↑. The contributions from H10 (E −H00)−1H01 to Heff is
similar, but with 1/(U + εd − εk′)→ 1/(εk − εd).

• As we want to find a low-energy effective Hamiltonian, we assume the relevant k to be close to the Fermi
surface and |εk| much smaller than ∆E. We assume that Vk does not strongly depend on k at the Fermi
surface. Then the exchange interaction is anti-ferromagnetic.

J = |V |2
( 1
U + εd

+ 1
−εd

)
= |V |2 U

(U + εd) (−εd)
> 0 (162)

• For equal spins σ = σ′, we get a term JSz
(
c†k′↑ck↑ − c†k′↓ck↓

)
and a potential scattering term

∑
k,k′ Kk,k′c†k,σck′,σ.

• The potential scattering term ∝ Kk,k′ does not dependent on the local spin S and does not flip the bath
spins. We drop it in the following (it could be removed by re-defining ck,σ).

• We obtain an isotropic Heisenberg interaction between impurity spin S and the local spin of the c-
electrons, Sc(r = 0) =

∑
k,k′

1
2
∑
σ c
†
kστ σσ′ck′σ′ .

Heff ≃ H0 +
∑
k,k′

J
(
S+c†k′,↓ck↑ + S−c†k↑ck′,↓ + Sz

[
c†k′↑ck↑ − c†k′↓ck↓

])
= H0 + 2JS · Sc(r = 0) ≡ HK

(163)
which is also known as the Kondo model.

• Remarks:
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(a) (b) (c)

occupied

virtual electron

virtual hole

(d)

Figure 12: Kondo problem: (a) Typical resistance versus temperature curve for metals with magnetic impurities. (b)
Flat density of states assumed for host system with bandwidth 2D. (c) Diagrams for virtual electron or virtual hole
excitations. (d) Poor man’s scaling: Flow diagram in the ν0Jz-ν0J⊥-plane.

– Kondo model also known as “s-d model” (since d-shell electrons form impurity and itinerant electrons
come from s-shells)

– in the last step, note: S+S−c (r = 0) + h.c. = 2SxSxc (r = 0) + 2SySyc (r = 0)
– [Schrieffer and Wolff, Phys. Rev. 149(2) 491 (1966)] originally used a unitary transformation to

obtain the same result, Heff = eSHe−S

– there is also a path-integral version of this transformation: [Zamani et al 2016 New J. Phys. 18
063024]

Perturbation theory for Kondo model

• Assumption: Box-shaped density of states with bandwidth 2D (per spin, with units [1/energy]), ν(E) ≡∑
k δ (E − εk) ≡ ν0 for |E| ≤ D (Fig. 12b).

• Perturbation theory for resistivity ρ for small Jν0 [Kondo,1964]:

ρ = ρ0 (1− 4Jν0 ln (T/D) + ...) (164)

– explains increase of ρ(T ) for T/D ≪ 1 when ln (T/D) < 0
– identifies a temperature at which perturbation theory breaks down (second term O(1)): TK ∼
D exp

(
− 1

#ν0J

)
• Beyond perturbation theory: Wilson solved the problem using numerical RG (NRG): Below the

crossover temperature TK , the impurity S forms a singlet with the c-electrons. This bound state is
decoupled from remaining c-electrons but leads to enhanced scattering.

Anderson’s “Poor-man’s” scaling

• Here: Derive TK using RG based on Hamiltonian. We will see that there is no critical fixed point, but a
“run-away-flow”. We will see how to extract the “crossover temperature” TK from the flow equations.

• Generalize to anisotropic Kondo model:

H = H0 + J⊥
∑
k,k′

(
c†k↑ck′↓S

− + c†k↓ck′↑S
+
)

+ Jz
∑
k,k′

(
c†k↑ck′↑ − c†k↓ck′↓

)
Sz (165)

• Plan for RG (Fig. 12b):

– Ground state of H0 is filled Fermi sea up to E = 0.
–
∣∣∣ψ−/+

〉
: highly excited states with energy ≥ D/b with at least one hole/electron in the lower/upper

band-edge D/b < |εk| < D
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– Integrate out
∣∣∣ψ−/+

〉
(take them into account as virtual states in perturbation theory) → flow of

Jz,⊥

• Comparison: Schrieffer-Wolff transformation vs Poor-man’s scaling

– integrating out discrete level vs continuum of excitations
– well defined perturbation theory vs divergent perturbation theory (for T/D → 0)
– plain perturbation theory with bare parameters vs continuous modification of coupling J(b) with

feedback

• Formal setup of perturbation theory: Divide Hilbert-space into
∣∣∣ψ−/+

〉
-like states and the rest |ψ0⟩,

H |ψ⟩ =

 H−− H−0 ≃ 0
H0− H00 H0+
≃ 0 H+0 H++


 |ψ−⟩|ψ0⟩
|ψ+⟩

 , (166)

• The sectors are coupled by scattering off the impurity, thus the off-diagonal terms are ∼ J .

• Write Schrödinger equation for |ψ0⟩-states:

(H00 +H0+
1

E −H++
H+0︸ ︷︷ ︸

virtual electron

+H0−
1

E −H−−
H−0︸ ︷︷ ︸

virtual hole

) |ψ0⟩ = E |ψ0⟩ (167)

• Because H0+ ∼ J , we can neglect J that appear in H00,−−,++ in the denominators and approximate
them with 1/(E −H0) with H0 the non-interacting Hamiltonian.

• For the second and third term, we have 8 different processes each: SzSz, S+S−, SzS+, SzS− and the
flipped orders.

• SzSz = 1/4 processes: Focus on the virtual electron term with H+0 involving c†q+σcq0σ with q+ at energy
≃ D of the upper band edge and arbitrary q0.

H0+
1

E −H0
H+0 |ψ0⟩ = J2

z (Sz)2 ∑
k0,k+,q0,q+

(
c†k0↑ck+↑ − c

†
k0↓ck+↓

) 1
E −H0

(
c†q+↑cq0↑ − c

†
q+↓cq0↓

)
|ψ0⟩

= J2
z (Sz)2 ∑

k0,k+,q0,q+

1
E −H0 −D + εk0

(
c†k0↑ck+↑ − c

†
k0↓ck+↓

)(
c†q+↑cq0↑ − c

†
q+↓cq0↓

)
|ψ0⟩

• Strategy: Use ck+σ |ψ0⟩ = 0 since |ψ0⟩ does not contain any excited electrons in the upper band-edge:(
c†k0↑ck+↑ − c

†
k0↓ck+↓

) (
c†q+↑cq0↑ − c

†
q+↓cq0↓

)
|ψ0⟩

=(c†k0↑ck+↑c
†
q+↑︸ ︷︷ ︸

→δk+,q+

cq0↑ + c†k0↓ck+↓c
†
q+↓︸ ︷︷ ︸

→δk+,q+

cq0↓) |ψ0⟩

and use
∑

k+ =
´ D
D/b ν0dE = ν0D (1− 1/b).

H0+
1

E −H0
H+0 |ψ0⟩ = J2

z

4 ν0D (1− 1/b)
∑

k0,q0

1
E −H0 −D + εk0

(
c†k0↑cq0↑ + c†k0↓cq0↓

)
|ψ0⟩

= J2
z

4 ν0D (1− 1/b)
∑

k0,q0

(∑
σ

c†k0σ
cq0σ

)
1

E −H0 −D + εq0
|ψ0⟩
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The corresponding process for the virtual hole cq−σ excitations follows as

H0−
1

E −H0
H−0 |ψ0⟩ = J2

z (Sz)2 ∑
k0,k+,q0,q+

(
c†k−↑ck0↑ − c

†
k−↓ck0↓

) 1
E −H0

(
c†q0↑cq−↑ − c

†
q0↓cq−↓

)
|ψ0⟩

= J2
z

4 ν0D (1− 1/b)
∑

k0,q0

(∑
σ

ck0σc
†
q0σ

)
1

E −H0 −D − εq0
|ψ0⟩

• Assume E ≃ E0 where E0 is the g.s. energy of H0 → approximate all denominators by 1/(−D).

• Result: Virtual SzSz-processes lead to non-magnetic scattering (does not depend on the spin of the
scattered). This is what an ordinary impurity potential would do. → Neglect these terms, since also
absent in initial Hamiltonian.

• S−S+ = 1/2− Sz and S+S− = 1/2 + Sz processes: Create virtual electron c†q+σ

H0+
1

E −H0
H+0 |ψ0⟩ ≃

1
−D

J2
⊥

∑
k,q+,q′

(
c†k↑cq+↓S

− + c†k↓cq+↑S
+
) (
c†q+↑cq′↓S

− + c†q+↓cq′↑S
+
)
|ψ0⟩

= 1
−D

J2
⊥ν0D (1− 1/b)

∑
k,q′

c†k↑cq′↑S
−S+︸ ︷︷ ︸

1/2−Sz

+ c†k↓cq′↓S
+S−︸ ︷︷ ︸

1/2+Sz

 |ψ0⟩

= 1
D
J2
⊥ν0D (1− 1/b)Sz

∑
k,q′

(
c†k↑cq′↑ − c†k↓cq′↓

)
|ψ0⟩+ (pot. scatt.− from 1/2− terms)

and we do the same for the virtual hole cq−σ:

H0−
1

E −H0
H−0 |ψ0⟩ ≃

1
−D

J2
⊥
∑

k,q−,q

(
c†q−↑ck↓S

− + c†q−↓ck↑S
+
) (
c†q↑cq−↓S

− + c†q↓cq−↑S
+
)
|ψ0⟩

= 1
−D

J2
⊥ν0D (1− 1/b)

∑
k,q

(
ck↓c

†
q↓S

−S+ + ck↑c
†
q↑S

+S−
)
|ψ0⟩

= 1
D
J2
⊥ν0D (1− 1/b)Sz

∑
k,q

(
c†q↑ck↑ − c†q↓ck↓

)
|ψ0⟩+ (pot. scatt.)

which is the same as in the virtual electron term.

• In summary: We read off for the effective Sz-term:

Jz(b) = Jz + 2ν0J
2
⊥ (1− 1/b) (168)

• Remaining processes (SzS+ = S+/2, ...) analogously lead to:

J⊥(b) = J⊥ + 2ν0J⊥Jz (1− 1/b) (169)

• No need for re-scaling, as the Hamiltonian stays in its initial form and D does not appear explicitly.
Understand Jz,⊥(b) as the result of iterative application of perturbation theory, integrating out bath
electrons with |εk| ∈ [D/b,D].

• The dimensionless quantity which should be small for the equations above to be trusted is Jz,⊥ν0.
Use infinitesimal b (via b = el) to write flow:

∂l (Jzν0) = 2 (J⊥ν0)2 , ∂l (J⊥ν0) = 2 (J⊥ν0) (Jzν0) (170)
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Interpretation of flow and Kondo scale

• The flow diagram is shown in Fig. 12(d). There is a line of fixed points at J⊥ = 0.

• Observations: (Jzν0)2 − (J⊥ν0)2 = const. Follows from ∂l(...) = 0.

• Jzν0 never decreases, since ∂l (Jzν0) ≥ 0. Have a line of stable fixed points (Jzν0, 0) for Jz ≤ 0 with basin
of attraction |J⊥| ≤ |Jz| (gray).

• The isotropic ferromagnetic Kondo model Jz = J⊥ ≡ J < 0 is asymptotically free (flows to J = 0).

• All other initial conditions with J⊥ ̸= 0 flow to strong coupling and the flow equations break down
(“runaway flow”). At which scale does that happen?

• Specialize to isotropic Heisenberg coupling J⊥ = Jz ≡ J with 0 < ν0J ≪ 1. Find the Kondo scale
Dl ≡ TK where strong coupling is reached.
Integrate the flow

d (ν0J)
(ν0J)2 = 2dl → 1

Jlν0
− 1
Jν0

= 2l = 2 ln
(
D

Dl

)
(171)

The flow has to terminate at Dl ≡ TK when the dimensionless running coupling constant Jlν0 becomes
O(1). ( 1

Jlν0

)
︸ ︷︷ ︸
O(1)

−
( 1
Jν0

)
︸ ︷︷ ︸
≫1

= 2 ln
(
D

TK

)
(172)

We neglect the left term and obtain 1
Jν0
≃ 2 ln

(
D
TK

)
or

TK ≃ D exp
(
− 1

2Jν0

)
(173)

• Note: This result does not depend on the exact value O(1) where we stopped the flow.

4.6 Example: Fermi-Liquid theory – RG with a Fermi surface

[Polchinski, arxiv hep-the/9210046 (1999)] and [Shankar, Rev. Mod. Phys. 66, 129 (1994)]

• Question: Real metals have (strong) Coulomb interactions.
Why is the model of non-interacting electrons still working so well?

• Answer by Lev Landau (1956): Landau’s Fermi liquid theory.
Main idea: Most important excitations of metals (with dispersion εk) are particle-hole pairs close to the
Fermi surface εk = µ, see Fig. 13(a).

• At low enough energies, these excitations behave like non-interacting particles/holes. They carry charge
±e and spin S = 1/2 and can be described as free Fermi gas.
Some parameters differ from bare electrons, i.e. effective mass m⋆ ? m0.

• Here: RG perspective.

Model

• Modeling:
H0 =

∑
k,σ

(εk − µ) c†kσckσ (174)

assume εk = k2/(2m) and kF the radius of Fermi surface defined by εk
!= µ in D = 2, 3.

Remark: Parabolic dispersion could approximate band-bottom of nearest-neighbor hopping on hyper-
cubic lattice, εk = −t

∑D
µ=1 cos kµ ≃ −Dt+ t

2k
2.
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!

(a) (b) (c)

Figure 13: Landau’s Fermi liquid theory: (a) Definition of Fermi sea (gray) and Fermi surface (red). (b) Scaling towards
Fermi surface. (c) Wave-vectors at a 2-particle scattering process (before application of the momentum conserving δ-
function), in the generic case (left) and for vanishing initial momentum k1 = −k2 (right).

• Consider excitation from k with k ≃ kF to wave-vector k + q with q ≪ kF :

εk+q − εk = (k + q)2

2m − k2

2m = k
m
· q +O(q2) ≃ vF · q (175)

where vF = ∂kεk|k=kF
is the Fermi velocity (linear approximation).

• RG: Want to integrate out high-energy excitations successively and take into account their effect on low
energy degrees of freedom.

• Problem: Low energy modes don’t live at k = 0, but at the Fermi surface k = kF → need to scale towards
kF , see Fig. 13(b).

Gaussian action

• Gaussian imaginary time action with Ω ≡ (θ, ϕ) the angular coordinate.

S0 =
ˆ
dτ

ˆ
dΩ
ˆ +Λ

−Λ

dq

2π ψ̄ (τ, q,Ω) [∂τ + vF q]ψ (τ, q,Ω) (176)

This is a collection of independent one-dimensional theories parameterized by Ω = (θ, ϕ).
If the curvature for the Fermi surface is taken into account, the theories are coupled → irrelevant pertur-
bation.

• RG for S0: Integration over ψ(q) with q ∈ ±(Λ/b,Λ), decouples from integration over ψ(q) with |q| ≤ Λ/b,
thus only need to consider re-scaling step. Want to keep vF fixed, we find

Ω→ Ω
q → q′ = qb

τ → τ ′ = τ/b

ψ → ψ′ = b−1/2ψ

which indeed reproduces S0:

S0 =
ˆ
dτ

ˆ
dΩ
ˆ +Λ/b

−Λ/b

dq

2π ψ̄ (τ, q,Ω) [∂τ + vF q]ψ (τ, q,Ω)

→ b

ˆ
dτ ′
ˆ
dΩ
ˆ +Λ

−Λ
b−1dq

′

2π b
1/2ψ̄′

(
τ ′, q′,Ω′

)
b−1 [∂τ ′ + vF q

′] b1/2ψ′
(
τ ′, q′,Ω′

)
= S0
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• Strategy: Write down perturbations to S0, apply the above re-scalings, and then decide if they are
relevant, marginal, or irrelevant.

• Example: Deformations of Fermi surface m(Ω)ψ̄ψ:
ˆ
dτ

ˆ
dΩ
ˆ +Λ

−Λ

dq

2πmψ̄ψ →
ˆ
dτ ′
ˆ
dΩ
ˆ +Λ

−Λ

dq′

2π mb︸︷︷︸
m′=mbym

ψ̄′ψ′ (177)

and we read off ym = 1, so m(Ω) is relevant.
Can absorb m(Ω) in definition of dispersion εk, need to expand around correct Fermi surface, shape can
change under RG.

Interactions - naive approach

• Interaction U couples different Ω. Need to preserve 3d momentum,

ki = (kF + qi)Ωi (178)

with Ωi =
(

cosϕi sin θi, sinϕi sin θi cos θi
)T

vectors on the unit sphere:

Sint =
ˆ
dτ

4∏
i=1

ˆ
dΩi

ˆ +Λ

−Λ

dqi
2π ψ̄1ψ̄2ψ3ψ4U (1, 2, 3, 4) δD (k1 + k2 − k3 − k4) (179)

• Rescaling for δ-function: In Eq. (178), the qi scale to zero, but the kF stay fixed. Thus

δD (k1 + k2 − k3 − k4) ≃ 1
kF
δD (Ω1 + Ω2 −Ω3 −Ω4) (180)

and the δ-function does not change under rescaling since Ωi are dimensionless.

• Rescaling of interaction U :

Sint =
ˆ
dτ ′

4∏
i=1

ˆ
dΩi

ˆ +Λ

−Λ

dq′i
2π ψ̄

′
1′ψ̄′2′ψ′3′ψ′4′b1−4+4×(1/2)U

(
1′, 2′, 3′, 4′

) 1
kF
δ (Ω1 + Ω2 −Ω3 −Ω4) (181)

so that U ′ = b−1U which means
yU = −1 (182)

• Result: Electron-electron interactions are irrelevant.

• Strong argument for Fermi-Liquid theory: Interactions become weaker as energy is lowered and nearly
free electron gas is good description of conductor at low energy scales.

Interactions revisited

• Fact: Superconductivity is interaction driven phenomenon.
Q: How can we ever get superconductivity if interactions become weaker and weaker at low energy? →
What is wrong with our argument?

• Parameterize scattering process k1,2 → k3,4 with [see Fig. 13(c)]

k3 = k1 + kF δΩ + δq
k4 = k2 + kF δΩ̃ + δq̃

so that
δD (k1 + k2 − k3 − k4) = δD

(
kF δΩ + δq + kF δΩ̃ + δq̃

)
(183)
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• For generic momenta k1,2,3,4, the large momenta kF δΩ and kF δΩ̃ are linearly independent vectors in
D-dimensional space. The above argument around Eq. (180) is valid.

• Consider special case where directions Ω1,2 of scattering electrons are opposite, Ω1
!= −Ω2.

For a parity-symmetric Fermi surface (with ε−k = εk): Large variational momenta kF δΩ and kF δΩ̃ come
from the same tangential planes and there remains an explicit δ-function constraint on the q-direction:

δD (k1 + k2 − k3 − k4) = δD−1
(
kF δΩ + kF δΩ̃

)
δ (δq + δq̃) (184)

• Now, we get and additional factor b upon rescaling

δ (δq + δq̃) = δ

(
δq′ + δq̃′

b

)
= bδ

(
δq′ + δq̃′

)
(185)

which yields yU = 0.

• Conclusion: Interactions corresponding to vanishing incoming (and outgoing) momenta

U (Ω1,−Ω1,Ω3,−Ω3) ≡ V (Ω1,Ω3) rot. invariant= V (Ω1 ·Ω3) (186)

are marginal under re-scaling!

• Comment:

– Interpretation: Interactions are generically irrelevant, but special kinematics can change this to
marginal.

– Many Feynman diagrams are irrelevant, unless certain momentum restrictions apply, see e.g. for
p = p′ for the current in Fig. 14(a).

– In D=1, kF δΩ = 0, so all interaction is always marginal.

• One-loop correction of the marginal interaction in Fig. 14(b) to understand fate of interaction. Expand
V (Ω1 ·Ω3) to angular momentum channels L. Then find the flow [Shankar, Rev. Mod. Phys. 66, 129
(1994)]:

∂lVL = − 1
4πV

2
L (187)

so that:

– Repulsive VL > 0 are marginally irrelevant, ∂l|VL| = − 1
4π |VL|

2. Example: Screened Coulomb
interactions.

– Attractive VL < 0 are marginally relevant, ∂l|VL| = + 1
4π |VL|

2. Example: Effectively attractive
interactions from phonons at initial scale.

• Initial attractive interaction leads to superconductivity: Solve flow

VL(l) = VL(0)
1 + lVL(0)/(4π) (188)

diverges at l⋆ = 4π/VL(0) or
Λ⋆ = Λe−l⋆ = e−4π/|VL(0)|=̂TBCSc (189)

Comment: Similar in spirit to Kondo temperature TK which we derived from run-away flow of marginal
coupling. But here: Phase transition with broken U(1) symmetry.

• Initial repulsive interaction: It the Fermi liquid stable? Not in general, irrelevant couplings can generate
some VL < 0 which then run away.

• Consistent with Kohn-Luttinger Theorem: Every Fermi liquid with εk = ε−k is unstable towards super-
conductivity at sufficiently small temperatures.
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(a) (b)

i) ii) iii)

Figure 14: (a) The loop corrections ii),iii) to scattering i) from p to p′ are generally RG-irrelevant unless p = p′ when
the 4-point interaction becomes marginal. (b) One-loop renormalization of marginal interaction.

4.7 Example: Crossover theory and finite-size scaling

• More realistic systems with more complicated fixed point structure and flow diagram. Make connection
to phase diagrams.

• Investigate cross-over behavior where multiple fixed points govern properties of the same system on
different lenght scales.

Crossover from explicit symmetry breaking in Heisenberg magnet

• Model O(3)-symmetric Heisenberg magnet [s(r) = (sx(r), sy(r), sz(r))] with single ion uniaxial anisotropy:

βH = −1
2
∑
r,r′

K(r − r′)s(r) · s(r′)−D
∑
r

sz(r)2 (190)

• 3 limiting cases:

– D = 0: Heisenberg universality class, Heisenberg fixed point H with relevant thermal ut,H and y′H
for a scaling variable involving D.

– D ≫ 0 fixes s ∥ sz: Ising physics with critical Ising fixed point I with relevant thermal ut,I .
– D ≪ 0 fixes s ⊥ sz: XY physics,with XY fixed point XY with relevant thermal ut,XY .

• For general D: Plausible guess of flow diagram projected into D,K−1 ∝ T plane, see Fig. 15(a). Shape
close to H will be found later.

• For small D ̸= 0 we have either Ising or XY like critical behaviour in crossing from ordered to disordered
phase.

• Suppose D > 0 but small and vary T (walk on dashed blue line).

– System at point A: Scaling of f(t,D) (and other observables) determined by H (RG trajectory never
sees I)

– System at point B: Critical behavior determined by I.

• For formal description of case A, consider the scaling equation for fsing, Eq. (11) for flow close to H:

fsing (t,D) = b−dfsing
(
bytH t, by

′
HD

)
(191)

Chose b such that bytH t = O(1) and find scaling form with αH = 2− d/ytH

fsing (t,D) = |t|2−αH Ψ

D |t|
≡ϕ

−
︷ ︸︸ ︷
y′H/ytH

 (192)

with ϕ = y′H/ytH defined as cross-over exponent given in terms of RG eigenvalues at H.
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(a)

Ising order

XY order

Heisenb. order
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(b)

H

I

XY

A B

Figure 15: (a) RG flow diagram of anisotropic Heisenberg model, Eq. (190) (b) Finite-size (L) induced changes
for the critical susceptibility peak.

• Application: Specific heat C ∝ ∂2
t fs.

– For D = 0, C ∝ |t|−αH as expected.
– For D > 0, no significant departures from D = 0 behavior until |t| so small that D|t|−ϕ ≃ 1. Define

this |t| = tX = D1/ϕ as crossover temperature.
– For |t| ≪ tX (case B), the I-fp comes into play and we should observe C ∝ |t|−αI . Now introduce

this behaviour by hand as boundary condition to Ψ!

• Rewrite scaling form of C with new scaling function Ψ̃ designed to carry all the |t| dependence:

C ∝ |t|−αH Ψ
(
D |t|−ϕ

)
= D−αH/ϕ

(
D|t|−ϕ

)αH/ϕ Ψ
(
D |t|−ϕ

)
︸ ︷︷ ︸

≡Ψ̃(tD−1/ϕ)

(193)

• We know that for small |t|, we must have C ∝ A(D) (t− tc(D))−αI so Ψ̃ must have singularity

Ψ̃
(
tD−1/ϕ

)
∝ ã

(
tD−1/ϕ − b̃

)−αI (194)

with constants ã, b̃. We find:
C ∝ ãD(αI−αH)/ϕ︸ ︷︷ ︸

A(D)

(
t− b̃D1/ϕ

)−αI (195)

• We read off two dependencies of the C(t)-peak on D:

1. Amplitude A(D) ∝ ãD(αI−αH)/ϕ, αI − αH > 0, so Ising peak increases with increasing D.
2. Shift of critical temperature which gives phase boundary close to H: tc ∝ D1/ϕ. Since it can be

shown that ϕ < 1, we have form as in Fig. 15.

• Model-independent RG prediction: Amplitude A(D) and shift of critical temperature both related to
ϕ = y′H/ytH . This could be observed by changing D in experiment.

Crossover due to finite size (finite-size scaling)

• Consider system with isotropic fixed point govering critical behavior, but only a finite piece with linear
dimension L = Na (e.g. cube L3 with N3 sites, here N is number of sites per direction). Under RG
(a→ ba, e.g. real-space RG for spin model) but keep L fixed so that(

N−1
)
→ b

(
N−1

)1
(196)
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• Think of N−1 as a relevant scaling variable with eigenvalue y = 1, thermodynamic limit is N−1 → 0.

• Assume that N−1 does not affect the RG equations for the coupling t (ok for short-range interactions),
obtain scaling of free energy:

fsing
(
t, h,N−1

)
= b−dfsing

(
bytt, byhh, bN−1

)
(197)

• Study implications of this for zero field susceptibility, χ ∝ ∂2fs/∂h
2,in Eq. (197) set bytt = O(1) we find

the scaling form
χ
(
t,N−1

)
∝ |t|−γ ϕ

(
N−1|t|−ν

)
= |t|−γ ϕ (ξ/N) (198)

• Conclusion: Behavior of χ for N ≫ ξ resembles thermodynamic limit where N →∞. When |t| decreases
and therefore ξ ∝ t−ν increases things change, crossover at ξX/N = 1 or tX ≃ N−1/ν where finite size
effects become pronounced.

• What happens close to the critical temperature t = 0 of N → ∞ system? In finite system, there are no
thermodynamic singularities, peak in susceptibility must be rounded. Rewrite scaling form such that t
only appears in the scaling function (same trick as in Eq. (193)):

χ
(
t,N−1

)
∝ Nγ/νψ̃

(
tN1/ν

)
(199)

where ψ̃(x) will have a rounded maximum, but not necessarily at x = 0. Predictions:

– Shift of effective critical temperature is ∝ N1/ν . Origin and sign of the shift:
Periodic boundary conditions quantize momenta and thus suppress fluctuations, peak is shifted to
right.
Open bounary conditions allow enhanced fluctuations at boundary, peak is shifted to left.

– Width (over t) of peak scales with ∝ N1/ν (ψ̃(x) has a certain width, replacing x→ tN1/ν)
– Height of the peak scales as Nγ/ν

Exercises

Exercise 4.1. Real-space RG for the Ising model in two dimensions

Consider the nearest-neighbor (n.n.) ferromagnetic (classical) Ising model on a square lattice in two dimensions
and in the absence of a magnetic field,

−βH =
∑
n.n.

∑
{si}=±1

Ksisj , (200)

with K = −βJ > 0 and N sites with periodic boundary conditions. This exercise explores the Migdal-Kadanoff
real-space RG for this model.
1) Decimation step: Color the sites of the square lattice as a checkerboard and trace over the white sites. Show
that the partition function ZN can be written exactly in terms of the spins on the N ′ = N/2 black sites, s′j as

ZN = eN
′K′

0
∑

{s′
i}=±1

exp

K ′∑
n.n

s′js
′
k + L′

∑
n.n.n.

s′js
′
k +M ′

∑
pl.

s′js
′
ks
′
ls
′
m

 (201)

where new couplings for next-nearest neighbors (n.n.n., L′) and on plaquettes (pl., M ′) had to be added.

K ′0 = ln 2 + 1
2 ln cosh 2K + 1

8 ln cosh 4K

K ′ = 1
4 ln cosh 4K

L′ = 1
8 ln cosh 4K

M ′ = 1
8 ln cosh 4K − 1

2 ln cosh 2K
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2) Iteration: To make progress, approximate M ′ = 0 and assume that K ≪ 1. Assume that the n.n.n. coupling
L is present from the beginning and argue that the RG transformation reads

K ′ = L+ 2K2, L′ = K2. (202)

Sketch the flow diagram in the K − L−plane and find the non-trivial fixed point of (202). Linearize these
equations around the fixed point and show that the critical exponent is

ν = ln
√

2
ln
[
(2 +

√
10)/3

] = 0.6385. (203)

Discuss reasons for the deviation of this value from the exact result ν = 1.

Exercise 4.2. Real-space RG for disordered Heisenberg chain

This exercise applies the real-space RG to a spin-1/2 Heisenberg chain with disordered anti-ferromagnetic
couplings Ji > 0 chosen randomly from a (normalized) probability distribution P (J) for each site i:

H =
∑
i

JiSi · Si+1. (204)

1) Decimation step: Assume strong disorder, meaning a wide distribution P (J). Assume Jn ≡ Ω to be the
largest coupling in the whole chain, with the neighboring couplings likely satisfying Jn±1 ≪ Ω. Diagonalize
the isolated strongest-bond subsystem Hn = JnSn · Sn+1, assume it to be in its ground-state (singlet) and
compute the resulting effective coupling between the two neighboring spins, in lowest non-trivial (second)
order perturbation theory. You should find again a Heisenberg term, Jeffn−1,n+2Sn−1 · Sn+2, with

Jeffn−1,n+2 = Jn−1Jn+1
2Ω (205)

which is much smaller than Jn±1. After the decimation step, we have retained again a Heisenberg chain where
the largest bond is now what used to be the second-largest in the initial chain. Assuming that this scheme
could be continued, draw a schematic of the ground state spin configuration of the physical chain where singlet
bonds are indicated by a line. This state is called a random-singlet state.
2) Iteration: Instead of the RG flow of a few coupling constants, we are now seeking to describe the flow of the
full distribution function PΩ(J). To facilitate the math, introduce

ζi ≡ ln (Ω/Ji) ∈ [0,∞), (206)

neglect the factor 2 in Eq. (205) and define the RG flow parameter to be

Γ ≡ ln (Ω0/Ω) (207)

where Ω is the largest bond at the respective RG step and Ω0 is the largest bond of the initial chain. By
eliminating the strongest bonds Jm within Ω− dΩ < Jm < Ω, show that the flow equation for PΓ(ζ) takes the
form

∂PΓ(ζ)
∂Γ = ∂PΓ(ζ)

∂ζ
+ PΓ (0)

ˆ
dζl

ˆ
dζrPΓ (ζl)PΓ (ζr) δ (ζ − ζl − ζr) (208)

where an overall rescaling term has been dropped to ensure conservation of the total probability (show this).
3) Solve the flow equation (208) by rewriting it for the distribution function Q(x) of the quantity x ≡ ζ/Γ.
You should find

0 = (x+ 1) ∂Q(x)
∂x

+Q(x) +Q (0)
ˆ
dxl

ˆ
dxrQ(xl)Q(xr)δ (x− xl − xr) (209)

Solve this equation for Q(x) by guessing the simple function that retains its form under convolution, the
exponential, Q(x) = e−x. Show that it corresponds to

PΩ(J) = 1
Γ(Ω)Ω

(Ω
J

)1−1/Γ(Ω)
. (210)
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Consider the flow of the mean of ζ, ⟨ζ⟩, and argue that our initial strong disorder assumption is better and
better fulfilled as we iterate the flow.
It turns out that our solution (210) represents a stable fixed point which is globally attractive and thus universal,
i.e. all initial distributions approach it as Γ grows. It is called infinite-randomness fixed point.
4) Physical properties: Show that the density of surviving spins (not locked up in a singlet) as a function of
energy scale Ω (or Γ, respectively) is

n = n0/Γ2 (211)

where n0 is the initial spin density. From this, argue that:

• (a) The excitation energy of singlets of length L is JL ∼ e−
√
L. (This “infinite-randomness” scaling is in

strong contrast to the usual quantum-critical scaling E ∼ L−z.)

• (b) The magnetic susceptibility as a function of temperature T is χ(T ) ∼ n0
T ln2(Ω0/T ) . You will have to

use that the susceptibility of a free spin scales as χ0 ∼ 1/T .

Exercise 4.3. Fixed points

Consider a system with three coupling constants (r, g1 ≥ 0 and g2), which obey the following set of RG flow
equations

∂lr = 2r − 24r(g1 + g2) (212)
∂lg1 = (4−D)g1 − 8(n+ 8)g2

1 − 48g1g2 (213)
∂lg2 = (4−D)g2 − 72g2

2 − 96g1g2 (214)

where n ∈ N is some parameter and D is the spatial dimension of the system.

1. Determine the set of RG fixed points (hint: there are four of them). Consider the trivial fixed point
r = g1 = g2 = 0. Below which dimension D do the couplings g1 and g2 become relevant perturbations to
the trivial fixed point?

2. Set ε = 4 − D > 0 to be small (ε ≪ 1), linearise the RG flow equations around each fixed point and
determine the corresponding RG eigenvalues, left eigenvectors and the scaling variables. Which of the
fixed points have only one relevant perturbation (=critical fixed points)? These can control the critical
properties of a continuous phase transition. Discuss the cases n > 4 and n < 4 separately.

3. Set r = 0 and sketch the flow diagrams in the (g1 ≥ 0, g2) half-plane for the n > 4 and n < 4 case. For
concreteness, take n = 5 and n = 3, respectively.

4. Consider the n > 4 case and determine the correlation length exponent ν up to order O(ε) at the critical
fixed point.

Exercise 4.4. One-loop flow equations for the O(N)-symmetric φ4-theory

Generalize the φ4-theory for an N -component vector field, φ(k)→ φ(k) = (φ1(k), φ2(k), ..., φN (k)) for k ∈ RD
with the action

S [φ] = 1
2

ˆ Λ0

k
[r0 + c0k

2]
N∑
i=1
|φi(k)|2 + u0

4!

ˆ
r

N∑
i,j=1

φ2
i (r)φ2

j (r). (215)

1. Show that the action is invariant under O(N) rotations, φi →
∑N
j=1Mijφj where M is an orthogonal

N ×N matrix.

2. Fourier transform the interaction term to momentum space and perform the RG step in analogy to the
N = 1 case of the lecture. Show that the flow equations for the dimensionless couplings r̄, ū take the
form

∂lr̄ = 2r̄ + (N + 2) ū
6 (1 + r̄) , ∂lū = (4−D)︸ ︷︷ ︸

ϵ

ū− (N + 8) ū2

6 (1 + r̄)2 (216)
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Hint: Coming from the N = 1 case, when generalizing to N > 1, you only need to worry about combina-
torial factors. They can be tracked by using Feynman diagrams with a vertex j > −− < i which carries
flavor-indices of the fields. Internal loops representing integrals over larger fields with flavor indices that
are not fixed by outer (smaller) fields lead to a factor of N .

3. Repeat the epsilon-expansion analysis for the non-trivial fixed point appearing for D < 4 and find the
critical exponents to first order in ϵ. Set D = 3, N = 3 and find an approximation for ν of the three-
dimensional Heisenberg universality class governing magnetic phase transitions in classical spin systems
with 3-component magnetization vector. The exact value is ν = 0.71.

Exercise 4.5. Irrelevant couplings

This exercise will discuss the effect of irrelevant couplings on physical observables.

1. Consider the RG flow equations for one relevant and one irrelevant coupling,

∂lu = yuu+A(u, v)
∂lv = yvv +B(u, v)

where yu = 1 > 0 and yv = −1 < 0 and argue that for small |u|, |v|, the functions A,B have the following
expansions:

A(u, v) = a1u
2 + a2uv + a3v

2 + ...

B(u, v) = b1u
2 + b2uv + b3v

2 + ...

Specialize to A(u, v) = −uv and B(u, v) = −u2 and plot the flow (ul, vl) parameterized by l ∈ [0, 2] in the
u−v plane starting from the points (0.2, 0) and (0.2, 0.3). Use a computer program (e.g. Mathematica’s
NDSolve) to solve this task. Show numerically that for large enough l, the flow for the initial couplings
(0.2, 0.3) can be reproduced by the flow starting from an initial point (ũ0, 0) and give the approximate
value of ũ0. This means the effect of a non-zero irrelevant coupling can be absorbed into a redefinition of
the initial relevant coupling and we usually don’t need to consider the irrelevant couplings in a scaling
equation like Eq. (11).

2. The conclusion above does not hold if the scaling functions exhibit a singular dependence on an irrelevant
coupling v so that it cannot be set to zero. This is called a dangerously irrelevant coupling. A famous
example where this happens is the φ4-theory for D > 4, see Eq. (50). As a preparation, consider the
Gaussian action without interaction term:

SΛ0 [φ] = −h0φ(k = 0) + 1
2

ˆ Λ0

k

[
r0 + c0k

2
]
φ(−k)φ(k) (217)

(a) Integrate out the fields for Λ0/b < k < Λ0 (which just adds a field independent term that we don’t
consider) and re-scale momenta and fields keeping c0 fixed to derive the RG relations r′ = bytr0 and
h′ = byhh0 with yt = 2 and yh = 1 +D/2.

(b) Add an interaction term

SintΛ0 [φ] = u0
4!

ˆ Λ0

k1,2,3,4

(2π)Dδ (k1 + ...+ k4)φ(k1)φ(k2)φ(k3)φ(k4) (218)

disregard the terms generated by momentum shell integration (they are considered in Sec. 4.4) and
do the above rescaling step, you should find yu = 4−D so that the interaction u becomes irrelevant
for D > 4. [Careful: in the toy model of part (1.) above, the irrelevant coupling was called v.] In
the following, consider the case D > 4.

(c) Using the standard scaling ansatz for the free energy fsing(t, h) without irrelevant fields, determine
the critical exponent β.
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(d) As β in (c) does not agree with the result of the Gaussian approximation, β = 1/2 (derived without
RG) we need to modify the scaling ansatz including the irrelevant coupling u. Argue that the
magnetization m = 1

V ⟨φ(k = 0)⟩ has the scaling form

m (t, h, u) = byh−Dm (bytt, byhh, byuu) , (219)

set h = 0 and derive the scaling relation

m (t, 0, u) = |t|−(yh−D)/ytm
(
±1, 0, |t|−yu/yt u

)
. (220)

According to Landau theory, a finite u is needed to get a spontaneous magnetization at h = 0 and
we cannot set the last argument to zero. Show that Landau theory predicts m(−1, 0, ū) ∝ ū−1/2

and use this to derive β = 1/2.

Exercise 4.6. Kondo impurity in gapless fermionic system

The Kondo impurity described by the Hamiltonian in Eq. (165) can be studied in the case where the density
of states (DOS) as a function of energy is not just a constant (ν0) as in the lecture but given by a power law,

ν(E) ≡
∑

k
δ (E − ξk) !=

{
C |E|r : |E| ≤ D
0 : |E| > D

(221)

with r ≥ 0 and ξk the bandstructure that already included the chemical potential.

1. Consider the case of two-dimensional graphene with ξk = ±ℏv|k|: What r corresponds to this situation?
Here, ± correspond to conduction and valence band of a single spin-polarized Dirac node.

2. For the isotropic case J⊥ = Jz = J and general r, generalize the poor man’s scaling approach from the
lecture to find the flow equation for Jl . Combine this with νl ≡ ν(De−l) to obtain the flow equation for
the dimensionless parameter Jlνl. Draw the RG flow diagram for J > 0 and discuss the changes to the
r = 0 case treated in the lecture.
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Part II

Functional Renormalization Group
5 Functional methods

Aims:

• Prepare standard formulation of the fRG.

• Introduce Green functions (correlators) via source-field derivatives of generating functions.

• Essential part of Green functions: Vertex functions.

5.1 Partition function and conventions

• Assume partition function Z written as unconstrained functional integral:

Z =
ˆ
D [Φ] exp[−(S0 [Φ] + S1 [Φ])︸ ︷︷ ︸]

S[Φ]

(1)

• Treat classical and quantum systems, fermionic and bosonic particles in one formalism:
Superfield Φ = (Φα1 ,Φα2 , ...) with single-particle multi-index α containing Matsubara frequency or imag-
inary time, momentum or position, spin, ...

• (Anti-)commutation properties encoded by Φα1Φα2 = ζαΦα2Φα1 , e.g. ζ = ±1 for bosons/fermions. Define
statistics matrix Z with Zαα′ = δαα′ζα.

• Gaussian part in (anti-)symmetrized notation:

S0 [Φ] = −1
2

ˆ
α

ˆ
α′

Φα

[
G−1

0

]
αα′

Φα′ ≡ −1
2
(
Φ,G−1

0 Φ
)

(2)

Product is defined as (Φ,Ψ) ≡
´
α ΦαΨα. We assume properly (anti-)symmetrized G0, i.e. in each sector

ZG0 = GT
0 (3)

• Examples: (recall that in the T → 0 and infinite volume limit: 1
βV

∑
ω,k →

´
dω
2π
´

dk
(2π)D ≡

´
ω

´
k)

1. Classical φ4-theory: {Φα} → {φk}, ζ = 1,
´
α →

´
k,

S0 [φ] = 1
2

ˆ
k

[
r0 + c0k

2
]
φ−kφ+k (4)

leads to [
G−1

0

]
kk′

= −(2π)DδD
(
k + k′

) [
r0 + c0k

2
]

(5)

2. Spinless fermions: Need two types of fields, {Φα} →
{
ψiω,k, ψ̄iω,k

}
, ζ = −1, abbreviate K ≡ (iω,k),´

ω

´
k ≡
´
K . We have α = (ψ,K) or (ψ̄,K).

Recall Fourier-transform of (independent!) Grassmann fields ψ̄ and ψ are oppositely defined:
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ψ(kω) =
´ β

0 dτ
´
drψ(rτ)e−ikr+iωτ , ψ̄(kω) =

´ β
0 dτ

´
dr ψ̄(rτ)e+ikr−iωτ .

S0
[
ψ̄, ψ

]
= −

ˆ
K
ψ̄KG

−1
0 (K)︸ ︷︷ ︸
iω−ξk

ψK

= −1
2

ˆ
K

(
ψK , ψ̄K

)( 0 ζG−1
0 (K)

G−1
0 (K) 0

)(
ψK
ψ̄K

)

= −1
2

ˆ
K,K′

(
ψK , ψ̄K

)
(2π)D+1 δ

(
ω − ω′

)
δD
(
k− k′

)( 0 ζG−1
0 (K)

G−1
0 (K) 0

)
︸ ︷︷ ︸

≡[G−1
0 ]

αα′

(
ψK′

ψ̄K′

)

5.2 Green functions and generating functionals

• Disconnected n-point Green functions: (Mind the index-ordering!)

G(n)
α1...αn

=
´
D [Φ] e−S[Φ]Φαn ...Φα1´

D [Φ] e−S[Φ] = ⟨Φαn ...Φα1⟩ (6)

• Sourcefield trick: Want to write generating functional

G(n)
α1...αn

= δnG [J ]
δJαn ...δJα1

|J=0 (7)

This is achieved by introducing sourcefields J :

G [J ] ≡
´
D [Φ] e−S[Φ]+(J,Φ)ˆ
D [Φ] e−S[Φ]︸ ︷︷ ︸

Z

(8)

Remarks:

– G [J = 0] = 1.
– Sources J are of same type as Φ and are mutually (anti-)commuting, (J,Φ) commute with all other

terms in S.
– G

(n)
α1...αn are fully (anti-)symmetric under index exchange.

• The G(n)
α1...αn are the expansion coefficients of G [J ] (now the index-ordering matches!)

G [J ] =
∞∑
n=0

1
n!

ˆ
α1...αn

G(n)
α1...αn

Jα1 ...Jαn (9)

• Connected Greens functions do not contain disconnected contributions when Wick theorem is applied to
them.
Define connected generating functional [in G [J ] replace denominator by Z0 and put natural logarithm in
front - Proof: Linked-cluster theorem]

Gc [J ] = ln
( Z
Z0
G [J ]

)
= ln

(´
D [Φ] e−S[Φ]+(J,Φ)´
D [Φ] e−S0[Φ]

)
=
∞∑
n=0

1
n!

ˆ
α1...αn

G(n)
c,α1...αn

Jα1 ...Jαn (10)

G(n)
c,α1...αn

= δnGc [J ]
δJαn ...δJα1

|J=0
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... ...

...

Figure 16: Graphical representation of the connected Green function (left) and its two-point version also called
the propagator (right).

• Example: Relation between connected and disconnected GFs

G(0)
c = ln

( Z
Z0

)
G(1)
c,α1 = G(1)

α1 = ⟨Φα1⟩

G(2)
c,α1α2 = G(2)

α1α2 −G
(1)
α1 G

(1)
α2 = ⟨Φα2Φα1⟩ − ⟨Φα2⟩ ⟨Φα1⟩

The first line is equivalent to the interaction correction to the free energy (up to factor T ).

• Graphical representation G
(n)
c,α1...αn : Empty circle with arrow pointing to α1-leg, use abbreviated “line”

notation for 2-point function.

Gc [J ] for Gaussian theory

• Can find Gc [J ] explicitly for Gaussian theory (S1 = 0):

eG0c[J ] =
´
D [Φ] e−

1
2 (Φ,G−1

0 Φ)+(J,Φ)´
D [Φ] e−S0[Φ] (11)

In numerator, shift Φ = Φ′ −GT
0 J and obtain

−1
2
(
Φ,G−1

0 Φ
)

+ (J,Φ) = −1
2
(
Φ′ −GT

0 J,G−1
0

[
Φ′ −GT

0 J
])

+
(
J,Φ′ −GT

0 J
)

clean up and use
(
GT

0 Ψ,Φ
)

= (Ψ,G0Φ). The term ∝ Φ′2 cancels with denominator. Comparing the
exponents:

G0c [J ] = −1
2
(
J,GT

0 J
)

= −1
2

ˆ
α

ˆ
α′

[G0]αα′ Jα′Jα (12)

so that

G
(2)
0c,α′α = ⟨ΦαΦα′⟩0 = δ2G0c [J ]

δJαδJα′
|J=0

(12)= − [G0]αα′ (13)

• Definition: Differential operator to generate matrix in superfield space[
δ

δJ
⊗ δ

δJ

]
αα′
≡ δ2

δJαδJα′
(14)

so that from above
G0 = −

(
δ

δJ
⊗ δ

δJ

)
G0c [J ] |J=0 (15)
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...

Figure 17: Graphical representation of the Dyson equation.

5.3 Propagator and self-energy

• G
(2)
c,αα′ is called the propagator or sometimes simply “Green function” of the theory. Also: “Dressed” or

“full” propagator.

• In analogy with the last equation, but for general (not necessarily Gaussian) theory, define

G ≡ −
(
δ

δJ
⊗ δ

δJ

)
Gc [J ] |J=0 (16)

and we read off (see right part of Fig. 16)

G
(2)
c,αα′ = ⟨Φα′Φα⟩ = −Gα′α (17)

• Self-energy: Defined as difference between inverse Green function and inverse Gaussian (“bare”) Green
function,

G−1 = G−1
0 −Σ (18)

and it follows the Dyson equation:

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + ... (19)
= G0 + G0ΣG

With G0 represented by a thin line, we have the graphical representation in Fig. 17.

• Leveraging perturbation theory: Low-order approximation of Σ generates infinite-order diagrams in G.

5.4 Alternative representation of Gc [J ] (without
´
D [Φ] ...)

• Use
(Φα)n e(J,Φ) =

(
δ

δJα

)n
e(J,Φ) (20)

to write
e−S1[Φ]+(J,Φ) = e−S1[ δ

δJ ]+(J,Φ) (21)

• Use this in definition of Gc [J ], Eq. (10), and pull out S1
[
δ
δJ

]
from the integral

eGc[J ] ≡
´
D [Φ] e−S[Φ]+(J,Φ)´
D [Φ] e−S0[Φ] = e−S1[ δ

δJ ]
´
D [Φ] e−S0[Φ]+(J,Φ)´
D [Φ] e−S0[Φ] = e−S1[ δ

δJ ]eG0c[J ] (12)= e−S1[ δ
δJ ]e−

1
2 (J,GT

0 J)

(22)
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5.5 Amputated connected Green function

• Motivation: Later, want to start fRG-flow from GΛ=∞
0 = 0, but from (22) have then Gc (G0 = 0) = 0.

Bad: Generic starting point doesn’t know anything about physics of specific model.

• Amputate G0 from connected Green functions (difference to Gc [J ]: now the sources read Φ̄ instead of J
and only appear in S1):

Gac
[
Φ̄
]

= ln

´ D [Φ] e−S0[Φ]−S1[Φ+Φ̄]

Z0

 =
∞∑
n=0

1
n!

ˆ
α1...αn

G(n)
ac,α1...αn

Φ̄α1 ...Φ̄αn (23)

G(n)
ac,α1...αn

=
δnGac

[
Φ̄
]

δΦ̄αn ...δΦ̄α1

|Φ̄=0 (24)

• Relation between Gac
[
Φ̄
]

and Gc [J ]: Use shift of variable in Eq. (23), Φ′ = Φ + Φ̄,

Gac
[
Φ̄
]

= Gc
[
−
(
GT

0

)−1
Φ̄
]

+ 1
2
(
Φ̄,G−1

0 Φ̄
)

(25)

Remarks:

– Amputation effect obvious from first term.

– Due to the last term, for a free theory G0c[J ] = −1
2

(
J,GT

0 J
)

we have Gac = 0.

• Alternative representation of Gac
[
Φ̄
]

(similar derivation to the case for Gc
[
Φ̄
]
)

eGac[Φ̄] = e−
1
2 ( δ

δΦ̄ ,G
T
0

δ
δΦ̄ )e−S1[Φ̄] (26)

5.6 One-line irreducible vertices Γ(n) and tree expansion

• Motivation: Connected correlation functions can be sub-divided into “essential” blocks connected by
propagators.
Example: Dyson equation (19) for G where essential block Σ was called self-energy.

• Anticipate similar structure for G(n)
c for n > 2.

Define irreducible vertex Γ(m)
α1α2...αm (filled circle) as the part of diagrams for G(n)

c (m ≤ n) which cannot
be separated by cutting a propagator line G(2)

c .

• Relation G
(n)
c ↔ Γ(m)

α1α2...αm : Tree-expansion (tree diagrams are diagrams without loops). Example for
n = 3, 4 in Fig. 18.

• Γ(m)
α1α2...αm ~ true interaction between particles

• Final goal: Write fRG flow equations on the basis of Γ(n)
α1α2...αn .

• Next goal: Find expression for generating functional Γ
[
Φ̄
]

for Γ(n)
α1α2...αn such that

Γ(n)
α1...αn

=
δnΓ

[
Φ̄
]

δΦ̄αn ...δΦ̄α1

|Φ̄=0 ⇔ Γ
[
Φ̄
]

=
∞∑
n=0

1
n!

ˆ
α1...αn

Γ(n)
α1...αn

Φ̄α1 ...Φ̄αn (27)
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Figure 18: Tree expansion for the 3- and 4-point connected Green functions.

Interlude: Legendre transformation reminder

• Legendre transformation f⋆ of convex function f(x) (with f ′′ > 0):

f⋆(p) ≡ p · h(p)− f (h(p)) (28)
p = f ′(h(p)) (29)

• From chain rule: (f⋆)′(p) = h(p) = (f ′)−1(p), i.e. the derivatives of f and f⋆ are inverse to each other.

• Graphical construction: Draw f(x) and the linear function px, find the point x = h where the tangent
to f has the same slope and call the distance between the curves at that point f⋆(p).

• Legendre transform in thermodynamics (different sign-convention):
Internal energy U which depends on entropy S, volume V , particle number N (extensive variables)

U = U(S, V,N) (30)
dU ≡ TdS − pdV + µdN (31)

Relate U to free energy F (T, V,N) which depends on temperature T (T is “slope” of U with respect to
S, intensive variable)

F ≡ −TS + U (32)
T ≡ dU(S, V,N)/dS (33)

Need to replace all S in F by T . Obtain:

dF = −TdS − SdT + dU = −SdT − pdV + µdN (34)
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Generating functional Γ
[
Φ̄
]

• Claim: Γ
[
Φ̄
]

is the functional Legendre transform of Gc [J ]

Γ
[
Φ̄
]

=
(
J [Φ̄], Φ̄

)
− Gc

[
J [Φ̄]

]
︸ ︷︷ ︸

≡L[Φ̄]

− S0
[
Φ̄
]

(35)

Φ̄α ≡ δGc [J ]
δJα

= ⟨Φα⟩ |J (36)

Last contribution S0
[
Φ̄
]
∼ Φ̄2 in Eq. (35) is a convenience convention that “shifts” only Γ(2)

α1α2 .

• Remarks:

– In Eq. (35), replace all sources J by the inverted relation Eq. (36). Note that Φ̄α = ⟨Φα⟩ |J with
non-vanishing sources.

– Assume absence of spontaneous symmetry breaking, i.e. as J → 0 one has Φ̄α = ⟨Φα⟩ |J→0 = 0.
This can be lifted by using Φ̄ = δΦ̄ + Φ̄0, see [Kopietz].

Three preparations for tree expansion: Relate δ
δΦ̄ ↔

δ
δJ .

1. Express J in terms of Φ̄:

δL
[
Φ̄
]

δΦ̄α

=
δ
(
J, Φ̄

)
− δGc [J ]

δΦ̄α

= ζαJα +
(
δJ

δΦ̄α

, Φ̄
)
−
ˆ
α′

δJα′

δΦ̄α

δGc [J ]
δJα′︸ ︷︷ ︸
Φ̄α′

= ζαJα (37)

2. Chain-rule: Apply chain-rule to δ/δΦ̄α and use (1.):

δ

δΦ̄α

=
ˆ
α′

[
δJα′

δΦ̄α

]
δ

δJα′

(1.)=
ˆ
α′

 δ2L
[
Φ̄
]

δΦ̄αδΦ̄α′
ζα′

 δ

δJα′
(38)

or, in compact notation with Zαα′ = δαα′ζα,

δ

δΦ̄
=
([

δ

δΦ̄
⊗ δ

δΦ̄

]
L
[
Φ̄
])

Z δ

δJ
(39)

3. Use chain rule for δ
δΦ̄ on Φ̄ ≡ δGc[J ]

δJ (Eq. 36):

1 = δ

δΦ̄
Φ̄ (36)= δ

δΦ̄
δGc [J ]
δJ

(2.)=
([

δ

δΦ̄
⊗ δ

δΦ̄

]
L
[
Φ̄
])

Z
([

δ

δJ
⊗ δ

δJ

]
Gc [J ]

)
(40)

or, isolating the J from the Φ̄ terms:

[
δ

δJ
⊗ δ

δJ

]
Gc [J ] = Z

([
δ

δΦ̄
⊗ δ

δΦ̄

]
L
[
Φ̄
])−1

(41)

Tree expansion

• In identity (41) above, expand both sides in powers of Jα and compare coefficients. For r.h.s. , first
expand in powers of Φ̄α and then use Φ̄ ≡ δGc[J ]

δJ to expand in powers of Jα.

60



• Self energy Γ(2)
αα′ : Use (

δ

δJα
⊗ δ

δJα′

)
Gc [J ] |J=0 ≡ −Gαα′ = G

(2)
c,α′α (42)

and get (J → 0 yields Φ̄→ 0)

−ZG−1 =
[
δ

δΦ̄
⊗ δ

δΦ̄

]
L
[
Φ̄
]
|Φ̄=0 =

[
δ

δΦ̄
⊗ δ

δΦ̄

] (
Γ
[
Φ̄
]

+ S0
[
Φ̄
])
|Φ̄=0 =

[
δ

δΦ̄
⊗ δ

δΦ̄

]
Γ
[
Φ̄
]
|Φ̄=0−

[
GT

0

]−1

(43)
and further, using the definition of the self-energy Σ = G−1

0 −G−1,[
δ

δΦ̄
⊗ δ

δΦ̄

]
Γ
[
Φ̄
]
|Φ̄=0 = ΣT (44)

and taking matrix elements
Γ(2)
α1α2 = [Σ]α1α2

(45)

• General case Γ(m) for m > 2: Define

U
[
Φ̄
]
≡
([

δ

δΦ̄
⊗ δ

δΦ̄

]
Γ
[
Φ̄
])T
−
([

δ

δΦ̄
⊗ δ

δΦ̄

]
Γ
[
Φ̄
]
|Φ̄=0

)T
︸ ︷︷ ︸

Σ

=
∞∑
n=1

1
n!

ˆ
α1...αn

[
Γ(n+2)
α1...αn

]
Φ̄α1 ...Φ̄αn (46)

with definition of the matrix in superlabel space
[
Γ(n+2)
α1...αn

]
αα′
≡ Γ(n+2)

αα′α1...αn
. Note that U

[
Φ̄ = 0

]
= 0.

Use L = Γ + S0 to get

δ

δΦ̄
⊗ δ

δΦ̄
L
[
Φ̄
]

= δ

δΦ̄
⊗ δ

δΦ̄
Γ
[
Φ̄
]
−
[
GT

0

]−1
= UT

[
Φ̄
]

+ ΣT −
[
GT

0

]−1
= UT

[
Φ̄
]
−
[
GT

]−1
(47)

• In order to connect to Eq. (41), we need to expand the inverse of the above(
δ

δJ
⊗ δ

δJ

)
Gc [J ] = Z

(
δ

δΦ̄
⊗ δ

δΦ̄
L
[
Φ̄
])−1

= Z 1
UT

[
Φ̄
]
− [GT]−1

= −ZGT 1
1−UT

[
Φ̄
]

GT
= −G

∞∑
ν=0

[
UT

[
Φ̄
]

GT
]ν

• Expand in J ’s (left) and in Φ̄’s (right). Use definition
[
G(n+2)
c,α1...αn

]
αα′
≡ G

(n+2)
c,αα′α1...αn

. Take the transpose
of the matrix structure.

∞∑
n=0

1
n!

ˆ
α1

...

ˆ
αn

G(n+2)
c,α1...αn

Jα1 ...Jαn = −
∞∑
ν=0

∞∑
n1=1

...
∞∑

nν=1

1
n1!...nν !

ˆ
β1

1

...

ˆ
β1

n1

...

ˆ
βν

1

...

ˆ
βν

nν

(48)

× G
(
Γ(nν+2)
βν

1 ...β
ν
nν

)
...G

(
Γ(n1+2)
β1

1 ...β
1
n1

)
︸ ︷︷ ︸

×ν

GZΦ̄β1
1
...Φ̄β1

n1
....Φ̄βν

1
...Φ̄βν

nν

• For final comparison of J-coefficients, trade Φ̄ for J :

Φ̄β = δGc [J ]
δJβ

=
∞∑
n=0

1
n!

ˆ
α1

...

ˆ
αn

G
(n+1)
c,βα1...αn

Jα1 ...Jαn (49)

on the rhs and compare terms with the same powers of sources Jα on both sides.

• Symmetrization:

– Assume that G(n)
c,α1...αn (on lhs) and Γ(n)

α1...αn are symmetrized with respect to label exchange. Need
to symmetrize rhs.
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– Symmetrization operator S:
Consider function Fα1...αn of n superlabels α1..αn1 |αn1+1...αn1+n2 |αn1+n2+1......αn, grouped into ν
groups, n1 +n2...+nν = n such that Fα1...αn is already properly symmetrized for exchange of labels
inside groups.
We get a fully symmetric function from

Sα1...αn1 ;...;αn−nν +1...αn (Fα1...αn) = 1
n1! · · ·nν !

∑
P∈Sn

sgnξ (P )FαP (1)...αP (n) → n!/(n1!...nν !) distinct terms

(50)
with sgnξ (P ) defined as follows:

Φ̄α1 ...Φ̄αn = sgnξ (P ) Φ̄αP (1) ...Φ̄αP (n) . (51)
Example:
If Fα1α2 is not yet symmetrized, we have ν = 2 blocks with n1,2 = 1 and Sα1;α2 (Fα1α2) = Fα1α2 +
sgnξFα2α1 .
If Fα1α2 is already symmetrized, we have ν = 1 block with n1 = 2 and then Sα1α2 (Fα1α2) = Fα1α2 .

• Full expression for G(n+2)
c,α1...αn including symmetrization S → Ex. 5.2.

Examples

• Case n = 1 (G(3)
c ): Only ν = 1, n1 = 1: Need on rhs Φ̄β1

1
=
´
α1
G

(n+1)
c,β1

1α1
Jα1 + ... and no symmetrization

required

G(3)
c,α1 = −

ˆ
β1

1

G · Γ(3)
β1

1
·G · ZG(2)

c,β1
1α1

= −
ˆ
β1

G · Γ(3)
β1
·G · Z [−Gα1β1 ]

or, using Gc → Gc on the left-hand side:

G(3)
c,α2α3α1 =

ˆ
β1

[
G · Γ(3)

β1
·G · Z

]
α2α3

Gα1β1

=
ˆ
β1,2,3

Gα2β2Γ(3)
β2β3β1

Gβ3α3Zα3α3Gα1β1

Re-label indices on the lhs and some integration variables:

G(3)
c,α1α2α3 =

ˆ
β1,β2,β3

[G]α1β1
[G]α2β2

[G]α3β3
Γ(3)
β1β2β3

(52)

• Case n = 2 (G(4)
c ), assume that Γ(3) = 0 (i.e. fermionic theory): Take ν = 1, n1 = 2, and Φ̄β1

1
=´

α1
G

(2)
c,β1

1α1
Jα1 , Φ̄β1

2
=
´
α2
G

(2)
c,β1

2α2
Jα2 . Need symmetrization on rhs and drop superscript on β:

G(4)
c,α1α2 = −1

2

ˆ
β1,2

GΓ(4)
β1β2

G · ZSα1;α2

[
G

(2)
c,β1α1

G
(2)
c,β2α2

]
(53)

and we insert the matrix structure

G(4)
c,α3α4α1α2 = −1

2

ˆ
β1,2,3,4

[G]α3β3
Γ(4)
β3β4β1β2

[G]α4β4

[
G

(2)
c,β1α1

G
(2)
c,β2α2

+ ζG
(2)
c,β1α2

G
(2)
c,β2α1

]
(54)

We can treat the last term in the bracket by re-labeling β1 ↔ β2 and then changing the order of these
terms in Γ(4) back (factor ζ, ζ2 = 1). We finish with replacing G(2)

c,βα = −Gαβ and some ζ-independent
index shuffles

G(4)
c,α1α2α3α4 = −

ˆ
β1,2,3,4

[G]α1β1
[G]α2β2

[G]α3β3
[G]α4β4

Γ(4)
β1β2β3β4

. (55)

This reproduces the term with the blue circle in Fig. 18.

• General case for G(4)
c including the 3-point vertices Γ(3) → Ex. 5.2.
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Exercises

Exercise 5.1. Generating Functions for toy model

This exercise should familiarize you with the concept of generating function(al)s in a simple setting. Consider
the classical field theory of an an-harmonic oscillator defined by the action s(φ) = s0(φ) + s1(φ) where φ ∈ R
is a single real variable and

s0(φ) = − φ2

2G0
, s1(φ) = u

4!φ
4, (56)

with G0 < 0 and u > 0. The full partition function is given by Z =
´ +∞
−∞ dφe−s(φ) and the disconnected Green

functions are g(n) = In/I0 with In =
´ +∞
−∞ dφφne−s(φ) and I0 = Z.

1. Show that the partition function in Gaussian approximation is given by Z0 =
√

2π(−G0). Introduce a
source j ∈ R and write down the definition of the generating functions (instead of functionals!)

gc(j), gac(φ̄), γ(φ̄), (57)

of the connected Green functions, amputated connected Green functions and irreducible vertices, respec-
tively. The latter are denoted by g

(n)
c , g

(n)
ac , γ(n) and are related to the generating functions via series

expansion, e.g. gc(j) =
∑∞
n=0

1
n!g

(n)
c jn. The Legendre transform should be denoted by

l(φ) = j(φ)φ− gc(j(φ)),
φ = ∂jgc.

Show explicitly the two relations:

gac(φ̄) = gc
(
−G−1

0 φ̄
)

+ φ̄2/(2G0),

1 =
(
∂2l

∂φ2

)(
∂2gc
∂j2

)
.

2. Derive the following relations:
g

(0)
c = ln [Z/Z0] g

(2)
c = g(2) g

(4)
c = g(4) − 3

[
g(2)

]2
g

(0)
ac = g

(0)
c g

(2)
ac = G−2

0

[
g

(2)
c +G0

]
g

(4)
ac = G−4

0 g
(4)
c

l(0) = −g(0)
c l(2) =

[
g

(2)
c

]−1
l(4) = −

[
g

(2)
c

]−4
g

(4)
c

γ(0) = l(0) γ(2) = l(2) +G−1
0 γ(4) = l(4)

3. Use the results of part 1.) and 2.) to calculate the irreducible vertices γ(0,2,4) perturbatively up to order
u2. First, find Z and g(m) for m = 1, 2, 3, 4 in perturbation theory up to order u2. These results will
be needed below in Ex. 7.1 to compare perturbation theory to the fRG for this toy model. You should
obtain:

γ(0) = u

8G
2
0 −

u2

12G
4
0, γ(2) = −u2G0 + 5u2

12 G
3
0, γ(4) = u− 3u2

2 G2
0. (58)

Exercise 5.2. General form of tree expansion, full expression for Γ(4)

1. In the lecture, we have stopped short of writing the complete form of the tree expansion which is free of
source terms Jα and Φ̄α. You should now perform this task which involves somewhat tedious indexing.
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Combine Eqns. (48), (49) and (50) to find

G(n+2)
c,α1...αn

= −
∞∑
ν=0

∞∑
n1=1

...
∞∑

nν=1

1
n1!...nν !

ˆ
β1

1

...

ˆ
β1

n1

...

ˆ
βν

1

...

ˆ
βν

nν ∞∑
m1

1=1
...

∞∑
m1

n1 =1

 ...
 ∞∑
mν

1=1
...

∞∑
mν

nν =1

 δn,∑ν

i=1

∑ni
j=1 m

i
j

× G
{

Γ(nν+2)
βν

1 ...β
ν
nν

G
}
...

{
Γ(n1+2)
β1

1 ...β
1
n1

G
}

Z

× Sα1...αm1
1

;...;αn−mν
nν

+1...αn

{
G

(m1
1+1)

c,β1
1α1...αm1

1

...G
(mν

nν
+1)

c,βν
nναn−mν

nν +1...αn

}

2. Use the above result to derive the complete form of the tree expansion for G(4)
c,α1α2α3α4 , including the

3-point vertex Γ(3) and draw the diagrammatic representation. In the lecture, we have derived the
contribution including the four-point vertex Γ(4) which you can take from there.

6 Exact fRG flow equations for generating functionals

Aims:

• Implement RG idea in a formally exact way, on the level of correlation functions.

• Final goal: fRG flow equation for functional ΓΛ[Φ̄] (Wetterich equation)

6.1 Cutoff procedure

• Idea: Modify the Gaussian propagator

G0 → G0,Λ

S0 [Φ] → S0,Λ [Φ] = −1
2
(
Φ,
[
G0,Λ

]−1 Φ
)

• Λ is the boundary between high-energy and low-energy fluctuations.

• Requirements:

G0,Λ =
{

G0 : Λ→ 0
0 : Λ→∞

(59)

– For vanishing cutoff (Λ = 0), recover the original theory.
– For infinite cutoff (Λ =∞), particles do not ’move’ and all generating functional are simply known.

• Strategy / workflow:

– Derive exact differential equations for generating functionals GΛ [J ] ,Gc,Λ [J ] , ... etc. when Λ is varied
(fRG flow equations).

– Find initial conditions for generating functionals at Λ =∞.
– Devise approximation scheme for flow equation and solve [usually on a (super-)computer].
– Extract physical results at Λ = 0.
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(a) (b)

Figure 19: (a) Multiplicative cutoff in momentum space. (b) Sketch of a reservoir cutoff for a one-dimensional
system.

Cutoff types and examples

• Multiplicative cutoff: G0,Λ ≡ ΘΛG0 with boundary condition ΘΛ=0 = 1 and ΘΛ=∞ = 0.

• Additive cutoff (regulator): G−1
0,Λ = G−1

0 −RΛ with |RΛ=0| = 0 and |RΛ=∞| =∞.

• Examples:

– For G0 diagonal in momentum, can chose ΘΛ = θϵ (|k| − Λ) where θϵ(x) is a step function broadened
on a scale ϵ. As Λ lowers, this switches on smaller and smaller momentum modes iteratively, see
Fig. 19(a).

– For quantum systems, can use Matsubara cutoff: ΘΛ = θ (|ωn| − Λ). This works also for G0 that
are not diagonal in momentum (i.e. disordered systems).

– Reservoir cutoff: RΛ = iΛ, G0,Λ = 1
iω−H+isgn(ωn)Λ , couples a virtual reservoir to the system which

is removed as Λ→ 0. See Fig. 19(b).
– If G0 involves several field-types, one can chose different cutoffs for fermions and bosons.
– Physical flows: Cutoff scheme can vary physical parameter like chemical potential, magnetic field,

interaction strength or temperature.
∗ Benefit: Each point along the flow corresponds to a physical system.
∗ Problem: No RG-like mode elimination.

Morris Lemma

• fRG flow equations will involve Λ-derivative of cutoff function. For sharp cutoffs, ∂Λθ (|k| − Λ) =
−δ (|k| − Λ). Convenient: The δ-function cancels loop integrals.

• We might also encounter the ambiguous expression δ (x) f (θ (x)) where f is a well-behaved function.
This is to be interpreted as (→ Ex. 6.1):

δ (x) f (θ (x)) = δ (x)
ˆ 1

0
dt f(t) (60)

Application: δ (x) θ (x) = δ (x) 1
2 .

6.2 Flow of GΛ [J ] (disconnected Green functions)

• The Λ-dependence of all generating functionals arises only from G0,Λ.
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• Λ-dependent generating functional for disconnected Green functions GΛ:

GΛ [J ] = 1
ZΛ

ˆ
D [Φ] e−S0,Λ[Φ]−S1[Φ]+(J,Φ)

ZΛ =
ˆ
D [Φ] e−S0,Λ[Φ]−S1[Φ]

• Differentiate with respect to Λ:

∂ΛGΛ [J ] = 1
ZΛ

ˆ
D [Φ] 1

2
(
Φ, ∂Λ

[
G0,Λ

]−1 Φ
)

︸ ︷︷ ︸
→
(

δ
δJ
,
[
∂ΛG−1

0,Λ

]
δ

δJ

) e
−S0,Λ[Φ]−S1[Φ]+(J,Φ) −

(
∂ΛZΛ
ZΛ

)
GΛ [J ]

= 1
2

(
δ

δJ
,
[
∂ΛG−1

0,Λ

] δ

δJ

)
GΛ [J ]− (∂ΛlnZΛ)GΛ [J ]

• Final result:
∂ΛGΛ [J ] = 1

2Tr
{[
∂ΛG−1

0,Λ

] ( δ

δJ
⊗ δ

δJ
GΛ

)T}
− (∂ΛlnZΛ)GΛ [J ] . (61)

6.3 Flow of Gc,Λ [J ] (connected Green functions)

• Use definition
GΛ [J ] =

Z0,Λ
ZΛ

eGc,Λ[J ], (62)

take ∂Λ on both sides,
∂ΛGΛ =

Z0,Λ
ZΛ

eGc,Λ[J ]
[
∂ΛGc,Λ + ∂Λln

(Z0,Λ
ZΛ

)]
(63)

• Solve for ∂ΛGc,Λ:

∂ΛGc,Λ = (∂ΛGΛ) ZΛ
Z0,Λ

e−Gc,Λ[J ] − ∂Λln
(Z0,Λ
ZΛ

)
(64)

• For (∂ΛGΛ), use (61) and re-express all GΛ [J ] by Gc,Λ [J ]: After a straightforward calculation, we obtain

∂ΛGc,Λ [J ] = 1
2

(
δGc,Λ
δJ

,
[
∂ΛG−1

0,Λ

] δGc,Λ
δJ

)
+ 1

2Tr
{[
∂ΛG−1

0,Λ

]T ( δ

δJ
⊗ δ

δJ
Gc,Λ

)}
− ∂Λln

(
Z0,Λ

)
(65)

• Initial condition: We saw from Eq. (22) that Gc,Λ→∞ [J ] = 0.
This is not convenient, since this initial condition does not contain any information about the system.
All physical information has to be generated along the flow. It is better to have an initial condition that
corresponds to simple and sensible physical limit.

• Graphical representation (after expansion in correlation functions): Fig. 20, recallG(n)
α1...αn = δnG[J ]

δJαn ...δJα1
|J=0

and the arrow in the circle points to α1. The ∂ΛG
(n) depends on G(n+1) and G(n+2).

6.4 Flow of Gac,Λ
[
Φ̄
]

(amputated connected Green functions) - Polchinski Equation

• Initial condition: Recall Eq. (26),

eGac[Φ̄] = e−
1
2 ( δ

δΦ̄ ,G
T
0

δ
δΦ̄ )e−S1[Φ̄] (66)

and find
lim

Λ→∞
Gac,Λ

[
Φ̄
]

= −S1
[
Φ̄
]

(67)
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Figure 20: Graphical representation of the flow equation (65) expanded in correlators.

• Flow equation follows from differentiating Eq. (66):

eGac,Λ∂ΛGac,Λ = ∂Λe
Gac,Λ

= −1
2

(
δ

δΦ̄
,
[
∂ΛGT

0,Λ

] δ

δΦ̄

)
e−

1
2

(
δ

δΦ̄ ,G
T
0,Λ

δ
δΦ̄

)
e−S1[Φ̄]︸ ︷︷ ︸

e
Gac,Λ

= eGac,Λ

[
−1

2

(
δGac,Λ
δΦ̄

,
[
∂ΛGT

0,Λ

] δGac,Λ
δΦ̄

)
− 1

2

(
δ

δΦ̄
,
[
∂ΛGT

0,Λ

] δ

δΦ̄

)
Gac,Λ

]

• Compare both sides and find the Polchinski Equation, (Polchinski, 1984):

∂ΛGac,Λ = −1
2

(
δGac,Λ
δΦ̄

,
[
∂ΛGT

0,Λ

] δGac,Λ
δΦ̄

)
− 1

2Tr
([
∂ΛGT

0,Λ

] ( δ

δΦ̄
⊗ δ

δΦ̄
Gac,Λ

)T)
(68)

• Problem: If we expand both sides in correlation functions Gac,Λ and use a sharp cutoff, the first term
contains δ-function that is not integrated over (no loops, c.f. Fig. 20!).

6.5 Flow of Γ
[
Φ̄
]

(irreducible vertices) - Wetterich Equation

• Augment definition of Γ
[
Φ̄
]

with subscript Λ:

ΓΛ
[
Φ̄
]

=
(
JΛ
[
Φ̄
]
, Φ̄
)
− Gc,Λ

[
JΛ
[
Φ̄
]]

+ 1
2
(
Φ̄,
[
G0,Λ

]−1 Φ̄
)

(69)

Φ̄ =
δGc,Λ [J ]
δJ

• The arguments Φ̄ do not depend on Λ, but the second equation enforces Λ-dependent JΛ
[
Φ̄
]
.

Initial condition

• We have a simple initial condition:

lim
Λ→∞

ΓΛ
[
Φ̄
]

= − lim
Λ→∞

Gac,Λ
[
Φ̄
]

= S1
[
Φ̄
]

(70)

• Proof: Start from relation between Gc and Gac, Eq. (25)

Gac,Λ
[
Φ̄
]

= Gc,Λ[−
(
GT

0,Λ

)−1
Φ̄︸ ︷︷ ︸

≡J[Φ̄]

] + 1
2
(
Φ̄,G−1

0,ΛΦ̄
)

(71)
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To connect the rhs to Γ, we prepare for the use of the Legendre transform with respect to the J
[
Φ̄
]
:

Φ̄′α ≡
δGc,Λ [J ]
δJα

=
ˆ
β

δΦ̄β

δJα

δGc,Λ [J ]
δΦ̄β

= −
ˆ
β

[
GT

0,Λ

]
βα

δ

δΦ̄β

(
Gac,Λ

[
Φ̄
]
− 1

2
(
Φ̄,
(
G0,Λ

)−1 Φ̄
))

Φ̄′ = −G0,Λ
δGac,Λ

[
Φ̄
]

δΦ̄
+ Φ̄

• We write the Legendre transform Gc,Λ [J ]↔ ΓΛ
[
Φ̄′
]
,

Gc,Λ
[
J
[
Φ̄′
]]

=
(
J
[
Φ̄′
]
, Φ̄′
)
− ΓΛ

[
Φ̄′
]

+ 1
2
(
Φ̄′,
[
G0,Λ

]−1Φ̄′
)
, (72)

and add 1
2

(
Φ̄,G−1

0,ΛΦ̄
)

to find with Eq. (71),

Gac,Λ
[
Φ̄
]

=
(
J, Φ̄′

)
− ΓΛ

[
Φ̄′
]

+ 1
2
(
Φ̄′,G−1

0,ΛΦ̄′
)

+ 1
2
(
Φ̄,G−1

0,ΛΦ̄
)
.

• Insert the prepared Φ̄′ to express the right-hand side in Φ̄. After a short calculation, we obtain

Gac,Λ
[
Φ̄
]

= −ΓΛ

[
Φ̄−G0,Λ

δGac,Λ
δΦ̄

]
+ 1

2

(
δGac,Λ
δΦ̄

,GT
0,Λ
δGac,Λ
δΦ̄

)
(73)

from which the claim follows as lim
Λ→∞

G0,Λ = 0.

Flow of ΓΛ
[
Φ̄
]

• The flow for ΓΛ
[
Φ̄
]

follows by taking ∂Λ of the defining equation (69):

∂ΛΓΛ
[
Φ̄
]

=
(
∂ΛJΛ

[
Φ̄
]
, Φ̄
)
− ∂Λ

(
Gc,Λ

[
JΛ
[
Φ̄
]])

+ 1
2
(
Φ̄, ∂Λ

[
G0,Λ

]−1 Φ̄
)

=
(
∂ΛJΛ

[
Φ̄
]
, Φ̄
)
− (∂ΛJΛ,

δGc,Λ [J ]
δJ︸ ︷︷ ︸
Φ̄

)− ∂ΛGc,Λ [J ] |J=JΛ[Φ̄] + 1
2
(
Φ̄, ∂Λ

[
G0,Λ

]−1 Φ̄
)

The first two terms cancel. For the third term we use the flow of the connected functional Eq. (65).

∂ΛΓΛ
[
Φ̄
]

= −1
2

(
δGc,Λ
δJ

,
[
∂ΛG−1

0,Λ

] δGc,Λ
δJ

)
− 1

2Tr
{[
∂ΛG−1

0,Λ

]T ( δ

δJ
⊗ δ

δJ
Gc,Λ

)}
+ ∂Λln

(
Z0,Λ

)
+1

2
(
Φ̄, ∂ΛG0,Λ

−1Φ̄
)

and the brown terms cancel.

• We recall the relation (41) between second functional derivatives of Gc,Λ, LΛ and ΓΛ:(
δ

δJ
⊗ δ

δJ
Gc,Λ

)
=
(
δ

δΦ̄
⊗ δ

δΦ̄
LΛ
[
Φ̄
])−1

=
(
δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ
[
Φ̄
]
−
[
GT

0,Λ

]−1
)−1

(74)

and find the exact Wetterich Equation (Wetterich, 1993)

∂ΛΓΛ
[
Φ̄
]

= −1
2Tr


[
∂ΛG−1

0,Λ

]
︸ ︷︷ ︸
−∂ΛRΛ

(
δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ
[
Φ̄
]
−
[
GT

0,Λ

]−1
)−1

+ ∂Λln
(
Z0,Λ

)
(75)
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• Two strategies for approximate solution of Wetterich equation:

1. Vertex expansion (Sec. 7): Expand both sides in powers of fields Φ̄ and find flow equation for vertices
Γ(n)
α1...αn . This is similar to the considerations leading to Fig. 20, but complicated due to the inverse,

which together with the trace produces non-trivial loops.

2. Derivative expansion (Sec. 8): Make ansatz ΓΛ
[
Φ̄
]

=
´

r UΛ (ρ) + O(
[
∇Φ̄

]2
) with ρ = Φ̄2 a scalar.

The arbitrary functions UΛ (ρ) fulfill flow equations ∂ΛUΛ (ρ) = f
(
Λ, U (′,′′,...)

Λ (ρ), ρ, ...
)
.

Exercises

Exercise 6.1. Morris Lemma
Prove the Morris Lemma (60) by regularizing the unit-step function θ (x) and Dirac-Delta function δ (x) by
their smooth counterparts ∂xθε (x) = δε (x) varying over a scale ε and consider the limiting procedure lim

ε→0
.

7 Vertex expansion

Aims:

• Strategy 1. to approximately solve exact Wetterich equation

• Expand generating functional ΓΛ
[
Φ̄
]

in vertices Γ(n)
Λ , write flow equations ∂ΛΓ(n)

Λ = f
(
{Γ(m)

Λ }m≤n+2
)

• Approximation: Truncation of hierarchy.

• Keep track of momentum- and frequency-dependence of Γ(n)
Λ .

• Quantitative results beyond critical exponents, but usually requires (super-)computers

7.1 Preparations

• Preparation I: From the section on tree expansion, recall Eq. (46). Augment all quantities with subscript
Λ:

δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ
[
Φ̄
]
−
[
GT

0,Λ

]−1
= UT

Λ

[
Φ̄
]
−
[
GT

Λ

]−1
(76)

UΛ
[
Φ̄
]

=
∞∑
n=1

1
n!

ˆ
α1...αn

Γ(n+2)
Λ,α1...αn

Φ̄α1 ...Φ̄αn (77)

The Dyson equation is required to hold for each Λ:

[GΛ]−1 =
[
G0,Λ

]−1 −ΣΛ (78)

• Preparation II: Use detA = exp (tr [logA]) and find

Z0,Λ =
ˆ
D [Φ] e

1
2 Φα

[
G−1

0,Λ

]
αβ

Φβ ∝ e−
1
2Tr
[
Zln(−G−1

0,Λ)
]

(79)

so that
∂Λln

(
Z0,Λ

)
= −1

2Tr
[
ZG0,Λ︸ ︷︷ ︸

GT
0,Λ

(
∂ΛG−1

0,Λ

)]
(80)
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Figure 21: Sketch of the single scale propagator for a multiplicative cutoff in momentum or Matsubara frequency.

• Substitute preparations in Eq. (75) and get

∂ΛΓΛ
[
Φ̄
]

= −1
2Tr

([
∂ΛG−1

0,Λ

]{(
UT

Λ

[
Φ̄
]
−
[
GT

Λ

]−1
)−1

+ GT
0,Λ

})
(81)

The term {...} can be rewritten as

{...} = −GT
ΛUT

Λ
1

1−GT
ΛUT

Λ
GT

Λ −GT
0,ΛΣT

Λ
1

1−GT
0,ΛΣT

Λ
GT

0,Λ (82)

and we expand the first inverse:

∂ΛΓΛ
[
Φ̄
]

= −1
2Tr

(
ĠΛUT

Λ

[
Φ̄
] ∞∑
ν=0

(
GT

ΛUT
Λ

[
Φ̄
])ν

+ Ġ0,ΛΣT
Λ

1
1−GT

0,ΛΣT
Λ

)
(83)

• In the last equation, we defined the single-scale propagator,

ĠΛ ≡ −GΛ
[
∂ΛG−1

0,Λ

]
GΛ

Ex.= 1
1−G0,ΛΣΛ

[
∂ΛG0,Λ

] 1
1−ΣΛG0,Λ

. (84)

Note that ĠΛ ̸= ∂ΛGΛ, unless for the non-interacting version,

Ġ0,Λ ≡ −G0,Λ
[
∂ΛG−1

0,Λ

]
G0,Λ = ∂ΛG0,Λ. (85)

For RG-type cutoffs the single-scale propagator has support only close to the (momentum-, frequency-)
scale Λ, see Fig. 21.

7.2 Expansion of ∂ΛΓΛ
[
Φ̄
]

in fields

• Expansion of Eq. (83) in powers of fields: For lhs use,

∂ΛΓΛ
[
Φ̄
]

=
∞∑
n=0

1
n!

ˆ
α1...αn

∂ΛΓ(n)
Λ,α1...αn

Φ̄α1 ...Φ̄αn , (86)

for rhs use Eq. (77).

• Field independent term ∂ΛΓ(0)
Λ (second term in the trace): After some small modifications using the cyclic

nature of the trace, we have

∂ΛΓ(0)
Λ = −1

2Tr
(

ZĠ0,ΛΣΛ
1

1−G0,ΛΣΛ

)
(87)

Interpretation: This yields the flow of the interaction-correction to the free energy F = −T logZ (up to
factor T ):

F − F0 = −T log (Z/Z0) = −TG(0)
c = TΓ(0) → link to thermodynamics (88)
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• Field-dependent terms ∂ΛΓ(n≥1)
Λ,α1...αn

(first term in the trace): Derivation similar to tree expansion, but
simplified by absence of J-sourcefields. Pick the coefficient of Φ̄α1Φ̄α2 ...Φ̄αn on both sides:

1
n!∂ΛΓ(n)

Λ,α1...αn
=

− 1
2

∞∑
ν=1

∞∑
n1,2,..,ν=1

δn,n1+...+nν

n1!n2!...nν !
Tr
(
ĠΛΓT (n1+2)

Λ,α1...αn1

[
GT

ΛΓT (n2+2)
Λ,αn1+1...αn2

]
· · ·
[
GT

ΛΓT (nν+2)
Λ,αn−nν +1...αn

])

• We also could have picked a different order of the fields. Sum over all n! permutations of the labels
α1...αn, this leaves ∂ΛΓ(n)

Λ,α1...αn
on the left and brings the symmetrization operator S on the right. Also

use Tr
(
AT

)
= Tr (A).

∂ΛΓ(n)
Λ,α1...αn

= −1
2

∞∑
ν=1

∞∑
n1,2,..,ν=1

δn,n1+...+nνSα1...αn1 ;...;αn−nν +1...αn

×Tr
(
ZĠΛΓ(nν+2)

Λ,αn−nν +1...αn
...GΛΓ(n2+2)

Λ,αn1+1...αn2
GΛΓ(n1+2)

Λ,α1...αn1

)

7.3 Example: Flow of vertices with even number of legs

• Assume all vertices with odd number of external legs vanish (e.g. fermionic theory or ϕ4-theory for
T > Tc).

• For n = 2, have ν = 1 and n1 = 2 (ν = 2 and n1,2 = 1 would involve Γ(3)) so that

∂ΛΓ(2)
Λ,α1α2

= ∂Λ [ΣΛ]α1α2
= −1

2Tr
(
ZĠΛΓ(4)

Λ,α1α2

)
= −1

2
[
ĠΛ

]
β1β2

Γ(4)
Λ,β1β2α1α2

(89)

• For n = 4 (effective interaction) we have either ν = 1 (n1 = 4) or ν = 2 (n1,2 = 2)

∂ΛΓ(4)
Λ,α1...α4

= −1
2Tr

(
ZĠΛΓ(6)

Λ,α1α2α3α4
+ Sα1α2;α3α4

{
ZĠΛΓ(4)

Λ,α3α4
GΛΓ(4)

Λ,α1α2

})
• The n = 6 vertex is usually approximated with its initial value (however: Katanin- or 2-loop or multi-loop

schemes).

single-scale propagator:

=

=

flow of self energy:

flow of effective interaction: 

= =full propagator: =

All quantities depend on      !
   
(skipped in diagrammatic notation)
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7.4 Application: Vertex expansion for φ4-theory, relation to Wilsonian RG

Aims:

• See vertex expansion at work for non-trivial stat.-mech. field theory

• Recover RG flow equations found for in Wilsonian momentum-shell RG

Preparations

• Single type of bosonic field with momentum index, Φα → φk, ζ = +1.

• Stay in the disordered phase, zero magnetic field → ⟨φk=0⟩ = 0. For generalization to ordered phase, see
[Kopietz], Ch. 8.

• Recall action for φ4-theory, assign S0,1 in non-standard way:

SΛ0 [φ] = 1
2

ˆ
k

[
c0k

2
]
φ(−k)φ(k)︸ ︷︷ ︸

S0[φ]

+ r0
2

ˆ
k
φ(−k)φ(k) + u0

4!

ˆ
k1,2,3,4

(2π)Dδ (k1 + k2 + k3 + k4)φ(k1)φ(k2)φ(k3)φ(k4)︸ ︷︷ ︸
S1[φ]

Remark on non-standard choice for S0,1:

– reflects flexibility of fRG approach
– momentum independent self-energy flows starting from r0 (like in Wilsonian RG)

• Use multiplicative sharp cutoff in momentum space that switches on smaller and smaller k:

G0,Λ(k) = Θ (k − Λ)
c0k2 (90)

Note: Due to implicit cutoff k ≤ Λ0 in SΛ0 [φ], start the flow at Λ = Λ0 instead of Λ =∞.

• Dictionary for convention used in fRG flow equations:[
G(0,Λ)

]
kk′

= −(2π)Dδ
(
k + k′

)
G(0,Λ)(k) = −⟨φkφk′⟩ (91)[

ĠΛ
]

kk′
= −(2π)Dδ

(
k + k′

)
ĠΛ(k) (92)

[ΣΛ]kk′ = +(2π)Dδ
(
k + k′

)
ΣΛ(k) (93)

G−1
Λ (k) = G−1

0,Λ(k) + ΣΛ(k) (94)

or
GΛ(k) = 1

G−1
0,Λ(k) + ΣΛ(k)

= Θ(k − Λ)
c0k2 + Θ(k − Λ)ΣΛ(k) (95)

• Single scale propagator:

ĠΛ(k) =
∂ΛG0,Λ(k)[

1 +G0,Λ(k)ΣΛ(k)
]2 = −δ(k − Λ)

c0k2
[
1 + Θ(k−Λ)

c0k2 ΣΛ(k)
]2 (96)
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fRG flow equations

• For vertices, in accordance with Eq. (91), we take out a momentum-conserving delta-function out of Γ(n)

and define
Γ(n)

Λ,k1...kn
≡ (2π)Dδ (k1 + ...+ kn) Γ(n)

Λ (k1, ...,kn) (97)

where Γ(n)
Λ (k1, ...,kn) only really depends on n− 1 momenta.

• Recall the general fRG flow equations for vertices, we truncate Γ(6) != Γ(6)
Λ0

= 0 and drop all vertices of
odd order since we restrict ourselves to the disordered phase.

∂Λ [ΣΛ]α1α2
= −1

2

ˆ
β1,2

[
ĠΛ

]
β1β2

Γ(4)
Λ,β1β2α1α2

∂ΛΓ(4)
Λ,α1...α4

= −1
2Tr

(
Sα1α2;α3α4

{
ZĠΛΓ(4)

Λ,α3α4
GΛΓ(4)

Λ,α1α2

})
• Insert preparations:

∂ΛΣΛ(k) = 1
2

ˆ
k′
ĠΛ

(
k′
)

Γ(4)
Λ
(
k′,−k′,k,−k

)
∂ΛΓ(4)

Λ (k1,2,3,4) = −
ˆ

k
ĠΛ(k)

× {Γ(4)
Λ (k,−k + k1 + k2,k3,k4)GΛ (−k + k1 + k2) Γ(4)

Λ (+k− k1 − k2,−k,k1,k2)
+ (k2 ↔ k3) + (k2 ↔ k4)}

and the factor of 1/2 has partially canceled against the symmetrization operator that produces 6!/2!/2!
terms.

• Initial conditions (momentum independent): ΣΛ0 = r0 and Γ(4)
Λ0

= u0.

Recovering Wilsonian momentum shell RG

• Outlook: Numerical treatment of full momentum dependence possible, but somewhat involved.
Vertex Γ(4)

l depends on three D-dimensional momenta. Need to use symmetries, beyond-Mathematica
numerics, form-factors and other tricks → Master- & PhD-thesis.

• Here: Assume coupling constants, i.e. momentum independence of ΣΛ(k) != rΛ and Γ(4)
Λ (k1,2,3,4) != uΛ.

• Set momenta to zero at left-hand-side of fRG flow equations.

• Self-energy flow equation:

∂ΛrΛ = 1
2

ˆ
k
ĠΛ(k)Γ(4)

Λ (k,−k, 0, 0)

= uΛ
2

ˆ
k

−δ(k − Λ)

c0k2
[
1 + Θ(k−Λ)

c0k2 ΣΛ(k)
]2

Careful: Integrand requires Morris’ lemma (60): We use
´ 1

0 dt[1 + tx]−2 = − 1
x[1+tx] |

t=1
t=0 = 1

1+x and find

ĠΛ(k) = − δ(k − Λ)
c0k2 + ΣΛ(k) . (98)

Next, recall the definition of KD:
´

k = 1
(2π)D

´
dDk = KD

´∞
0 kD−1 · dk. We obtain:

∂ΛrΛ = −uΛKD

2

ˆ Λ0

0
kD−1 · dk δ(k − Λ)

c0k2 + ΣΛ(k) = −uΛ
2
KDΛD−1

c0Λ2 + rΛ
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• 4-point vertex flow equation:

∂ΛuΛ = −3u2
Λ

ˆ
k
ĠΛ(k)GΛ (k)

= 3u2
ΛKD

ˆ Λ0

0
dkkD−1 δ(k − Λ)Θ(k − Λ)c0k

2

[c0k2 + Θ(k − Λ)rΛ]3

{Morris} = 3u2
ΛKD

ˆ Λ0

0
dkkD−1δ(k − Λ)

ˆ 1

0
dt

tc0k
2

[c0k2 + trΛ]3︸ ︷︷ ︸
1/(2

[
c0k2+rΛ

]2
)

= 3KD

2
u2

ΛΛD−1

[c0Λ2 + rΛ]2

• Introduce dimensionless quantities as before,

r̄Λ = rΛ
c0Λ2 , ūΛ = KD

uΛ
c2

0Λ4−D , (99)

and use l in Λ = Λ0e
−l such that ∂lfl = −Λ∂ΛfΛ. Putting things together, we recover the same flow

equations as from Wilsonian momentum shell RG in Sec. 4.4

∂lr̄l = 2r̄l + 1
2

ūl
1 + r̄l

, ∂lūl = (4−D)ūl −
3
2

ū2
l

[1 + r̄l]2
. (100)

• Interpretation: Meaning of r̄Λ, ūΛ.

– Wilsonian RG: Couplings in action SΛ when high-energy fluctuations with k ∈ (Λ,Λ0] have been
integrated out.

– fRG in vertex expansion: Self-energy and effective interaction vertex defined via correlation functions
computed with high-energy fluctuations k ∈ (Λ,Λ0] switched on.

In both cases the low-energy modes k ∈ [0,Λ] have not been used.

7.5 Application: Vertex expansion for spinful fermions

Aims:

• Derive flow equations for fermions, use them in Ex. 7.3 for single-impurity Anderson model (SIAM).

Preparations

• Need two types of fields for creation and annihilation operator, {Φα} →
{
ψKσ, ψ̄Kσ

}
, ζ = −1, abbreviate

conserved quantities K ≡ (iω,k) and σ =↑, ↓ is the spin index.
In summary: α = (ψ,K, σ) or (ψ̄,K ′, σ′). Generalize spinless case from the beginning of Sec. 5,[

G−1
0

]
(ψ̄,K′,σ′),(ψ,K,σ)

= δK,K′
(
iωδσ′σ −HK′σ′;Kσ

)
=
[
G−1

0

]
K′σ′;Kσ

(101)

• Full Green function, propagate from ψ̄1′ [creation with 1′ = (K ′, σ′)] to ψ1 [annihilation with 1 = (K,σ)].
The overall sign and definition of G11′ with ψ, ψ̄ not explicitly specified is fermionic convention.

Gψ1ψ̄1′ = −
〈
ψ1ψ̄1′

〉
≡ G11′ (102)
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1'1

2'2

1'1
1' 1

=

( " from 1' to 1 " )

=

(a) (b) (c)

Figure 22: Diagrammatic conventions for fermionic field theories.

• The above points and the inversion rule of a 2x2 off-diagonal matrix require the following assignments
(also hold with cutoff Λ):

G =
(

0 Gψψ̄

Gψ̄ψ 0

)
=
(

0 G
ζGT 0

)

G−1 =
(

0 ζ
(
G−1)T

G−1 0

)
=
(

0
[
G−1]

ψψ̄[
G−1]

ψ̄ψ 0

)
= G−1

0 −Σ

Σ =
(

0 [Σ]ψψ̄
[Σ]ψ̄ψ 0

)
≡
(

0 ζΣT

Σ 0

)
and we read off

G−1 = G−1
0 − Σ. (103)

• The above conventions are summarized in Fig. 22(a,b)

Interaction and initial vertex

• Assume total spin is conserved in bare scattering ({σ1, σ2} → {σ1, σ2}).

S1[ψ̄, ψ] = 1
2
∑
σ1,2

ˆ
K′

1K
′
2K1K2

Uσ1σ2

(
K ′1,K

′
2;K2,K1

)
ψ̄K′

1σ1ψ̄K′
2σ2ψK2σ2ψK1σ1 (104)

The function U is symmetric under simultaneous exchange within first and last index pair.

Uσ1σ2

(
K ′1,K

′
2;K2,K1

)
= Uσ2σ1

(
K ′2,K

′
1;K1,K2

)
(105)

• Do not confuse U with the (bare) one-line irreducible vertex Γ(4),Λ=∞
α1α2α3α4 which is (anti-)symmetric under

exchange of all of its arguments.

• Partially symmetrized vertex (can exchange within first or last index pair, separated by “;”):

S1[ψ̄, ψ] = 1
(2!)

ˆ
K′

1σ
′
1K

′
2σ

′
2K1σ1K2σ2

Γ(4)
Λ=∞

(
K ′1σ

′
1,K

′
2σ
′
2;K2σ2,K1σ1

)
× ψ̄K′

1σ
′
1
ψ̄K′

2σ
′
2
ψK2σ2ψK1σ1 (106)

Γ(4)
Λ=∞

(
K ′1σ

′
1,K

′
2σ
′
2;K2σ2,K1σ1

)
= δσ′

1σ1δσ′
2σ2U

(4)
σ1σ2

(
K ′1,K

′
2;K2,K1

)
− δσ′

1σ2δσ′
2σ1U

(4)
σ1σ2

(
K ′1,K

′
2;K1,K2

)
(107)

• Superfield vertex with full (anti-)symmetry:

S1 [Φ] = 1
4!

ˆ
α1,2,3,4

Γ(4),Λ=∞
α1α2α3α4Φα1Φα2Φα3Φα4 (108)

which leads to

Γ(4),Λ=∞
α1=(ψ̄K′

1σ
′
1),α2=(ψ̄K′

2σ
′
2),α3=(ψK2σ2),α4=(ψK1σ1) = Γ(4)

Λ=∞
(
K ′1σ

′
1,K

′
2σ
′
2;K2σ2,K1σ1

)
(109)

and Γ(4)
α1α2α3α4 with other number of ψ̄ and ψ terms vanish. The 1/4! = 1/24 is related to 1/2!/2! = 1/4

above by the [4 choose 2] = 6 possibilities to pick two ψ̄ and two ψ fields in α-sums.

• Fig. 22(c): In graphical representation of 4-point vertex Γ(4)
Λ=∞ (1′, 2′;2, 1) and self-energy, ψ̄ is outgoing

arrow, ψ is in-going arrow. Opposite to Green functions!
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Figure 23: Fermionic fRG flow equations in diagrammatic convention. The last term amounts to exchanging
the labels 1 and 2 in the previous diagram and multiplying the statistical factor ζ. The dash over a pair of
propagators denotes the application of a “product-rule”, GĠ+ ĠG, see Eq. (113).

Flow equations in Γ(4) truncation scheme

• From the general case above, we take the flow equations in terms of fully symmetric Γ:

∂ΛΓ(2)
Λ,α1α2

= −1
2
[
ĠΛ

]
β1β2

Γ(4)
Λ,β1β2α1α2

(110)

and

∂ΛΓ(4)
Λ,α1...α4

= −ζ 1
2
[
ĠΛ

]
β1β2

[GΛ]β3β4
Sα1α2;α3α4

{
Γ(4)

Λ,β2β3α3α4
Γ(4)

Λ,β4β1α1α2

}
(111)

• Pick α1, α2 = (ψ̄,K ′1, σ′1︸ ︷︷ ︸
1′

), (ψ,K2, σ2︸ ︷︷ ︸
2

) = ψ̄1′ , ψ1 , and similar for Γ(4), α1, α2, α3, α4 = ψ̄1′ , ψ̄2′ , ψ2, ψ1 . We

obtain (see Fig. 23):

– For self energy:

∂ΛΣΛ,1′1 = ∂ΛΓ(2)
Λ,α1=ψ̄1′ ,α2=ψ1

= −
ˆ

22′

1
2
([

ĠΛ
]

22′
Γ(4)

Λ,22′1′1 +
[
ĠΛ

]
2′2

Γ(4)
Λ,2′21′1

)
= −ζ

ˆ
22′

[
ĠΛ

]
22′

Γ(4)
Λ,1′2′21

and we insert the conventions from above

∂ΛΣΛ,1′1 = −ζ
ˆ

22′
ĠΛ,22′Γ(4)

Λ
(
1′2′; 21

)
(112)

– Interaction vertex (see Ex. 7.2 for details):

∂ΛΓ(4)
Λ
(
1′2′; 21

)
= −Γ(4)

Λ
(
1′2′; 43

) [
ĠΛ,33′GΛ,44′

]
Γ(4)

Λ
(
3′4′; 21

)
(113)

−ζ
(
ĠΛ,33′GΛ,44′ + ĠΛ,44′GΛ,33′

)
Γ(4)

Λ
(
1′4′; 31

)
Γ(4)

Λ
(
3′2′; 24

)
−ζ2

(
ĠΛ,33′GΛ,44′ + ĠΛ,44′GΛ,33′

)
Γ(4)

Λ
(
1′4′; 32

)
Γ(4)

Λ
(
3′2′; 14

)
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Exercises

Exercise 7.1. fRG in vertex expansion for toy-model

Consider the toy-model field theory of Ex. 5.1. The goal of this exercise is to derive and solve fRG flow equations
for the vertices of this simple model and compare the results with the exact results and perturbative approach.

1. Using the general results from the lecture, write down the flow equations for the generating functions
gc(j), gac(φ̄), γ(φ̄).

2. Use the following cutoff procedure G0 → G0,Λ = −Λ where the flow is from Λ = 0 to Λ = G0. Note
that this is different from the usual convention where Λ starts at ∞ and end at zero. Expand the flow
equations for γΛ(φ̄) in powers of sources to define the vertices γ(n)

Λ for n = 0, 2, 4, 6, 8 and show explicitly

∂Λγ
(0)
Λ = 1

2
γ

(2)
Λ

1 + Λγ(2)
Λ

,

∂Λγ
(2)
Λ = 1

2
γ

(4)
Λ[

1 + Λγ(2)
Λ

]2 ,

∂Λγ
(4)
Λ = 1

2
γ

(6)
Λ[

1 + Λγ(2)
Λ

]2 − 3
Λ
[
γ

(4)
Λ

]2
[
1 + Λγ(2)

Λ

]3 ,

∂Λγ
(6)
Λ = 45

Λ2
[
γ

(4)
Λ

]3
[
1 + Λγ(2)

Λ

]4 − 15
Λγ(4)

Λ γ
(6)
Λ[

1 + Λγ(2)
Λ

]3 + 1
2

γ
(8)
Λ[

1 + Λγ(2)
Λ

]2 .
3. Find the initial conditions for the quantities in 2) at Λ = 0. Set G0 = −1 and truncate the above hierarchy

of flow equations γ(n)
Λ for n > nc equal to their initial values at Λ = 0. Consider the cases nc = 2, 4, 6.

Integrate the set of flow equations numerically (e.g., using Mathematica) from Λ = 0 to Λ = 1. Show
three plots over u ∈ [0, 0.7] to compare the fRG results for

γ(0) = −ln [Z/Z0] , γ(2) = Σ, γ(4), (114)

to the perturbative result of Ex. 5.1 and to the exact solution (from direct numerical evaluation of the
integrals In in Ex. 5.1).

Exercise 7.2. Flow of fermionic 4-point vertex

Derive the flow equation (113) for the fermionic 4-point vertex. Start from the general equation (111).

Exercise 7.3. Fermionic fRG for single-impurity Anderson model

The single impurity Anderson model (SIAM) can be used to model a quantum dot (confined region with
Hamiltonian Hd with local interaction) with single electronic energy level per spin that is connected to one or
more metallic leads l (electrical contacts, Hamiltonian Hl), see Fig. 24(a). The total Hamiltonian with a right
and left lead is H = Hd +Hl=L +Hl=R where

Hd =
∑
σ=↑,↓

εσnσ+U (n↑ − 1/2) (n↓ − 1/2)−
∑
l=L,R

∑
σ=↑,↓

tl
(
d†σc1,l,σ + h.c.

)
, Hl = −t

∑
σ

∞∑
m=1

(
c†m,l,σcm+1,l,σ + h.c.

)
.

(115)
Here, nσ = d†σdσ describes the occupation of dot electrons with spin σ =↑, ↓ and in ↑ =̂ + 1, ↓ =̂ − 1 is
understood. The interaction is repulsive, U > 0. The singe-particle energy levels εσ = Vg +σh/2 can be shifted
by a gate voltage Vg and split under the influence of a magnetic field h. We assume two leads l = L,R which
are coupled from the left and right with hopping strength tl=L,R and lead-internal hopping strength t > 0.
Consider the case of vanishing temperature where the Matsubara frequencies become continuous.
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left lead right lead

U

gate ( Vg )
(a) (b)

Figure 24: (a) Sketch of the single impurity Anderson model attached to two leads. (b) fRG result for the dot
occupation with the approximation UΛ != U .

1. The leads are non-interacting and can be treating exactly, for example by integrating over the Grassman
fields ψm,l,σ(ωn), ψ̄m,l,σ(ωn) associated to cm,l,σ, c†m,l,σ in the path integral formalism. This adds a lead
induced self-energy term in the action for the dot electrons. Assume the wide-band limit |ω| ≪ t and
show that the bare propagator of the d electron then reads

G0,σ (iω) = [iω − (Vg + σh/2) + isgn(ω)Γ]−1 (116)

with Γ = ΓL + ΓR and Γl ≡ |tl|2/t. Hints: Write down the Matsubara action and integrate over
ψm,l,σ(ωn), ψ̄m,l,σ(ωn) . As the action containing the Grassman fields ψm,l,σ(ωn), ψ̄m,l,σ(ωn) does not
mix lead index, spin or Matsubara frequency, you can simply sum over these quantities at the end of
the calculation. It is useful to work with a finite lead of length M , use a Fourier transform ψm(ωn) =

1√
M/2

∑M−1
k=0 sin

(
m2π
M k

)
χk(ωn) and take the limit M →∞ only at the end.

2. The resulting model only contains a single spinful fermion degree of freedom but is nevertheless physically
interesting. Apply the fermionic fRG in vertex expansion by introducing a sharp Matsubara frequency
cutoff G0,Λ(iω) = θ(|ω| − Λ)G0(ω). In a first step, neglect the flow of the four-point vertex, i.e. set
Γ(4)

Λ (ω1′σ, ω2′ σ̄;ω2σ̄, ω1σ) ≡ UΛ != U (where σ̄ ≡ −σ). From the self-energy fRG flow equation, derive
the flow of the effective level position V Λ

σ = Vg + σh/2 + ΣΛ
σ (excluding Γ!):

∂ΛV
Λ
σ = UΛV Λ

σ /π

(Λ + Γ)2 +
(
V Λ
σ̄

)2 . (117)

For the initial condition at large but finite Λi, confirm V Λ=Λi
σ = Vg + σh/2.

Hints: Use Morris’ Lemma and confirm ĠΛ
σ (iω) = −δ(|ω| − Λ)/

(
iω −

(
Vg + σh/2 + ΣΛ

σ

)
+ isgn(ω)Γ

)
.

To prove the initial condition, show that the contribution of the terms Unσ/2 to the self-energy vanishes
in the first part of the fRG flow from Λ =∞ to Λ = Λi where a convergence factor eiωη coming from the
ordering of imaginary time operators in the interaction term has to be considered.

3. Use the flow equation (117) to calculate the dot occupation
〈
n↑ + n↓

〉
. Show that the dot occupation

can be calculated via
〈
nσ
〉

= 1
2π
´∞
−∞ dωe

iωηGσ (iω) = 1
2 −

1
π

´ ω0
0 dω Vσ

[ω+Γ]2+V 2
σ

with ω0 large but finite.
Set Λi = 100, h = 0, U/Γ = 1, 10 or 25 and solve the flow equation (117) numerically (e.g. with
Mathematica) to obtain Vσ ≡ V Λ=0

σ as a function of Vg/U . Plot the dot occupation
〈
n↑ + n↓

〉
across

the dot over Vg/U ∈ [−4, 4] and discuss your result which should look like in Fig. 24(b).

4. Compute the flow of the four-point vertex assuming that the six-point vertex does not contribute. Use
the frequency-independent approximation involving UΛ from above. You should find

∂ΛU
Λ =

2
(
UΛ
)2
V Λ
↑ V

Λ
↓ /π[

(Λ + Γ)2 +
(
V Λ
↑
)2] · [(Λ + Γ)2 +

(
V Λ
↓
)2] . (118)
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8 Derivative expansion

Aims:

• ΓΛ[Φ̄] in Wetterich equation: Focus on (homogeneous) field dependence rather than complete k, ωn-
dependence of Φ̄k,ωn,...

• → “Non-perturbative renormalization”, alternative to vertex-expansion.

• Expansion in orders of ∇rΦ̄ (spatial “derivative expansion”), ok for long-wavelength phenomena.

• Most simple ansatz for ΓΛ[Φ̄]: Local-potential approximation, yields a single PDE.

• Apply to φ4-theory, solve PDE numerically, find ν.

8.1 Introduction and preparation

• More convenient for this section: Wetterich’s “Legendre effective action” is Legendre transform of Gc,Λ[J ]
without any shifts

ΓWe
Λ

[
Φ̄
]
≡ ΓΛ

[
Φ̄
]
− 1

2
(
Φ̄,G−1

0 Φ̄
)
− lnZ0,Λ (119)

• ΓWe
Λ=0

[
Φ̄
]

differs from ΓΛ=0
[
Φ̄
]

in the field-independent term and the second functional derivative which
yields the full propagator (and not the irreducible self-energy). Initial condition:

ΓWe
Λ→Λ0

[
Φ̄
]

= SΛ0

[
Φ̄
]

= S0,Λ0

[
Φ̄
]

+ S1,Λ0

[
Φ̄
]

(120)

• Flow equation for ΓWe
Λ

[
Φ̄
]

(Wetterich equation, use additive regulator G−1
0,Λ = G−1

0 −RΛ)

∂ΛΓWe
Λ

[
Φ̄
]

= 1
2tr

{
[∂ΛRΛ]

(
δ

δΦ̄
⊗ δ

δΦ̄
ΓWe

Λ

[
Φ̄
]

+ ZR−1
Λ

)−1}
(121)

8.2 Derivative expansion for classical O(N) symmetric φ4-theory

• Recall O(N) symmetric φ4-theory with φ = (φ1, φ2, ..., φN ) a classical field (c.f. Ex. 4.4).

SΛ0 [φ] =
ˆ
dr
[
r0
2 φ

2(r) + c0
2 (∇φ)2 (r) + u0

4!
[
φ2(r)

]2]
(122)

We have units [r0φ
2Λ−D0 ] = 1, [c0Λ2−D

0 φ2] = 1, [u0φ
4Λ−D0 ] = 1.

• Initial condition ΓWe
Λ0

[φ̄] = SΛ0 [φ̄], motivates ansatz for flowing ΓWe
Λ [φ̄] that is an expansion in spatial

field derivatives. Abbreviate density ρ(r) ≡ φ̄2(r)/2.

ΓWe
Λ [φ̄] =

ˆ
dr
[
UΛ (ρ(r)) + c0

2 Z
−1
Λ (ρ(r)) (∇φ̄)2 (r) + c0

4 YΛ (ρ(r)) (∇ρ)2 (r) + ...

]
(123)

• First term: Effective potential, scalar function UΛ(ρ) can be obtained from a spatially homogeneous field
configuration,

UΛ(ρ) = 1
V

ΓWe
Λ [φ̄] |φ̄(r)=2√ρe1 . (124)

• Recall Eq. (37), ζαJα = δL
[
Φ̄
]
/δΦ̄α. Thus vacuum expectation value | ⟨φ⟩J→0 | = |φ̄| = 2√ρ0 (magni-

tude of homogeneous field configuration, spontaneous magnetization) is determined by

0 != δLΛ [φ̄]
δφ̄

= δΓWe
Λ [φ̄]
δφ̄

+RΛ(k2 = 0)φ̄. (125)

For Λ→ 0, we use RΛ→0(k2) = 0 and the ansatz (123) to find the condition for ρ0:

U ′Λ(ρ0) != 0 (126)
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Flow equation for UΛ (ρ)

• Idea: Insert the ansatz (123) in Wetterich equation (ζ = 1), then take uniform field configuration φ̄.

• Preparation: Recall tr =
∑

k
∑N
j=1 and prepare

φ̄j(r) =
∑

k
φ̄j(k)eikr → δφ̄j(r)

δφ̄j(k) = eikr,
δρ(r)
δφ̄j(k) = φ̄j(r)eikr,

δ∇φ̄j(r)
δφ̄j′(k) = ikδjj′eikr. (127)

• Assume regulator to be momentum and flavor diagonal, [RΛ]kj,k′j′ = δj,j′V δk,−k′RΛ(k2).

• Prepare term to be inverted 1
V

δ
δφ̄i(−k)

δ
δφ̄i(k)ΓWe

Λ [φ̄] |φ̄(r)=φ̄:

– U -term:
1
V

δ

δφ̄i(−k)
δ

δφ̄i(k)

ˆ
drUΛ (ρ(r)) |φ̄ = 1

V

ˆ
dr δ

δφ̄i(−k)
δρ(r)
δφ̄i(k)U

′
Λ (ρ(r)) |φ̄

= 1
V

ˆ
dr δ

δφ̄i(−k) φ̄i(r)eikrU ′Λ (ρ(r)) |φ̄

= 1
V

ˆ
dr
{
U ′Λ (ρ(r)) + φ̄2

i (r)U ′′Λ (ρ(r))
}
|φ̄

= U ′Λ (ρ) + φ̄2
iU
′′
Λ (ρ)

– Z-term: Derivatives need to act on gradient terms, otherwise they vanish when setting φ̄(r) = φ̄.

1
V

δ

δφ̄i(−k)
δ

δφ̄i(k)

ˆ
drc0

2 Z
−1
Λ (ρ(r)) (∇φ̄)2 (r)|φ̄(r)=φ̄ = c0Z

−1
Λ (ρ) k2 (128)

– Y -term: We use ∇ρ(r) =
∑
j φ̄j(r)∇φ̄j(r) and again act on the gradient terms,

1
V

δ

δφ̄i(−k)
δ

δφ̄i(k)

ˆ
drc0

4 YΛ (ρ(r))

∑
j

φ̄j(r) ∇φ̄j(r)

2

︸ ︷︷ ︸∑
j,j′ φ̄j(r)∇φ̄j(r)φ̄j′ (r)∇φ̄j′ (r)

|φ̄

= 1
V

ˆ
drc0

2 YΛ (ρ(r)) φ̄i(r)φ̄i(r)k2|φ̄

= c0
2 YΛ (ρ) φ̄2

i k
2

• Summary for Wetterich equation:

∂ΛUΛ(ρ) = 1
2

1
V

∑
k︸ ︷︷ ︸´

k

N∑
i=1

∂ΛRΛ(k2)
[
U ′Λ (ρ) + φ̄2

iU
′′
Λ (ρ) + c0Z

−1
Λ (ρ) k2 + c0

2 YΛ (ρ) φ̄2
i k

2 +RΛ(k2)
]−1

(129)

• The matrix to be inverted is diagonal in flavor and momentum index. We chose a coordinate system in
which φ̄ is aligned along one flavor direction (=longitudinal direction l with φ̄2

l /2 =ρ). The remaining
N − 1 transverse directions have φ̄l = 0. We obtain

∂ΛUΛ(ρ) = KD

2

ˆ ∞
0

kD−1dk
[
∂ΛRΛ(k2)

]
(130)

×
{

1
U ′Λ (ρ) + 2ρU ′′Λ (ρ) + c0YΛ (ρ) ρk2 + c0Z

−1
Λ (ρ) k2 +RΛ(k2)

+ N − 1
U ′Λ (ρ) + c0Z

−1
Λ (ρ) k2 +RΛ(k2)

}

• Flow equation for UΛ(ρ) is exact, but approximations are again needed to close the equation and find the
flow of Z−1

Λ (ρ) and YΛ (ρ).
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Local potential approximation (LPA)

• Approximate YΛ and Z−1
Λ by their initial values, YΛ (ρ) != 0 and Z−1

Λ (ρ) != 1. This implies η = 0 which
is often reasonable! Only UΛ(ρ) flows according to Eq. (130).

• Initial condition:
UΛ0(ρ) = 1

V
SΛ0 [φ] = f0 + r0ρ+ u0

6 ρ
2 (131)

Define ρ0 ≡ −3r0/u0 which can be tuned by temperature. Also choose f0 = u0ρ
2
0/6 and find:

UΛ0(ρ) = u0
6 (ρ0 − ρ)2 (132)

so that r0 is the initial value of the vacuum expectation value
〈
φ2/2

〉
= ρ0 which solves U ′Λ0

(ρ0) != 0.

• Interpretation: Minimization of UΛ0(ρ) corresponds to mean-field theory (ρ0 ∼ φ̄2 ∼ m2). The fRG in
local potential approximation takes into account fluctuations scale by scale. The function UΛ(ρ) will
change its shape and the minimum will move.

• Litim regulator:
RΛ(k2) = c0

(
Λ2 − k2

)
Θ
(
Λ2 − k2

)
(133)

This leads to inverse propagators independent of k (it subtracts G−1
0 (k) = c0k

2) and one has

∂ΛRΛ(k2) = 2c0ΛΘ
(
Λ2 − k2

)
(134)

• Insert local potential approximation and regulator in Eq. (130). Use KD
2
´∞

0 kD−1dk
[
2c0ΛΘ

(
Λ2 − k2)] =

c0ΛKD

´ Λ
0 kD−1dk:

∂ΛUΛ(ρ) = c0KDΛD+1

D

{
1

c0Λ2 + U ′Λ (ρ) + 2ρU ′′Λ (ρ) + N − 1
U ′Λ (ρ) + c0Λ2

}
(135)

• This is a partial differential equation (PDE) that usually needs to be solved numerically (e.g. Mathe-
matica).

8.3 Case N = 1: φ4-theory for Ising model in D = 3

Numerical solution of flow equation

• Focus on Ising universality class (N = 1, only longitudinal direction) in D = 3 dimension where K3 ≡
2π3/2/

[
Γ(3/2)(2π)3].

• Fix bare interaction strength u0 = 0.01c2
0Λ0.

• Let λ = Λ/Λ0 : 1→ 0 and let uλ(x = ρ/ρ0) ≡ UΛ=λΛ0(ρ)/f0 so that uλ=1(x) = (1− x)2.

• Flow equation:

∂λuλ(x) = 12K3λ
4

0.012

( Λ0
c0ρ0

)3
 1

6× 0.01−2 Λ0
c0ρ0

λ2 + u′λ(x) + 2xu′′λ(x)

 (136)

and ρ0 = #Λ0/c0 is the tuning parameter. For the numerically obtained flow plotted over φ̄/φ̄MF
0 =

√
x,

see Fig. 25.
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ordered phase disordered phase

flow of dimensionless minimum

ferromagnet

paramagnet

Wilson-
Fisher

(a) (b) (c)

MFMF RG time l
0
0

0.050459

Figure 25: Derivative expansion for φ4-theory in D = 3: (a) Flow of uλ(x =
√
φ̄/φ̄MF

0 ) reducing the sponta-
neous magnetization from its mean-field value. (b) Same as in (a), but for smaller mean-field magnetization
which corresponds to the disordered phase φ̄ = 0. (c) Flow of re-scaled position ρ̃l of minimum of Ũl(ρ̃l).

(a) Ordered phase: Start with ρ0 = 0.07Λ0/c0 =
(
φ̄MF

0

)2
/2. Flow to uλ=0(x =

√
φ̄/φ̄MF

0 ) that still has
minima at finite φ̄/φ̄MF

0 ≃ 0.56. Interpretation: Fluctuation decrease ordered moment.
Note: If there would be no approximations, we should find UΛ=0(φ̄) at the end of the flow to be
convex as a function of φ̄, i.e. a flat shape in the middle. The convex property is due to the definition
of ΓWe

Λ=0 [φ̄] via a Legendre transform (for Λ ̸= 0, the presence of the regulator R allows non-convex
shape).

(b) Disordered phase: Start with ρ0 = 0.03Λ0/c0 and find flow to uλ=0 that has single minimum at φ̄ = 0
which is reached for finite λ. The symmetry spontaneously broken by mean-field theory is restored
by fluctuations. (Starting with ρ0 < 0 would stay in disordered phase.)

• Right at the critical point, the minimum for λ > 0 always appears at finite φ̄, it takes all fluctuations
λ = 0 to arrive at a minimum at φ̄ = 0.

Fixed points and critical exponents

• Recall: Non-trivial RG fixed point requires balance of flow driven by canonical dimension (due to dimen-
sion of coupling) and one-loop contribution.
Expose canonical dimension by working with dimensionless quantities, e.g. Sec. 7.4.

• Dimensionless LPA: Use Λ = Λ0e
−l (→ Λ∂Λ = −∂l) and

k̃ = k/Λ
r̃ = rΛ

φ̃i (r̃) =
√
c0Λ(2−D)/2φ̄(r)

ρ̃ (r̃) = c0Λ2−Dρ(r)

Ũl (ρ̃) = UΛ(ρ)/ΛD = f̃0 + r̃l
2 ρ̃

2 + ...

to obtain dimensionless flow equation :

∂lŨl (ρ̃) = Ũl (ρ̃)D − (D − 2) ρ̃Ũ ′l (ρ̃)− KD

D

{
1

1 + Ũ ′l (ρ̃) + 2ρ̃Ũ ′′Λ (ρ̃)
+ N − 1
Ũ ′l (ρ̃) + 1

}
(137)

• Search for fixed point function ∂lŨl (ρ̃) = 0, it is convenient to rewrite the flow in terms of W̃l (ρ̃) ≡ Ũ ′l (ρ̃):

∂lW̃l (ρ̃) = 2W̃l (ρ̃)− (D − 2) ρ̃W̃ ′l (ρ̃) + KD

D

 3W̃ ′Λ (ρ̃) + 2ρ̃W̃ ′′Λ (ρ̃)[
1 + W̃l (ρ̃) + 2ρ̃W̃ ′Λ (ρ̃)

]2 + (N − 1) W̃ ′l (ρ̃)[
W̃l (ρ̃) + 1

]2
 (138)
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The location of the running minimum ρ̃0,l of Ũl (ρ̃) is determined by W̃l (ρ̃0,l)
!= 0.

• Expected fixed point structure (see Fig. 25c):

– Gaussian fixed point: Ũl (ρ̃) = const (no interactions and r0 = 0)
– Ordered/ferromagnetic fixed point: Have finite φ̄0,l, thus dimensionless φ̃0,l = √c0Λ(2−D)/2φ̄0,l ∝
el(D−2)/2 diverges.

– Disordered/paramagnetic fixed point: φ̃0,l vanishes for large l, even if initially finite (c.f. Fig. 25a).
This happens at cutoff scale Λc ∼ 1/ξ which should be identified with correlation length.

– Critical fixed point (Wilson-Fisher fixed point): ∂lW̃l (ρ̃) = 0 andφ̃0,l → φ̃⋆0 ̸= 0 for l→∞.

• Extracting critical exponent ν (η = 0 by LPA): Fix ũ0 as above, vary r̃0 and find ρ̃⋆0 = 0.050459. Go to
the paramagnetic side, ρ̃0 ≲ ρ̃⋆0, “measure” ξ numerically and use ξΛ0 ∼ |r̃0 − r̃⋆0|−ν or

ln (ξΛ0) = −ν ln |r̃0 − r̃⋆0|+ const. (139)

For the 3D-Ising case, with Litim regulator and LPA find νLPA = 0.650 (very similar to exact ν = 0.630).

8.4 Concluding remarks

• Derivative expansion not applicable for fermions.

– Reason 1: Recall definition of Grassmann variables ψiψj = −ψjψi so that ψ2
i = 0. Thus series

expansions only defined up to first order in ψi:

ΓWe [{ψi}] =
∑

mi=0,1
a(m1,m2, ...,mn)ψm1

1 ψm2
2 ...ψmn

n (140)

– Reason 2: To describe Fermi surface, concept of momentum is important.

• For a fermionic system, it can still be useful to define a bosonic order parameter ϕ ∼ ψ̄ψ. Then ϕ might
be treated with fRG in derivative expansion.

• Further reading on non-perturbative RG: [Berges et al, Physics Reports 363 (2002) 223]
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Part III

Non-equilibrium and Keldysh formalism
9 Quantum dynamics and real-time Green functions

Aims:

• Define various 2-point Green functions and relate them to the Keldysh contour.

• Specialize to equilibrium where spectral density is defined and fluctuation-dissipation theorem holds

9.1 Expectation values

• Quantum expectation value of observableO: ⟨O⟩ = 1
trρtr[Oρ] where ρ is the density matrix (not necessarily

normalized) that describes the state of the system and tr... =
∑
n ⟨n|...|n⟩ is the sum over matrix elements

of a Hilbert space basis {
∣∣n〉}.

• So far: Thermal equilibrium (in contact with bath of temperature T ):

– Canonical ensemble ρ = e−βH

– Grand canonical ensemble ρ = e−(H−µN)β, with particle number fluctuations, trace is over all particle
numbers.

• Non-equilibrium: Not necessarily a bath present, possibly time-dependent Hamiltonian. Assume state is
known at t = t0 → −∞. For example, ρ(t0) = e−βH .

9.2 Dynamics in Schrödinger and Heisenberg picture

• Schrödinger picture: State evolves in time, operators have only explicit time dependence,

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ (1)

or for density matrix (von-Neumann equation)

ρ(t) = U(t, t0)ρ0U(t0, t) (2)

• Schrödinger equation determines U(t, t0): From i∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ follows

i∂tU(t, t0) = H(t)U(t, t0). (3)

How to solve for U(t, t0)?

• Preparation: Time ordering operator for general time-dependent operators A,B. Put later times to the
left:

Tt
[
A(t)B(t′)

]
=
{
A(t)B(t′) : t > t′

ζB(t′)A(t) : t′ > t
(4)

where ζ encodes the statistics, ζ = +1 for bosons, ζ = −1 for fermions.
Note: H = c†c with c fermionic is a bosonic operator.
Similar: T̃t for anti-time-ordering (puts later times to the right).

• Time evolution operator mediates time evolution from t0 to t:

U(t, t0) = Tt exp
[
−i
ˆ t

t0

dτH(τ)
]

(5)
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The exponent should be interpreted as a power series. The H(t) at different times do not necessarily
commute. Due to time-ordering, H(t) always appears on the left.

U(t, t0) =
∞∑
n=0

(−i)n

n!

ˆ t

t0

dt1...

ˆ t

t0

dtn Tt (H(t1)...H(tn)) (6)

• Properties of U(t, t0):

– unitarity condition U †(t1, t2) = U(t2, t1)
– group properties: U(t, t) = 1 and U(t3, t2)U(t2, t1) = U(t3, t1).
– time-independent Hamiltonian H: U(t, t0) = e−i(t−t0)H .

• Time evolution of expectation value of operator O:

⟨O(t)⟩ = 1
trρ0

tr [OU(t, t0)ρ0U(t0, t)]
cycl.= 1

trρ0
tr
[
U(t0, t)OU(t, t0)︸ ︷︷ ︸
≡O(t) Heisenberg pic.

ρ0
]

(7)

The right-hand side defines the Heisenberg picture, in which operators carry the time-dependence.

9.3 Zoo of real-time Green functions

• Operators A,B:

– in Heisenberg picture → A(t), B(t′)
– do not need to be hermitian.
– with ζ = ±1 for bosonic or fermionic operators

• Greater and lesser Green functions [correlation functions, do not care about order of times]:

G>AB(t, t′) = −i
〈
A(t)B(t′)

〉
G<AB(t, t′) = −iζ

〈
B(t′)A(t)

〉
Note: Unlike in the equilibrium case treated so far, we now generally encounter two time arguments, one
per operator.

• Retarded and advanced Green functions [expectation values of commutators]:
[with θ(0) ≡ 1/2 and [A,B]ζ ≡ AB − ζBA is commutator (for ζ = 1, bosons) or anti-commutator (for
ζ = −1,fermions)]

GRAB(t, t′) ≡ −iθ(t− t′)
〈[
A(t), B(t′)

]
ζ

〉
= +θ(t− t′)

(
G>AB(t, t′)−G<AB(t, t′)

)
GAAB(t, t′) ≡ +iθ(t′ − t)

〈[
A(t), B(t′)

]
ζ

〉
= +θ(t′ − t)

(
G<AB(t, t′)−G>AB(t, t′)

)
The retarded GRAB(t, t′) is only non-vanishing for t− t′ ≥ 0, the advanced GAAB(t, t′) for t− t′ ≤ 0.

• Application - Kubo formula: Find change of observable A under perturbation B switched on at time t0
to order O(B) (“linear response”)

⟨A(t)⟩ − ⟨A(t0)⟩ =
ˆ +∞

−∞
dt′GRAB(t, t′) (8)

where the right-hand side is calculated for the unperturbed system. Thus, retarded (and advanced) Green
functions are also called response functions.
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• Relations at time t, t′:

G≶
AB(t, t′) = −G≶

B†A†(t′, t)∗

G>AB(t, t′) = ζG<BA(t′, t)
GAB†A†(t′, t) = GRAB(t, t′)∗

GABA(t′, t) = ζGRAB(t, t′)

Equal time relations [recall θ(0) = 1/2]:

GRAB (t, t) +GAAB (t, t) = 0
GRAB (t, t)−GAAB (t, t) = −i [A,B]ζ

• Time ordered Green function [useful for actual calculations]:

GTA,B(t, t′) = −i
〈
TtA(t)B(t′)

〉
= θ(t− t′)G>AB(t, t′) + θ(t′ − t)G<AB(t, t′)

and anti-time ordered Green function

GT̃A,B(t, t′) = −i
〈
T̃tA(t)B(t′)

〉
= θ(t′ − t)G>AB(t, t′) + θ(t− t′)G<AB(t, t′)

• Redundancy relation:
GTAB(t, t′) +GT̃AB(t, t′)−G>AB(t, t′)−G<AB(t, t′) = 0 (9)

• Keldysh Green function (for later):

GKAB
(
t, t′
)
≡ G<AB

(
t, t′
)

+G>AB
(
t, t′
)

(10)

and the above relations imply the “anti-hermitian” property:

GKAB
(
t, t′
)

= −GKB†A†
(
t′, t
)⋆ (11)

Parameterization with hermitian matrix F and the hermitian conjugate pair GR, GA:

GK(t, t′) =
ˆ
dt′′

[
GR(t, t′′)F (t′′, t′)− F (t, t′′)GA(t′′, t′)

]
GK = GR · F − F ·GA

• Temporal Fourier transform for stationary state (or equilibrium) where G(t, t′) != G(t− t′):

G(ω) =
ˆ ∞
−∞

dt eiωtG(t)

G(t) = 1
2π

ˆ ∞
−∞

dω e−iωtG(ω)

9.4 Green functions in thermal equilibrium and fluctuation-dissipation theorem

• In equilibrium, we can work in single frequency representation.
All Green functions can be calculated from the spectral density:

AAB (ω) ≡ i
(
GRAB(ω)−GRB†A†(ω)⋆

)
(12)
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• Definition: “Real” and “imaginary” parts of Green function (not the same as for complex numbers unless
A = B†, thus denoted by “Gothic” letters).
Applies for time-ordered, retarded and advanced Green functions:

GT/R/A = RGT/R/A + iIGT/R/A (13)

where

RG
T/R/A
A,B (t, t′) ≡ 1

2
(
G
T/R/A
A,B (t, t′) +G

T/R/A

B†,A† (t′, t)⋆
)
,

IG
T/R/A
A,B (t, t′) ≡ 1

2i
(
G
T/R/A
A,B (t, t′)−GT/R/A

B†,A† (t′, t)⋆
)
,

or, for stationary states, after Fourier transform,

RG
T/R/A
A,B (ω) ≡ 1

2
(
G
T/R/A
A,B (ω) +G

T/R/A

B†,A† (ω)⋆
)
,

IG
T/R/A
A,B (ω) ≡ 1

2i
(
G
T/R/A
A,B (ω)−GT/R/A

B†,A† (ω)⋆
)
.

Relations which follow from definitions:

RGR = RGA = RGT (14)

IGR = −IGA = −1
2A (15)

• Integral relation for equilibrium: Shift t-integration from real axis to the line t− iβ (use definition of ⟨...⟩
and A(t) = e−iHtAeiHt) ˆ

dt eiωt ⟨A(t)B(0)⟩ = eωβ
ˆ
dt eiωt ⟨B(0)A(t)⟩ (16)

• We derive a relation between IG
R/A
AB (ω) and G>AB(ω):

IGRAB(ω) = −IGAAB(ω)

= 1
2i
(
GRAB(ω)−GRB†A†(ω)⋆

)
= 1

2i

ˆ ∞
−∞

dt
(
eiωtGRAB(t, 0)− e−iωtGRB†A†(t, 0)⋆︸ ︷︷ ︸

GA
AB(0,t)

)

= 1
2i

ˆ ∞
−∞

dt
(
eiωtθ(t)

(
G>AB(t, 0)−G<AB(t, 0)

))
− e−iωtθ(t)

(
G<AB(0, t)−G>AB(0, t)

)︸ ︷︷ ︸
eq.:G<

AB(−t,0)−G>
AB(−t,0)

(right : t→ −t) = 1
2i

ˆ ∞
−∞

dt
(
eiωtθ(t)

(
G>AB(t, 0)−G<AB(t, 0)

))
− eiωtθ(−t)

(
G<AB(t, 0)−G>AB(t, 0)

)
= 1

2i

ˆ ∞
−∞

dt eiωt
(
G>AB(t, 0)−G<AB(t, 0)

)
= −1

2

ˆ ∞
−∞

dt eiωt ⟨A(t)B(0)− ζB(0)A(t)⟩ (17)

[(16)] = − i2
(
1− ζe−ωβ

)
G>AB(ω) (18)

Similar for time-ordered Green function:

IGTAB(ω) = − i2
(
1 + ζe−ωβ

)
G>AB (ω)

• Combining the last two equations and eliminating G>AB (ω), we find a relation between the imaginary
parts of retarded, advanced and time-ordered Green functions:

IGR = −IGA = 1− ζe−βω

1 + ζe−βω
IGT (ω) (19)
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• IGRAB(ω) = −AAB(ω)/2 determines the full GRAB(ω): Find full retarded Green function using θ(t) =
1

2πi
´ +∞
−∞ dω eiωt

ω−iη and convolution:

GRA,B(ω) =
ˆ ∞
−∞

dt eiωtθ(t)
(
G>AB(t, 0)−G<AB(t, 0)

)
= − 1

2π

ˆ +∞

−∞
dω′

1
ω′ − ω − iη

ˆ ∞
−∞

dt eiω
′t ⟨A(t)B(0)− ζB(0)A(t)⟩

[(17)] = 1
π

ˆ +∞

−∞
dω′

IGRA,B(ω′)
ω′ − ω − iη

= 1
π

ˆ +∞

−∞
dω′
−1

2AA,B(ω′)
ω′ − ω − iη

• Similar relations:

G>A,B(ω) = − iAA,B(ω)
1− ζe−ωβ

G<A,B(ω) = + iAA,B(ω)
1− ζe+ωβ

or

GKAB(ω) ≡ G<AB(ω) +G>AB(ω) = −iAAB(ω)e
βω + ζ

eβω − ζ
(20)

This is the fluctuation-dissipation theorem. It only holds in equilibrium.

– Fluctuation: Correlation function G≷ on the left-hand-side.
– Dissipation: Imaginary part of the response functions IGR ∼ A on the right-hand-side.

9.5 Contour ordered Green function

• Assume the state of a system at t → t0 −∞, ρ(−∞) is known. Recall Eq. (7) for expectation value of
operator O:

⟨O(t)⟩ = 1
trρ(t)tr [U(−∞, t)OU(t,−∞)ρ(−∞)]

This is shown schematically in Fig. 26(a) in solid lines.

• Extend the time evolution from −∞ to +∞ (top) and back (bottom), see dashed contour also called
Keldysh-contour. Insert 1 = U(t,+∞)U(+∞, t) in front of O:

⟨O(t)⟩ = 1
trρ(t)tr [U(−∞, t)U(t,+∞)U(+∞, t)OU(t,−∞)ρ(−∞)]

= 1
trρ(t)tr [U(−∞,+∞)U(+∞, t)OU(t,−∞)ρ(−∞)]

Note: Operator O could equally well be inserted on backward branch of contour. Standard choice for
later: O/2 on both branches.

• Two operators A,B on contour (either on top [+] or bottom branch [-]):
Define contour ordering operator Tc in analogy to time-ordering operator, see gray arrows in Fig. 26(a).
This means that time-ordering only matters if two operators are on the same branch. This leads to the
2x2 matrix valued contour-ordered Green function:

GA,B
(
t, t′
)
≡ −i

(
⟨TcA+(t)B+(t′)⟩ ⟨TcA+(t)B−(t′)⟩
⟨TcA−(t)B+(t′)⟩ ⟨TcA−(t)B−(t′)⟩

)
=
(
GTA,B (t, t′) G<A,B (t, t′)
G>A,B (t, t′) GT̃A,B (t, t′)

)
(21)
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real time(a)

(b)

leftmost

rightmost

Figure 26: (a) Expectation value ⟨O(t)⟩ evaluated on the Keldysh contour c. (b) Time-slice convention for the
construction of functional integral representation of partition function.

Exercises

Exercise 9.1. Harmonic oscillator: Green function, spectral density and equation-of-motion technique

The Hamiltonian for a 1D quantum-mechanical oscillator with mass m and frequency ω0 reads

H = 1
2mp2 + 1

2mω
2
0x

2 (22)

where momentum and position operators satisfy [p, x]− = −i.

1. Introduce the bosonic creation operator a = x
√
mω0/2 + ip/

√
2mω0 and express the Hamiltonian as

H = ω0(a†a + 1/2). For the operators A = a and B = a†, find the Heisenberg time-evolution, a(t) and
a†(t). Assuming thermal equilibrium at temperature T , find the greater and lesser Green functions G≷

aa† ,
the retarded and advanced Green function GR/A

aa† and the time ordered Green function GT
aa† , both in time

and frequency domain. Confirm that the spectral density reads Aaa† = 2πδ(ω − ω0).

2. Use your results in 1.) to find the retarded Green function for the position operator,

GRxx(t) = −θ(t) 1
mω0

sin (ω0t) . (23)

Find the same result from the equation-of-motion technique, which does not require a diagonalization of
the Hamiltonian: Take the definition of GRxx(t), apply two t-derivatives and solve the resulting differential
equation for GRxx(t).

Exercise 9.2. Spectral density and tunneling spectroscopy
Consider the equilibrium spectral density AAB(ω) of Eq. (12) for the case A = c, B = A† = c† where c† is a
fermionic creation operator. In this exercise, we explore the meaning of Acc†(ω) as the energy resolution of a
particle created by c† and discuss an established measurement scheme in the solid state physics context.

1. Show that Acc†(ω)...

(a) is normalized 1
2π
´ +∞
−∞ dωAcc†(ω) = 1,

(b) is real and non-negative (use the Lehmann representation),
(c) determines the occupation when integrated with the Fermi distribution nF (ω) = 1

eωβ+1 , i.e.
〈
c†c
〉

=
1

2π
´ +∞
−∞ dωAcc†(ω)nF (ω).

(d) is a δ-function for a non-interacting Hamiltonian H = ε0c
†c whereas it broadens if scattering pro-

cesses remove the particle from its state with rate τ (assume GR
cc†(t) = −iθ(t)e−iε0te−t/2τ ).

2. In solid-state physics, the spectral density can be measured by tunneling spectroscopy. Consider two
pieces of metal (described by - possibly interacting - Hamiltonians HA and HB, respectively) weakly
coupled by a tunneling barrier HAB =

∑
νµ Tµνc

†
AµcBν + h.c. with Tµν a small complex tunneling matrix

element (T = T †) and Greek letters denoting some basis states of HA,B. The total Hamiltonian reads
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H = HA+HB +HAB. The tunnel current through the barrier is given by the rate of change of the charge
in metal A (or B), I = ∂tQA = i[H,QA]− where QA = −e

∑
µ c
†
AµcAµ. Show that

I = ie
∑
νµ

(
Tµνc

†
AµcBν − T

⋆
µνc
†
BνcAµ

)
(24)

and use the Kubo formula to calculate the (change of) I when the tunneling barrier is added,

I(t) =
ˆ +∞

−∞
dt′GRI,HAB

(t, t′) (25)

where the retarded Green function needs to be calculated with respect to HA + HB only. Assume a
voltage bias eV = µA − µB between the two metals (i.e. use HA → HA − µA

∑
µ c
†
AµcAµ and analogous

for HB). Show that

I = −e 1
2π

ˆ
dω
∑
νµ

|Tµν |2AcAµc
†
Aµ

(ω)A
cBνc

†
Bν

(ω + eV ) [nF (ω + eV )− nF (ω)] . (26)

Assume that metal B has a spectral density that does not vary strongly with ω,
∑
ν |Tµν |

2A
cBνc

†
Bν

(ω) ≃
const., and we also assumed that |Tµν |2 does not vary strongly with µ. Show that at low temperature, the
differential conductance dI/dV = G(V ) is proportional to

∑
µAcAµc

†
Aµ

(−eV ). This underlies the principle
of tunneling spectroscopy.

10 Keldysh functional integral

Aims:

• Find functional integral formulation of operator formalism of Sec. 9.

10.1 Generating function Z[V ]

• Define time-evolution operator on closed time contour c:

Uc ≡ U (−∞,+∞)U (+∞,−∞) = 1 (27)

• Source-term for observable O: H(t)→ H±(t) = H(t)±OV (t) where V (t) is a function and H+ is applied
on forward branch of c, H− on backward branch. Thus:

Uc → Uc [V ] (28)

• Generating function (also “partition function”)

Z[V ] ≡ 1
trρ(−∞)tr {Uc [V ] ρ(−∞)} (29)

We can compute ⟨O(t)⟩ from generating functional as

⟨O(t)⟩ = i

2
δZ[V ]
δV (t) |V=0 (30)

Proof:
i

2
δZ[V ]
δV (t) |V=0 = i

2
1

trρ(−∞)tr
{

δ

δV (t)Uc [V ] ρ(−∞)
}
|V=0

= i

2
1

trρ(−∞)

× tr
{δU−V (−∞,+∞)

δV (t) U+V (+∞,−∞)ρ(−∞) + U−V (−∞,+∞) δU+V (+∞,−∞)
δV (t) ρ(−∞)

}
|V=0
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and use

δU+V (+∞,−∞)
δV (t) |V=0 = δ

δV (t)Tt exp
[
−i
ˆ +∞

−∞
dτH(τ) +OV (τ)

]
|V=0

= U (+∞, t) (−iO)U (t,−∞)

• Remarks:

– Without source field, partition function is normalized: Z[V = 0] = 1.
– If source-field is different on the two branches, have Uc [V ] ̸= 1 and Z[V ] ̸= 1.

10.2 Functional integral representation for Z[V ] (Bosons)

Review: Bosonic coherent states

Def. coherent state |ϕ⟩ = e
∑M

l=1 ϕla
†
l |0⟩, ϕl ∈ C overlap ⟨ϕ|ψ⟩ = e

∑
l
ϕ⋆

l ψl

action of al al |ϕ⟩ = ϕl |ϕ⟩ res. of id. 1 =
´ ∏

l

dϕ⋆l dϕl
π︸ ︷︷ ︸

d(ϕ⋆,ϕ)

e−
∑

l
ϕ⋆

l ϕl |ϕ⟩ ⟨ϕ|

action of a†l ⟨ϕ| a†l = ⟨ϕ|ϕ⋆l trace trO =
´
d(ϕ⋆, ϕ)e−

∑
l
ϕ⋆

l ϕl ⟨ϕ|O|ϕ⟩
auxiliary identity

〈
ϕ|ca†a|ψ

〉
= eϕ

⋆ψc, c ∈ C

• Proof of auxiliary identity (does not appear in equilibrium applications): Define

f(c) ≡
〈
ϕ|ca†a|ψ

〉
→ ∂cf(c) =

〈
ϕ|a†aca†a−1|ψ

〉
. (31)

Note that for an arbitrary function g, we have

ag(a†a− 1) = g(a†a)a. (32)

This is clear by acting on basis vector |n⟩ which yields g(n − 1)
√
n |n− 1⟩ on the left and on the right.

Then we find
∂cf(c) =

〈
ϕ|a†ca†aa|ψ

〉
= ϕ⋆ψf(c) (33)

This can be uniquely solved as f(c) = ecϕ
⋆ψ since indeed f(c = 1) = ⟨ϕ|ψ⟩ = eϕ

⋆ψ.

Construction of functional integral representation of Z

• First start without source terms (V = 0)

• Bosonic Hamiltonian in 2nd quantization with all creation operators left of annihilators (“normal or-
dered”). The operators fulfill [an, a†m]+ = δnm, assume M degrees of freedom l = 1, 2, ...,M :

H
(
a†, a

)
=
∑
l,m

tlma
†
l am +

∑
l,m,n,o

Ulmnoa
†
l a
†
manao (34)

• Take standard steps to coherent state functional integral representation for Z, pay attention to (+) or
(-) contour.

1. Use formula for trace

2. Slice closed contour c into 2N − 2 intervals so that t1 = −∞ = t2N and tN = +∞ = tN+1, see Fig. 26(b).
We label time-steps by j = 1, 2, .., 2N and use Uc = U−δt...U−δt · 1 ·Uδt...Uδt. Insert resolution of identity
operator using bosonic coherent states.
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Z = 1
trρtr {Ucρ}

(1.) = 1
trρ

ˆ
d(ϕ⋆2N , ϕ2N )e−

∑
l
|ϕ2N,l|2 ⟨ϕ2N |Ucρ|ϕ2N ⟩

(2.) = 1
trρ

ˆ 2N∏
j=1

d(ϕ⋆j , ϕj) ⟨ϕ2N |U−δt|ϕ2N−1⟩ · · · ⟨ϕN+2|U−δt|ϕN+1⟩ ⟨ϕN+1|1|ϕN ⟩︸ ︷︷ ︸
=1

× ⟨ϕN |Uδt|ϕN−1⟩ · · · ⟨ϕ2|Uδt|ϕ1⟩ ⟨ϕ1|ρ|ϕ2N ⟩exp

− 2N∑
j=1

M∑
l=1
|ϕn,l|2


• Evaluate matrix elements for δt → 0 (keep δt × [2N − 2] fixed) where we use that H is normal ordered

and approximately time-independent on a time-scale δt:

⟨ϕj |U±δt|ϕj−1⟩ =
〈
ϕj |e∓iδtH(a†

l
,al)|ϕj−1

〉
=

〈
ϕj |1∓ iδtH(a†l , al) +O(δt2)|ϕj−1

〉
= ⟨ϕj |ϕj−1⟩

[
1∓ iδtH(ϕ⋆j,l, ϕj−1,l) +O(δt2)

]
= eϕ

⋆
jϕj−1

[
e∓iδtH(ϕ⋆

j,l,ϕj−1,l) +O(δt2)
]

Insert in expression for Z (suppress l and recall ϕN+1 = ϕN ):

Z = 1
trρ

ˆ 2N∏
j=1

d(ϕ⋆j , ϕj) exp

 2N∑
j=2

ϕ⋆jϕj−1 − iδt
N∑
j=2

H(ϕ⋆j , ϕj−1) + iδt
2N∑

j=N+2
H(ϕ⋆j , ϕj−1)−

2N∑
j=1
|ϕj |2

⟨ϕ1|ρ|ϕ2N ⟩

(35)

Example: Single non-interacting bosonic mode

• Consider single bosonic mode H = ω0a
†a starting out in equilibrium:

ρ(−∞) ≡ ρ = e−βH = e−βω0a†a (36)

• Preparations:

– Normalization: trρ =
∑∞
n=0 e

−βω0n = 1/(1− e−βω0)

– For last factor in Z, use auxiliary identity from table with c = e−βω0 :
〈
ϕ1|e−βω0a†a|ϕ2N

〉
= exp

(
e−βω0ϕ⋆1ϕ2N

)
• Express Z as

Z = 1
trρ

ˆ 2N∏
j=1

d(ϕ⋆j , ϕj) exp

i 2N∑
j,j′=1

ϕ⋆jG
−1
jj′ϕj′

 (37)

with the 2N × 2N -matrix (here, choose N = 3 for clarity)

i
(
G−1

)
=



−1 0 0 0 0 e−βω0

h− −1 0 0 0 0
0 h− −1 0 0 0
0 0 1 −1 0 0
0 0 0 h+ −1 0
0 0 0 0 h+ −1


(38)

where h− = 1− iδtω0 and h+ = 1+iδtω0 and the e−βω0 and 1 are the gluing conditions which connect +
and - branch.
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• Check normalization (Z = 1): The functional integral yields 1/det
(
−iG−1). Expand the determinant

with respect to the top row, use for upper or lower triangular matrix T : detT = t11t22... ,

det
(
−iG−1

)
= det

(
[iG]−1

)
= (−1)(−1)2N−1 − e−βω0h−

N−11h+
N−1

= 1− e−βω0 (1− iδtω0)N−1 (1+iδtω0)N−1

= 1− e−βω0
(
1 + δt2ω2

0

)N−1

= 1− e−βω0

(
1 + (N − 1) δt

2ω2
0

N − 1

)N−1

≃ 1− e−βω0exp
[
(N − 1)δt× δtω2

0

]
︸ ︷︷ ︸

→1

{δtN = const.} ≃ 1− e−βω0

This cancels with 1/trρ, so normalization is confirmed:

Z = 1− e−βω0

1− e−βω0
= 1. (39)

Continuum limit (for generic bosons)

• Take continuum limit as N →∞, δt→ 0 with Nδt = const.

• For forward branch ϕj=1,2,..,N → ϕ+(t),
∑N
j=1 δt→

´ +∞
−∞ dt, and

ϕ⋆jϕj−1−ϕ⋆jϕj = −δtϕ⋆j
ϕj − ϕj−1

δt
→ −δtϕ⋆+(t)∂tϕ+(t) (40)

Analogous on backward branch.

• Find:
Z =

ˆ
ϕ+(∞)=ϕ−(∞)

D
[
ϕ⋆+, ϕ+, ϕ

⋆
−, ϕ−

]
eiS[ϕ+,ϕ−]⟨ϕ+ (−∞) |ρ|ϕ− (−∞)⟩ (41)

with

S [ϕ+, ϕ−] = +
ˆ +∞

−∞
dt

[∑
l

ϕ⋆+,l(t)i∂tϕ+,l(t)−H
[
ϕ⋆+(t), ϕ+(t)

]]

−
ˆ +∞

−∞
dt

[∑
l

ϕ⋆−,l(t)i∂tϕ−,l(t)−H
[
ϕ⋆−(t), ϕ−(t)

]]

and

D
[
ϕ⋆+, ϕ+, ϕ

⋆
−, ϕ−

]
≡ 1

trρ · lim
N→∞

ˆ 2N∏
j=1

d(ϕ⋆j , ϕj) (42)

• Remarks:

– Keep in mind: Continuum notation is just an abbreviation for discrete form.
– Compare to equilibrium formalism, Z =

´
D[ϕ⋆, ϕ]e−S[ϕ] with S =

´ β
0 dτϕ⋆(τ)∂τϕ(τ)+H[ϕ⋆(τ), ϕ(τ)]

and no backward evolution. In Keldysh, we now have two copies of the field in real-time for forward
and backward branch, with opposite signs of the action (−).

– The field ϕ+ is coupled to field ϕ− at the two boundaries, ϕ+(∞) = ϕ−(∞) and ⟨ϕ+ (−∞) |ρ|ϕ− (−∞)⟩.
In the case of Eq. (38), these correspond to the entries 1, e−βω0 in the corners of the off-diagonal
blocks of i

(
G−1).
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Green functions (for single bosonic mode)

• Find two-point function (no factor of 1/Z!) at times t, t′ corresponding to time slice j, j′. Use Gaussian
integral formula:

〈
Tca(t)a†(t′)

〉
=
〈
ϕjϕ

⋆
j′

〉
≡ 1

trρ

ˆ 2N∏
k=1

d(ϕ⋆k, ϕk)ϕjϕ⋆j′ exp

i 2N∑
k,k′=1

ϕ⋆kG
−1
kk′ϕk′

 = iGjj′ (43)

• Back to simple model H = ω0a
†a, can invert G−1 explicitly (ρ ≡ e−βω0). Here for N = 3 (but general-

ization to arbitrary N straightforward),

iG = 1
det (−iG−1)



1 ρh2
+h− ρh2

+ ρh2
+ ρh+ ρ

h− 1 ρh2
+h− ρh2

+h− ρh+h− ρh−
h2
− h− 1 ρh2

+h
2
− ρh+h

2
− ρh2

−
h2
− h− 1 1 ρh2

−h+ ρh2
−

h2
−h+ h−h+ h+ h+ 1 ρh2

−h+
h2
−h

2
+ h−h

2
+ h2

+ h2
+ h+ 1


with



ϕ1 = ϕ+,1
...

ϕN = ϕ+,N
ϕN+1 = ϕ−,N

...
ϕ2N = ϕ−,1


.

(44)
For convenience, we re-label the slice-index to indicate the top (+) or bottom (-) part of the contour:

• Compare to Eq. (21), read off four propagators G</>/T/T̃ , depending on choice of ϕ±:

iG<jl ≡
〈
ϕ+,jϕ

⋆
−,l

〉
=
e−βω0hl−1

+ hj−1
−

det (−iG−1)

iG>jl ≡
〈
ϕ−,jϕ

⋆
+,l

〉
=

hN−j+ hN−l−
det (−iG−1)

iGTjl ≡
〈
ϕ+,jϕ

⋆
+,l

〉
=

hj−l−
det (−iG−1)

{
1 : j ≥ l
e−βω0(h+h−)N−1 : j < l

iGT̃jl ≡
〈
ϕ−,jϕ

⋆
−,l

〉
=

hl−j+
det (−iG−1)

{
e−βω0(h+h−)N−1 : j > l

1 : j ≤ l

• Continuum limit, (h+h−)N → 1 as before. Use hj± =
(
1± i δtjj ω0

)j
→ e±iω0δtj = e±iω0t, and det

(
−iG−1) =

1− e−βω0 and the boson number nB = e−βω0
1−e−βω0 = 1

eβω0−1

iG<
(
t, t′
)

= nBe
−iω0(t−t′)

iG>
(
t, t′
)

= (nB + 1) e−iω0(t−t′)

GT (t, t′) =
{
G>(t, t′) : t ≥ t′

G<(t, t′) : t < t′
(45)

GT̃ (t, t′) =
{
G>(t, t′) : t′ ≥ t
G<(t, t′) : t′ < t

(46)

Up to the case t = t′ (see below), this is in agreement with the result from the operator formalism in
Sec. 9.3 and Ex. 9.1.
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• Equal times: The last two lines differ from the convention θ(0) = 1/2 put forward in Sec. 9.3! This should
not bother us because:

– What matters for practical calculations in the fulfillment of GR(t, t)+GA(t, t) = GT (t, t)−GT̃ (t, t) =
0 and GR(t, t)−GA(t, t) = G>(t, t)−G<(t, t) = −i (the commutator).

– The redundancy relation (9) is modified at equal times:

GT (t, t′) +GT̃ (t, t′)−G>(t, t′)−G<(t, t′) =
{

0 : t ̸= t′

1 : t = t′
(47)

The right hand side is a manifold of measure zero in the t-t′-plane and does not bother us further
in the next section.

Keldysh rotation (for generic bosons)

• Idea: Take into account the redundancy relation (9) in a simple form. Find retarded, advanced and
Keldysh Green functions.

• Define new fields in terms of rotation applied to ϕ± (analogous for ϕ⋆±):

ϕc(t) ≡
1√
2

(ϕ+(t) + ϕ−(t))

ϕq(t) ≡
1√
2

(ϕ+(t)− ϕ−(t))

The components ϕc,q are called “classical” and “quantum”.

• The rotation yields for
iGαβ(t, t′) ≡

〈
ϕα(t)ϕ⋆β(t′)

〉
(48)

with α, β ∈ {c, q}:

G = 1
2

(
1 1
1 −1

)(
GT G<

G> GT̃

)(
1 1
1 −1

)
=
(
GK(t, t′) GR(t, t′)
GA(t, t′) 0

)
(49)

and we identify the retarded (R), advanced (A) and Keldysh (K) component introduced above in Sec. 9.3.
The zero in the bottom right (

〈
ϕq(t)ϕ⋆q(t′)

〉
= 0) is the consequence of Eq. (47).

• Example: Single bosonic mode H0 = ω0a
†a (see Ex. 9.1):

Gaa†
(
t, t′
)

= −ie−iω0(t−t′)
(

2nB + 1 θ(t− t′)
−θ(t′ − t) 0

)
(50)

and the Fourier-trafo with the important infinitesimal convergence factors η reads:

Gaa† (ω) =
(
−i2πδ (ω0 − ω) [2nB + 1] 1

ω−ω0+iη
1

ω−ω0−iη 0

)
(51)

• Graphical representation for −i
〈
ϕα(t)ϕ⋆β(t′)

〉
. Conventions:

– classical field ϕc, ϕ
⋆
c : solid line

– quantum field ϕq, ϕ
⋆
q : dashed line

– arrow: from ϕ⋆β(t′) to ϕα(t)
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Keldysh action

• Non-interacting case: Want action S[ϕc, ϕq] such that (α, β ∈ {c, q})〈
ϕα(t)ϕ⋆β(t′)

〉
=
ˆ
D [ϕc, ϕq]ϕα(t)ϕ⋆β(t′)eiS[ϕc,ϕq ] (52)

reproduces Eq. (49). Need

S[ϕc, ϕq] =
ˆ +∞

−∞
dtdt′

(
ϕ⋆c(t), ϕ⋆q(t)

)( 0
[
G−1]A (t, t′)[

G−1]R (t, t′)
[
G−1]K (t, t′)

)
︸ ︷︷ ︸

≡G−1

(
ϕc(t′)
ϕq(t′)

)
(53)

with the defining condition for G−1:

G−1 ·G =
(

0
[
G−1]A[

G−1]R [
G−1]K

)
·
(
GK GR

GA 0

)
= 1 ≡

(
δ(t− t′) 0

0 δ(t− t′)

)
(54)

• Written in components, we have the following relations:[
G−1

]A
=

[
GA
]−1

[
G−1

]R
=

[
GR
]−1

[
G−1

]K
= −

[
G−1

]R
·GK ·

[
G−1

]A
=
[
GR
]−1
· F − F ·

[
GA
]−1

where in the last step, we used GK = GR · F − F ·GA. Note:
[
G−1]K ̸= [

GK
]−1

.

• Main features of S[ϕc, ϕq] (called “causality structure”, remains intact even with interactions):

– S[ϕc, ϕq = 0] = 0↔ c - c block of quadratic action vanishes: If ϕq = 0, then ϕ+ = ϕ− and the action
on the forward and backward branch is canceled.

– The q − c and c − q sub-matrices
[
G−1]A and

[
G−1]R of G−1 are mutually hermitian conjugated

lower and upper triangular matrices in the time-domain. Indeed, in Sec. 9.3 we found for A = B†:
GA(t′, t) = GR(t, t′)∗

– The q − q component is anti-hermitian, GK(t′, t) = −GK(t, t′)∗. It is responsible for convergence of
functional integral and contains information about the distribution function.
For the single bosonic mode model, we have after a short calculation

[
G−1]K ∝ η, it becomes finite

if interactions are added.

External sources

• For the computation of observables, want to include source-fields Z → Z[V ], see Eq. (29). Recall sources
should be different on forward and backward branch, assume the following coupling V+(t, t′)ϕ⋆+(t)ϕ+(t′)
and V−(t, t′)ϕ⋆−(t)ϕ−(t′).

• Keldysh-rotation for source fields (like ϕ± → ϕc,q but with extra factor 1/
√

2)

Vc = 1
2 (V+ + V−)

Vq = 1
2 (V+ − V−)

Note:

– For Vq = 0, we have V+ = V− and thus Z[Vc, Vq = 0] = 1.
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• Keldysh action in continuum:

S =
ˆ +∞

−∞
dtdt′

(
ϕ⋆c(t), ϕ⋆q(t)

) [
G−1(t, t′)−

(
Vq Vc
Vc Vq

)
(t, t′)

](
ϕc(t′)
ϕq(t′)

)
(55)

• Partition function from Gaussian integral

Z[Vc, Vq] = 1
tr(ρ)

1
det (−iG−1 + iV ) = 1

det (1−G · V ) = exp (−tr ln [1−G · V ]) (56)

where the trace runs over Keldysh-matrix index and time.

Example (single bosonic mode):

• Compute observable

i
δZ[Vc, Vq]
δVq(t, t′)

|Vc,q=0 =
〈
ϕ⋆c(t)ϕc(t′) + ϕ⋆q(t)ϕq(t′)

〉
(57)

=
〈
ϕ⋆+(t)ϕ+(t′) + ϕ⋆−(t)ϕ−(t′)

〉
We compute both sides of Eq. (57) separately:

1. Right-hand side: Recall that in the functional integral formalism〈
Tta(t1)a†(t2)

〉
=
〈
ϕ+(t1)ϕ⋆+(t2)

〉
,
〈
T̃ta(t1)a†(t2)

〉
=
〈
ϕ−(t1)ϕ⋆−(t2)

〉
(58)

and obtain: 〈
ϕ+(t)ϕ⋆+(t′) + ϕ−(t)ϕ⋆−(t′)

〉
=

〈
Tta(t)a†(t′) + T̃ta(t)a†(t′)

〉
= iGT (t, t′) + iGT̃ (t, t′)

2. Left-hand side:

i
δZ[Vc, Vq]
δVq(t, t′)

|Vc,q=0 = i
δ exp (−tr ln (1−G · V ))

δVq(t, t′)
|Vc,q=0

= −itr
[
(1−G ·V)−1 (−G) δV

δVq(t, t′)

]
|Vc,q=0

= itr2

[
G(t′, t)

(
1 0
0 1

)]
= iGK(t, t′)

and we now from Sec. 9.3 that both expressions are equal.

Exercises

Exercise 10.1. Driven harmonic oscillator

A quantum harmonic oscillator H0 = ω0a
†a (with a, a† bosonic operators) is coupled to a time-dependent

driving field U(t) which vanishes for t→ ±∞,

H(t) = H0 + U(t)
(
a+ a†

)
/
√

2. (59)

This non-interacting but non-equilibrium problem can be treated exactly using the Keldysh formalism. Assume
that the oscillator starts out in the ground state at t→ −∞.
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1. Upgrade U(t) to a source field U±(t). Note that U± couples differently to the fields ϕ,ϕ⋆ compared to
the source V± used in the lecture. What could be the motivation for the coupling in (59)? Write down
the generating functional Z[U+, U−] for H(t) in the continuum notation. Perform the Keldysh rotation
(2Uc/q = U+ ± U−) and introduce the (inverse of the) matrix of non-driven harmonic oscillator Green
functions

G(t, t′) =
(
GK GR

GA 0

)
(t, t′). (60)

Evaluate Z[Uc, Uq] by performing the Gaussian integral and show that Z[Uc, Uq = 0] = 1.

2. From introductory quantum mechanics, we expect that the periodically driven harmonic oscillator will
end up in a coherent state with ⟨a⟩ = α ̸= 0 and n =

〈
a†a

〉
= |α|2. We want to find α. Compute

the functional derivative iδZ [Uc, Uq] /δUq(t)|Uq=0 from Z[Uc, Uq] found in part 1.). To which expectation
value in terms of the operators a(†)(t) does this correspond? Show that in the limit t→∞, the coefficient
α is given by the Fourier transform of Uc(t) ≡ U(t) (up to an unimportant factor

√
2eiφ with φ ∈ R).

Hint: Use the results from (50).

3. Specialize to a periodic driving field with Gaussian envelope, U(t) = U0 cos (ωt) e−t2/(4T 2). Assume T
much larger than ω and ω0. Compute the final occupation number n = |α|2. Which driving frequency ω
maximizes n?

11 Interactions and self-energy

11.1 Interactions

• Consider interacting part of bosonic Hamiltonian (now in D-dim real space, contact interaction):

Hint = g

ˆ
dxa†(x)a†(x)a(x)a(x) (61)

which yields in terms of the action:

Sint = −g
ˆ
dx
ˆ
c
dtϕ⋆(x, t)ϕ⋆(x, t)ϕ(x, t)ϕ(x, t) (62)

= −g
ˆ
dx
ˆ +∞

−∞
dt
[(
ϕ⋆+ϕ+

)2 − (ϕ⋆−ϕ−)2]
(rot.) = −g

ˆ
dx
ˆ +∞

−∞
dt
[
ϕ⋆cϕ

⋆
qϕcϕc + ϕ⋆cϕ

⋆
qϕqϕq + ϕcϕqϕ

⋆
cϕ

⋆
c + ϕcϕqϕ

⋆
qϕ

⋆
q

]
Remarks:

– Sint vanishes for ϕq = 0, just like the quadratic action.
– Diagrammatic notation with the rules defined below Eq. (49) but with arrows pointing to the ϕ⋆

field (so that Green functions with opposite arrow convention can be attached).

• Interactions maintain normalization (Z = 1): Check via perturbation theory to order g and g2, see
Ex. 11.1. Possible reasons are (i)

〈
ϕ⋆qϕq

〉
0

= 0, (ii)
(
GA0 +GR0

)
(t, t) = 0, or (iii) an integral in the

t1,2-plane over GR(t2, t1)GA(t2, t1) with incompatible θ-functions.
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11.2 Dyson equation

• Although Z = 1 is maintained with interactions, the propagators are modified (“dressed”). They are
defined as:

G = −i
〈
ϕαϕ

⋆
β

〉
= −i

ˆ
D[ϕc, ϕq]ϕαϕ⋆βeiS0+iSint (63)

• Perturbative expansion in g via Wick-theorem generates various diagrams (internal vertices: sum over
Keldysh-indices, integrate over space-time coordinates)

– Disconnected diagrams vanish due to Z = 1, they contain ⟨Sint⟩0 = 0,
〈
S2
int

〉
0 = 0, ... .

– One-line irreducible diagrams contribute to the self-energy Σ (without external legs).
– One-line reducible diagrams are taken into account via the Dyson equation (“·” includes t-integrals!).

G = G0 +G0 · Σ ·G0 +G0 · Σ ·G0 · Σ ·G0 + ... (64)
= G0 +G0 · Σ ·G

or
G =

[
G−1

0 − Σ
]−1
⇔
(
G−1

0 − Σ
)
·G = 1 (65)

=0 (Z=1)
contributes to self-energy taken into account via Dyson equation

• The matrix self-energy has the same causality structure as G−1
0 (similar perturbation theory arguments

as for Z = 1):

Σ =
(

0 ΣA

ΣR ΣK

)
(66)

The Dyson equation then reads: 0
(
GA0

)−1
− ΣA(

GR0

)−1
− ΣR

(
G−1

0

)K
− ΣK

 · ( GK GR

GA 0

)
= 1 (67)

Remark:
(
G−1

0

)K
= 2iηF can be omitted if ΣK ̸= 0.

• Suppose we want to find ΣA/R/K from diagrammatic perturbation theory. What are the terminal fields
for the diagrams contributing to these self-energies [boxes in Fig. 27]? For the irreducible diagrams
appearing in the perturbative expansion of G, we use the second contribution of Eq. (64) together with
Eq. (66) and find(

GK GR

GA 0

)
|irr =

(
GR0 · ΣK ·GA0 +GK0 · ΣA ·GA0 +GR0 · ΣR ·GK0 GR0 · ΣR ·GR0

GA0 · ΣA ·GA0 0

)
(68)

This tells us which diagrams should be accounted for as ΣR,A,K , see the figure below. In other words,
Eq. (66) is to be understood in ϕ⋆−ϕ space (while G is a matrix in ϕ−ϕ⋆ space). The irreducible Keldysh
Green function GK |irr has also contributions involving ΣR,A, but we show only the one including ΣK .
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Figure 27: Terminal fields for perturbative expressions of self-energies in Keldysh formalism.

Exercises

Exercise 11.1. Normalization of Keldysh partition function with interactions

Use perturbation theory (up to order g2) to show that Z is not modified in the presence of interactions described
by Sint in Eq. (62). Hint: Show explicitly that the two rightmost terms in

Z =
ˆ
D[ϕc, ϕq]eiS0+iSint =

〈
eiSint

〉
0

= 1 + i ⟨Sint⟩0 −
1
2
〈
S2
int

〉
0

+ ... (69)

vanish individually. For the term
〈
S2
int

〉
0, recall that the two interaction vertices can be connected by two or

four propagator lines.

12 Kinetic equation

Review: Classical Boltzmann equation

• Definition of classical distribution function f(x, t,p)dxdp = number of particles in phase-space volume
dxdp.

• From Liouville theorem, under propagation to time t + dt, phase space volume preserved under Hamil-
tonian equation of motion ẋ ≡ v(p), ṗ ≡ F(x,p) (force). Thus d

dtf(x, t,p) = ∂tf |coll can only change by
collisions beyond these equations of motion.

• Apply chain rule on the left-hand-side to find Boltzmann equation: d
dtf(x, t,p) = {∂t + ẋ · ∇x + ṗ · ∇p} f ,

{∂t + v(p) · ∇x + F · ∇p} f = ∂tf |coll (70)

• Goal: Derive analogous equation from quantum Keldysh formalism.

Solution of Dyson equation

• Assumptions: i) particles with parabolic dispersion, ii) Self-energies ΣR/A/K are approximately known,
i.e. from perturbation theory.

• Recall from path integral formulation:(
G
R/A
0

)−1 (
tx, t′x′

)
= δ

(
t− t′

)
δ(x− x′)

[
i∂t + 1

2m∇
2
x ± iη − Vc(x, t)

]
(71)

and abbreviate the space-time arguments x = (x, t).

• Dyson equation for GR/A ↔ ΣR/A (diagonal components):
ˆ
dx′′

((
G
R/A
0

)−1
− ΣR/A

) (
x, x′′

)
GR/A(x′′, x′) = δ

(
x− x′

)
(72)

For Vc = 0 (space-time translational invariance) can be solved via Fourier transform of GR/A(x, x′) =
GR/A(x− x′):

GR/A(k, ω) = 1
ω − k2/(2m)− ΣR/A(k, ω)

(73)

Observe:
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– ReΣR(k, ω) = ReΣA(k, ω) modifies (“renormalizes”) the ω − k relation (dispersion) of the pole:
ω

!= k2/(2m) + ReΣR/A(k, ω).
– ImΣR(k, ω) = −ImΣA(k, ω) has the meaning of an inverse lifetime for the above particle k.

• Dyson equation for off-diagonal component involving GK :

[
(
GR0

)−1
− ΣR]︸ ︷︷ ︸

(GR)−1

· GK︸︷︷︸
GR·F−F ·GA

= ΣK ·GA (74)

Multiply from the right by
(
GA0

)−1
− ΣA =

[
GA
]−1

and rearrange. Obtain the quantum kinetic
equation for the matrix F (x, x′) (“distribution matrix”):

F ·
(
GA0

)−1
−
(
GR0

)−1
· F = ΣK −

(
ΣR · F − F · ΣA

)
(75)

• Kinetic equation for F (x1, x2) is usually too difficult to solve.

• Simplification: Assume separation of intrinsic and extrinsic time and length scales (e.g. external potential
Vc(x, t) smooth compared to wavelength of particle).

Wigner transform

• Tool to approximate convolutions “·” as in kinetic equation (75) by algebraic products.

• Wigner transform for general function A(x1, x2) that depends on two space-time arguments: Keep center
coordinate (x1 + x2)/2, do Fourier trafo with respect to relative coordinate x1 − x2 only. Use p = (p, ω)
and convention px = p · x− ωt (and ∂x∂p = ∇x∇p − ∂t∂ω)

A(x, p) ≡
ˆ
dx′e−ipx

′
A
(
x+ x′/2, x− x′/2

)
(76)

and the inverse Wigner transform is

A(x1, x2) =
∑
p

eip(x1−x2)A

(
x1 + x2

2 , p

)
. (77)

• Wigner transform of function C = A · B which means C(x1, x2) =
´
dx3A(x1, x3)B(x3, x2) (“convolu-

tion”). In Ex. 12.1, one shows the following:
If for A(x, p) and B(x, p) the dependence on the central coordinate x is slow, one has the following
approximation (no “·”!)

C(x, p) ≃ A(x, p)B(x, p) + i

2 (∂xA(x, p)∂pB(x, p)− ∂pA(x, p)∂xB(x, p)) (78)

and corrections include higher order x-derivatives ∂2,3,4,...
x which are assumed to be small.

• Prepare Wigner transform of “commutator”:

[A;B] ≡ A ·B −B ·A ≃ i (∂xA(x, p)∂pB(x, p)− ∂pA(x, p)∂xB(x, p)) (79)

where the notation [.; .] should remind us that we are dealing with “·”. The rhs is the Poisson bracket
{A,B} of classical mechanics.
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Wigner transform of kinetic equation

• Idea: Apply the Wigner transform on both sides of the kinetic equation (75).

• Left-hand side: We have with the free particle assumption (71) (can drop ±iη terms in this context):

lhs =
[
F ; i∂t + 1

2m∇
2
x − Vc(x)

]
(80)

Last term: Assume Vc(x) to be slow, e.g. Vc(x) = Vc(x, p):

[F ;−Vc(x)] = −i
(
∂xF∂pVc(x, p)︸ ︷︷ ︸

→0

− ∂pF∂xVc(x, p)
)

= i∂xVc(x)∂pF (81)

Other terms: The Wigner transform of the translational invariant derivative operators is i∂t → ω, of
∇2

x → −p2. Also use ∂x∂p = ∇x∇p − ∂t∂ω:

[F ; i∂t] = i (∂xF∂pω − ∂pF∂xω) = −i∂tF[
F ; 1

2m∇
2
x

]
= −i2m

(
∂xF∂pp2 − ∂pF∂xp2

)
= −i
m

p∇xF

• Right-hand side: Use ΣA(x, p) =
[
ΣR(x, p)

]⋆
:

rhs = ΣK −
(
ΣR · F − F · ΣA

)
= ΣK − F

(
ΣR − ΣA

)
− i

2
(
∂xΣR∂pF − ∂pΣR∂xF

)
+ i

2
(
∂xF∂pΣA − ∂pF∂xΣA

)
= ΣK − 2iF ImΣR − i∂x

[
ReΣR

]
∂pF + i∂p

[
ReΣR

]
∂xF

• Final result: Multiply by i, move all derivatives of F on the left-hand side, write out x = (x, t) and
p = (p, ω), and define the effective potential Ṽ (x, p) ≡ Vc(x) + ReΣR(x, p):

{(
1− ∂ω

[
ReΣR

])
∂t + ∂tṼ (x, p)∂ω +

( 1
m

p +∇p
[
ReΣR

])
︸ ︷︷ ︸

→ṽp

∇x −∇xṼ (x, p)∇p

}
F = iΣK + 2F ImΣR︸ ︷︷ ︸

collision integralIcoll[F ]

(82)

• Remarks on Eq. (82):

– The left-hand side contains the self-energy enhanced single-particle dynamics of F (“kinetic term”).
– The right-hand side is the “collision integral” Icoll[F ], it will be caused by interactions or disorder.
– Can generalize dispersion 1

2mp2 → ωp, leads to vp = 1
mp→ ∇pωp.

– Consider static situation, such that all ∂t → 0. The left-hand side is zero for any F (x, p) = F (ω).
The only F (ω) which also nullifies the right-hand side is the equilibrium solution

F eq(ω) = 1 + 2nB(ω) = coth
(
ω

2T

)
(83)

Mass-shell approximation

• Shift the energy argument ω of the distribution function F by quasi-particle energy:

F (x, t,p, ω) = F̃ (x, t,p, ω − ωp − Ṽ (x, p)︸ ︷︷ ︸
≡ω̃

) (84)
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• Express the kinetic equation (82) in terms of F̃ (x, t,p, ω̃). The terms ∂t, ∂ω, ∇x and ∇p acting on F are
modified by the chain rule involving Ṽ = Vc + ReΣR derivatives:

∂tF = ∂tF̃ −
(
∂tṼ

)
∂ωF̃

∂ωF = ∂ωF̃ −
(
∂ωṼ

)
∂ωF̃

∇xF = ∇xF̃ −
(
∇xṼ

)
∂ωF̃

∇pF = ∇pF̃ −
(
∇pωp +∇pṼ

)
∂ωF̃

Use that the external potential Vc (which is a part of Ṽ ) is a “slow” function∇pVc(x) = 0 and ∂ωVc(x) = 0,
obtain after some straightforward algebra:{(

1− ∂ω
[
ReΣR

])
∂t + ṽp∇x −

(
∇xṼ

)
∇p
}
F̃ = Icoll[F̃ ] (85)

Observation: The derivative ∂ω̃ is now absent in the kinetic term.

• If Icoll[F̃ ] would only depend on ω via ω̃, we could solve the kinetic equations for each ω̃ as a parameter.
This is generally not the case.

• Quasi-particle approximation:

– Fact: In Icoll[F̃ ], F̃ always multiplies Wigner trafo of GR −GA ~ spectral density. We will see this
for the disorder application below.

– The spectral density in the non-interacting limit is ∼ δ(ω − ω̃). Not too far from this limit assume
the peak in GR −GA (of width 1/τqp where τqp is quasi-particle lifetime) is much sharper than the
ω̃-dependence of F̃ .

– Hence: For given p, we may focus on

F̃ (x, t,p, 0) ≡ F̃ (x, t,p) (86)

which is the mass-shell restricted distribution function.

• Remarks:

– F̃ (x, t,p) is a classical object = probability at time t for particle at point (x,p) in classical phase
space.

– Up to “semi-classical” self–energy effects = tilde-terms Z̃−1 = 1 − ∂ω
[
ReΣR

]
|ω=ω̃ (quasi-particle

weight) and Ṽ , Eq. (85) is equivalent to the classical Boltzmann equation (70).

Example for collision integral: Disorder scattering

• Consider non-interacting bosons in a static disorder potential:

H =
∑

p
ωpa

†
pap +

ˆ
dxV (x)a†(x)a(x) (87)

• Assume V (x) comes from randomly placed impurities, V (x) =
∑N
j=1 v (x− rj) where r1,2,...,N are the N

uncorrelated impurity positions.
Assume

´
dxv (x) = 0, i.e. a potential offset is already taken into account in a shift of dispersion ωp.

• Disorder average for quantity Q (integrate over all impurity configurations):

Q ≡ ΠN
j=1

[ 1
V

ˆ
drj Q

]
(88)
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(a) Vertices for impurity action:

(b) Green functions in perturbation theory to 2nd order:

= + + +...
0disorder average

scattering at same impurity

disorder self-energy

Figure 28: Disordered bosons: (a) Diagrammatic building blocks for impurity scattering. (b) Diagrams for GR to second
order in V .

Application: Averaged disorder correlator:

V (x1)V (x2) =
N∑
j=1

N∑
j′=1

v (x1 − rj) v
(
x2 − rj′

)
=

N∑
j=1

v (x1 − rj) v (x2 − rj) +
∑
j ̸=j′

v (x1 − rj) v
(
x2 − rj′

)︸ ︷︷ ︸
V V=0

(diag.) = N/V︸ ︷︷ ︸
ni

ˆ
dr v (x1 − r) v (x2 − r)

≡ K(x1 − x2) (89)

and we used V (x) = ΠN
j=1

1
V

´
drj

∑N
j=1 v (x− rj) = 0.

• The impurity action for a specific realization is

SV = −
ˆ +∞

−∞
dt

ˆ
dxV (x)

[
ϕ⋆c(x, t)ϕq(x, t) + ϕ⋆q(x, t)ϕc(x, t)︸ ︷︷ ︸

]
=ϕ⋆

+ϕ+−ϕ⋆
−ϕ−

and the corresponding diagrammatic building blocks are given in Fig. 28(a).

• Find GR/A/K using perturbation theory to second order. Keep F general as it will be determined from
kinetic equation. From Fig. 28(b), we have for example for GR:

GR (x1, x2) = GR0 (x1 − x2) +
ˆ
dxGR0 (x1 − x)V (x)GR0 (x− x2)

+
ˆ
dx

ˆ
dx′GR0 (x1 − x)V (x)GR0

(
x− x′

)
V (x′)GR0

(
x′ − x2

)
+ ...

• Take disorder average, the term ∝ V vanishes and for the term ∝ V V we use Eq. (89). We recover
translational invariance:

GR (x1 − x2) = GR0 (x1 − x2) +
ˆ
dx

ˆ
dx′GR0 (x1 − x)K(x− x′)GR0

(
x− x′

)
GR0

(
x′ − x2

)
+ ...

• Introduce self-energy. For the identification of relevant diagram parts, refer to Fig. 27 or GR = GR0 +
GR0 ΣRGR.

ΣR/A/K (x− x′) = K(x− x′)GR/A/K0
(
x− x′

)
(90)
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• For the kinetic equation, we need the Wigner transform of ΣR/A/K (x− x′). This is simple, because the
expression only depends on relative coordinate. Then the Wigner transform is just an ordinary Fourier
transform.

• Use “product → convolution” rule and K(p) = nivpv−p
v(x)∈R= ni |vp|2 (Fourier transform of v(x) =∑

p e
ipxvp.)

ΣR/A/K (x, p) = ni
∑
p′

G
R/A/K
0

(
x, t,p′, ω

) ∣∣vp−p′
∣∣2 (91)

• Find collision integral Icoll[F̃ ] = iΣK + 2F̃ ImΣR:

– 2F̃ ImΣR: Use GR,A0 (x, t,p, ω) = GR,A0 (p, ω) = 1
ω−ωp±iη in Eq. (91):

2ImΣR (x, p) = −iΣR + iΣA = −ni
∑
p′

i
[
GR0 −GA0

] (
p′, ω

)
︸ ︷︷ ︸

A0=2πδ(ω−ωp′ )

∣∣vp−p′
∣∣2 (92)

– iΣK : Use Eq. (91) and insert

GK0
(
x, t,p′, ω

)
=

(
GR0 · F − F ·GA0

) (
x, t,p′, ω

)
[lowest order approx.] ≃ −ii

[
GR0 −GA0

] (
p′, ω

)
F
(
x, t,p′, ω

)
= −i2πδ

(
ω − ωp′

)
F
(
x, t,p′, ω

)
so that

iΣK = 2πni
∑
p′

δ
(
ω − ωp′

) ∣∣vp−p′
∣∣2 F (x, t,p′, ω) (93)

• Collect terms and work with F̃ at ω̃ = 0 (ω → ωp):

Icoll
[
F̃ (x, t,p)

]
= −2πni

∑
p′

δ
(
ωp − ωp′

) ∣∣vp−p′
∣∣2 [F̃ (x, t,p)− F̃

(
x, t,p′

)]
(94)

• Interpretation (phase-space classical mechanics + energy conservation):

– First term: Loss rate proportional to occupation F̃ (x, t,p) due to scattering of particles to other
momenta p′.

– Second term: Gain rate to occupation F̃ (x, t,p) due to particles scattered from other momenta p′.
– Scattering rates determined by Fermi’s golden rule: W (p,p′) ≡ 2πniδ

(
ωp − ωp′

)
|⟨p|v|p′⟩|2.

Exercises

Exercise 12.1. Wigner transform of C = A ·B

Find the Wigner transform from Eq. (76) for a function C = A ·B where the “dot” notation means C(x1, x2) =´
dx3A(x1, x3)B(x3, x2). Express your result in terms of the Wigner transforms of A,B. You should find

C(x, p) =
∞∑

n,m=0

(+i)m

2mm!
(−i)n

2nn! ∂
(m)
x ∂(n)

p A (x, p) ∂(m)
p ∂(n)

x B (x, p) (95)

≡ A(x, p)e
i
2

(←−
∂ x
−→
∂ p−

←−
∂ p
−→
∂ x

)
B(x, p) (96)

where the arrows show the direction of the differentiation. Hints: With appropriate substitutions, first confirm

C(x, p) =
ˆ
dxa

ˆ
dxb

∑
pa,b

eipbxa−ipaxbA

(
x+ xa

2 , p+ pa

)
B

(
x+ xb

2 , p+ pb

)
. (97)

Expand the p-dependence of A,B and use appropriate x-derivatives of the identity
∑
p e
±ipx = δ(x) to replace

the
∑
p e
±ipxpn. Subsequently, evaluate the xa,b integrals.
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13 Keldysh for fermions

Grassmann numbers, fermion coherent states

• Consider fermionic Hamiltonian H
(
{c†j , cj}

)
with canonical anti-commutation relations {ci, c†j} = δij .

• Review of Grassmann numbers ψ:

– mutually anti-commute ψψ′ = −ψ′ψ and thus ψ2 = 0.
– function of Grassmann number defined via first two terms in series expansion: f(ψ) = f0 + f1ψ

(other terms are trivial).
– integrals are defined as

´
dψ 1 = 0,

´
dψ ψ = 1.

– ψ anti-commutes with fermionic operators, {c, ψ} =
{
c†, ψ

}
= 0.

– “bar”-field ψ̄ is unrelated to the ψ-field.

• Fermionic coherent states:

coherent state: |ψ⟩ ≡ e−ψc† |0⟩ = (1− ψc†) |0⟩ = |0⟩ − ψ |1⟩ overlap: ⟨ψ|ψ′⟩ = eψ̄ψ
′ = 1 + ψ̄ψ′

⟨ψ| ≡ ⟨0| e−cψ̄ = ⟨0| − ⟨1| ψ̄ res. of id. 1 =
´
dψ̄dψe−ψ̄ψ |ψ⟩ ⟨ψ|

action of c: c |ψ⟩ = ψ |ψ⟩ trace: trO =
´
dψ̄dψe−ψ̄ψ ⟨ψ|O|−ψ⟩

action of c†: ⟨ψ| c† = ⟨ψ| ψ̄ Gauss. integral:
´

Πldψ̄ldψle
−ψ̄T ·A·ψ = det(A)

• In trO, the sign |−ψ⟩ = |0⟩ + ψ |1⟩ comes from the fact that the coherent states contain Grassmann
numbers which pick up a sign upon exchange, ⟨n|ψ⟩ ⟨ψ|O|n⟩ = ⟨ψ|O|n⟩ ⟨n|−ψ⟩.

• The auxiliary identity
〈
ψ̄|xc†c|ψ

〉
= eψ̄ψx still holds.

Partition function

• Consider single fermionic level, H = ε0c
†c. In thermal equilibrium at t = −∞, we have ρ = e−βH0 and

trρ = 1 + e−βε0 (no geometric series) and the occupation is
〈
c†c
〉
≡ nF (ε0) = 1/(1 + eβε0).

• In definition of Z, add time slices on both branches (ψ±) , find in analogy to bosonic case

Z = 1
trρ

ˆ
Π2N
j=1dψ̄jdψj exp

i 2N∑
j,j′=1

ψ̄j
(
G−1

)
jj′
ψj′

 (98)

with (N=3)

i
(
G−1

)
jj′

=



−1 0 0 0 0 −e−βε0

h− −1 0 0 0 0
0 h− −1 0 0 0
0 0 1 −1 0 0
0 0 0 h+ −1 0
0 0 0 0 h+ −1


(99)

where h± = 1± iε0δt and indeed normalization holds, Z = det(−iG−1)
trρ

N→∞= 1+e−βε0
1+e−βε0 = 1.

• Green functions Gc,c† ≡ G can be read off as in the bosonic case:

G<(t, t′) = +inF (ε0)e−iε0(t−t′)

G>(t, t′) = −i (1− nF (ε0)) e−iε0(t−t′)

GT (t, t′) = θ
(
t− t′

)
G>(t, t′) + θ

(
t′ − t

)
G<(t, t′) = −ie−iε0(t−t′) [θ (t− t′)− nF (ε0)

]
GT̃ (t, t′) = θ

(
t′ − t

)
G>(t, t′) + θ

(
t− t′

)
G<(t, t′) = −ie−iε0(t−t′) [θ (t′ − t)− nF (ε0)

]
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Keldysh rotation

• Keldysh rotation: Redundancy relation (9) (GT + GT̃ − G> − G< = 0) holds also for fermions, take it
into account via rotation.
Careful: Use convention different from bosonic case “Larkin-Ovchinnikov”.

ψ1,2 ≡
1√
2

(ψ+±ψ−)

ψ̄1,2 ≡
1√
2

(
ψ̄+∓ψ̄−

)
Note that the “classical-quantum” nomenclature is not used: Grassmann variables never have classical
meaning.

• Propagators: For α, β ∈ {1, 2} we have

−i
〈
ψα(t)ψ̄β(t′)

〉
≡ Gαβ(t, t′) =

(
GR GK

0 GA

)
αβ

(t, t′), (100)

with GR/A now on diagonal. The inverse propagator reads (with convention above, have same structure
as G)

G−1 =


(
GR
)−1 (

G−1)K
0

(
GA
)−1

 (101)

With the parametrization GK = GR · F − F ·GA, find(
G−1

)K
=
(
GR
)−1
· F − F ·

(
GA
)−1

(102)

• Single fermionic level in thermal equilibrium

GR(t, t′) = −iθ
(
t− t′

)
e−iε0(t−t′) FT→ 1

ω − ε0 + iη

GA(t, t′) = +iθ
(
t′ − t

)
e−iε0(t−t′) FT→ 1

ω − ε0 − iη
GK(t, t′) = −i (1− 2nF (ε0)) e−iε0(t−t′) FT→ (1− 2nF (ω))︸ ︷︷ ︸

F (ω)

[−2πiδ (ω − ε0)]︸ ︷︷ ︸
GR(ω)−GA(ω)

The last identity is the fermionic fluctuation-dissipation theorem.

Exercises

Exercise 13.1. Electron current through interacting region
Consider two metallic leads attached to the left and right (L,R) of an interacting central region where {d†n}, {dn}
form a complete set of orthonormal electron creation and annihilation operators, see Fig. 29. The central region
could be a nanostructure like a quantum dot or similar where electrons are confined and screening is weak so
that interactions are significant. The leads are approximated as non-interacting with operators {c†kα}, {ckα},
kα ∈ {L,R} which are characterized by momentum k and channel index α. The latter could be spin or any
other single-particle index like a sub-band characterizing the lead states. The Hamiltonian reads

H =
∑

kα∈{L,R}
εkαc

†
kαckα +Hint

(
{d†n}, {dn}

)
+

∑
kα∈{L,R}

Vkα,nc
†
kαdn + V ⋆

kα,nd
†
nckα. (103)
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left lead L right lead R

µL

µR

Figure 29: Setup for Ex. 13.1. The electron states belonging to the dn operators reside in the interacting central region,
the ckα operators belong to the leads, kα ∈ {R,L}.

We compute the steady-state electron current IL = I between the left lead maintained in equilibrium at chemical
potential µL and temperature T and the right lead (at µR and T ). As in Ex. 9.2, we start from

IL = ie

ℏ
∑
kα∈L

∑
n

Vkα,n
〈
c†kαdn

〉
− V ⋆

kα,n

〈
d†nckα

〉
= e

ℏ
∑
kα∈L

∑
n

ˆ
dω

2π Vkα,nG
<
n,kα(ω)− V ⋆

kα,nG
<
kα,n(ω),

where G<n,kα(t) = i
〈
c†kαdn(t)

〉
is the steady-state lesser Green function (note ζ = −1 for fermions). You might

want to review Ex. 9.2 to understand similarities and differences between the setups considered and the reason
behind the formula for IL. The goal is to express the current I in terms of appropriate d-electron Green
functions Gn,m(ω) in the presence of the leads and the Green functions G(0)

αk,αk evaluated for the uncoupled
system with V = 0. The former are local but hard to compute in general while the latter are trivially known.

1. Consider V as a perturbation and use the (2x2 matrix valued) Dyson equation G = G(0) +G(0) ·Σ ·G to
show

G<kα,n(ω) =
∑
m

Vkα,m
[
G

(0),T
kα,kα(ω)G<m,n(ω)−G(0),<

kα,kα(ω)GT̃m,n(ω)
]
,

G<n,kα(ω) =
∑
m

V ⋆
kα,m

[
G

(0),<
kα,kα(ω)GTn,m(ω)−G(0),T̃

kα,kα(ω)G<n,m(ω)
]
.

Hint: The self-energy Σ is simple with entries proportional to V . Why?

2. Use the above findings to express the current as

IL = ie

ℏ
∑
α∈L

∑
n,m

ˆ
dε ρα(ε)Vα,n(ε)V ⋆

α,m(ε)
{
nL(ε)

[
GRn,m(ε)−GAn,m(ε)

]
+G<n,m(ε)

}
(104)

where the retarded and advanced Green functions appear, Vα,n(ε) = Vkα,n for ε = εkα and ρα(ε) is the
density of lead states in channel α so that

∑
k →

´
dερα(ε).

3. We could have also chosen the link to the right lead to derive a similar formula for the current IR = −IL.
Symmetrize I = (IL − IR)/2 and define ΓLm,n(ε) = 2πρα(ε)Vα,n(ε)V ⋆

α,m(ε) to confirm the final result
expressed in bold matrix notation for n-indices,

I = ie

2h

ˆ
dε tr

[(
nL(ε)ΓL(ε)− nR(ε)ΓR(ε)

)
·
(
GR(ε)−GA(ε)

)]
+tr

[(
ΓL(ε)− ΓR(ε)

)
·G<(ε)

]
. (105)

Show that under equilibrium conditions with zero voltage [nL(ε) = nR(ε)], the current vanishes, I = 0.
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Part IV

Quantum magnetism
14 Basic concepts

14.1 Magnetic moments

• Circular current I around area A generates magnetic moment m = IAeA.

• The magnetic moment determines the energy in magnetic field B, E = −m ·B. Magnetic moments m
minimize their energies when they align parallel with the field B.

• With a macroscopic charged particle (charge Q, mass m) going around the circle in time T we have
I = Q/T . The angular momentum is L = r× p. It is easy to see that

m = Q/(2m)︸ ︷︷ ︸
γ

L (1)

with γ the gyromagnetic ratio.

• Quantum mechanics of moving electrons: Eq. (1) is still valid, γ = −e/(2me). It is often written as

mL = − e

2me
L = −µB

L
ℏ

(2)

with µB = eℏ/(2me) the Bohr magneton.

• Quantum mechanics: Electron spin S adds to magnetic moment (intrinsic to quantum nature of electron,
no classical analog),

mS = −geµB
S
ℏ

(3)

with Landé-factor ge from relativistic quantum mechanics including QED correction α = 1/137 (fine-
structure constant):

ge = 2
(

1 + α

2π +O(α2)
)
≃ 2.0023 (4)

• From now on: Approximate ge = 2, set ℏ = 1.

• Total magnetic moment of electron:

m = mL + mS = −µB (L + 2S) (5)

• Main focus of “Quantum magnetism”: Magnetism of spins (→ mS), collective behavior of macroscopic
number of interacting quantum spins.

14.2 Spin algebra

• Spin operator Si = (Sxi , S
y
i , S

z
i ) fulfills angular momentum algebra (ℏ = 1),[

Sαi , S
β
j

]
= iδij

∑
γ=x,y,z

ϵαβγSγi , (6)

where ϵαβγ is the fully antisymmetric tensor with ϵxyz = 1, ϵzyx = −1, invariance under cyclic permuta-
tions of indices and otherwise vanishing. The rest of this section follows from the spin algebra.

• Spin raising and lowering operators: S± = Sx ± iSy
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• Spin length S: S2 = SxSx + SySy + SzSz commutes with Sα and has eigenvalue S(S + 1) with S =
0, 1

2 , 1,
3
2 , ... integer or half-integer. Electron has S = 1/2, but larger S can arise from addition of multiple

electron spin in an ion.

• Spin operators acting on Sz eigenstates {|m⟩}m=−S,−S+1,...,S−1,S :

Sz |m⟩ = m |m⟩

S± |m⟩ =
√
S(S + 1)−m(m± 1) |m± 1⟩

• Example: Spin operators for S = 1/2 and S = 1.

S = 1/2 Sx = 1
2

(
0 1
1 0

)
= 1

2σ
x Sy = 1

2

(
0 −i
i 0

)
= 1

2σ
y Sz = 1

2

(
1 0
0 −1

)
= 1

2σ
z

S = 1 Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 Sy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 Sz =

 1 0 0
0 0 0
0 0 −1


14.3 Single spin thermodynamics

• Single spin in magnetic field B in z-direction with Hamiltonian

H = −mSB = − (−2µBSz)B = 2µBB︸ ︷︷ ︸
≡h

Sz = hSz (7)

where we abbreviate h = 2µBB.

• Partition function (kB = 1)
Z(h) = Tr exp [−βhSz] (8)

Compute the sum using a geometric series

Z(h) =
+S∑

m=−S
exp [−βhm] = exp [βhS]

+2S∑
m=0

exp [−βh]m = sinh [βh(S + 1/2)]
sinh [βh/2] (9)

• Free energy F = −T lnZ, find magnetization mz = −2µB ⟨Sz⟩ as a function of βh ≡ y [Brillouin
function, Fig. 30(a)]:

⟨Sz⟩ = −∂hF = ∂yln
sinh [y(S + 1/2)]

sinh [y/2] |y=βh

= 1
2

{
coth

(
y

2

)
− (1 + 2S) coth ([S + 1/2] y)

}
S=1/2= −1

2 tanh
[
y

2

]
(10)

• Susceptibility (for S = 1/2):

χ = ∂mz

∂B
= −4µ2

B∂h ⟨Sz⟩ = 4µ2
B

4T cosh2(βh/2)
h=0= µ2

B

T
(11)

This is the famous ∼ 1/T Curie-law indicative for magnetic insulators with localized non-interacting
moments. See Fig. 30(b)

• Corrections to Curie law from interactions (phenomenological):

– FM interaction: 1/χ ∼ T − T⋆ with T⋆ the ordering temperature.
– AFM interaction: 1/χ ∼ T + Θ with Θ > 0 the Curie-Weiss temperature.
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(a) (b)

S={1/2, 1, 3/2}

FM

AFM

Curie

Figure 30: (a) Brillouin function for magnetization of free spin S for various S. (b) Generalized Curie law for paramagnet
(black), ferromagnet (red) and anti-ferromagnet (blue).

Exercises

Exercise 14.1. Spin representations in terms of bosons and fermions
Spin operators Sαj with α = {x, y, z} and j a site-index commute on different sites and for the same site fulfill
the spin algebra,

[
Sα, Sβ

]
= iϵαβγSγ , see Sec. 14.2. The (half-)integer spin length S determines the eigenvalue

S(S + 1) of S2. However, for calculations on spin systems it is often desirable to use methods that are well
established for bosonic and fermionic operators with their canonical (anti-) commutation relations {ca, c†b} = δab
and [ba, b†b] = δab where subscript a, b are generic discrete single-particle indices and we denote na = b†aba and
na = c†aca for the number operators. This exercise explores two of the most common spin representations.
1) Holstein-Primakoff bosons: This spin representation for arbitrary spin length S is used in spin-wave analysis,
see Sec. 16.3. We introduce one boson bi per site and define

S̃+
i =

√
2S − ni bi,

S̃−i = b†i
√

2S − ni,
S̃zi = S − ni.

so that the correspondence between Szi eigenvalue mi and boson number ni is mi = S−ni. Show that the spin
algebra is fulfilled and check that S2 evaluates to S(S + 1) in the physical subspace defined by n ≤ 2S. Also
show that the operators S̃±i do not connect physical and unphysical subspaces.

2) Abrikosov fermions (S = 1/2). In this fermionic spin representation S̃αi = 1
2
∑
a,b∈{↑,↓} c

†
iaσ

α
abcib where σα are

the 2x2 Pauli matrices and a, b ∈ {↑, ↓}. You may assume that the spin algebra is fulfilled (the calculation is
straightforward). Show that S2 = 3

4P with P = n↓ + n↑ − 2n↑n↓. Show that P is a conserved quantity for any
Spin-Hamiltonian H = H

(
{S̃αi }i,α

)
written in terms of Abrikosov fermions and that P has eigenvalues 0, 1.

This means the Abrikosov fermion representation for S = 1/2 comes with an unphysical spin S = 0 subspace.

15 Magnetic interactions

Aims:

• Microscopic interaction mechanisms between electron spins residing on different atoms

• Derive/motivate microscopic models of quantum magnetism (e.g. Heisenberg model)

• Skip: Coulomb exchange for electrons on the same atom (Hunds rules favor ferromagnetic spin alignment)

Dipole-dipole interactions
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0

(a) (b)

Figure 31: (a) Magnetic field exerted by a magnetic moment. (b) Setup for direct kinetic exchange between two atoms
with overlapping wavefunctions φa,b.

• Classical magnetic field BD(rj) exerted by magnetic moment mi located at position ri (see Fig. 31),

BD(rj) = µ0
4πr5

ij

[
3(mi · rij)rij − r2

ijmi

]
(12)

with rij = ri − rj .

• Interaction energy

ED = −mj ·BD(rj) = µ0
4πr5

ij

[
r2
ijmi ·mj − 3(mi · rij)(mj · rij)

]
(13)

• In most magnetic materials, dipole-dipole interactions ED ∼ 0.1K cannot explain the observed J ∼ T⋆ ∼
100...1000K (distances r too large, moments mi too small).

• Note: The dipole-dipole interaction is generally anisotropic and long-range (decays as 1/r3). The long-
range nature has interesting consequences explored in Ex. 16.1.

Kinetic exchange I - Direct exchange

• Consider two spatially separated atoms with single electrons in orbitals φa and φb, respectively → use
2nd quantization caσ, cbσ with σ = {↑, ↓}.

• Overlap of orbitals→ hopping t, two electrons in same orbital on same atom→ Hubbard repulsion U > 0.

H =
∑
σ

tc†aσcbσ + h.c.+ U (na↑na↓ + nb↑nb↓) = Hkin +HU (14)

Remark: If generalized to N sites, this is the Hubbard model.

• We now focus on half filling (two electrons in the system). We have H |↑, ↑⟩ = H |↓, ↓⟩ = 0. For the
remaining states {|↑, ↓⟩ , |↓, ↑⟩ , |↑↓, 0⟩ , |0, ↑↓⟩} we have the Hamiltonian

H ′ =


0 0 t t
0 0 −t −t
t −t U 0
t −t 0 U

 (15)

• Perturbation theory in |t|/U ≪ 1 (degenerate PT, or Schrieffer-Wolff): Effective Hamiltonian in subspace
spanned by {|↑, ↓⟩ , |↓, ↑⟩} at energy ∼ 0. Find no contribution to first order in t, H(1) = 0, but in second
order find

H(2) = 2t2

U

(
−1 1
1 −1

)
. (16)
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px dd

initial
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Figure 32: (a) Superexchange for copper oxide. (b) Exchange paths for anti-parallel copper spins exist, but not for
parallel copper spins.

• CombineH(2) with the states |↑, ↑⟩ , |↑, ↑⟩ that were also at energy 0. Find in basis {|↑, ↑⟩ , |↑, ↓⟩ , |↓, ↑⟩ , |↓, ↓⟩}:

Heff = 2t2

U


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 . (17)

Compare to Heisenberg Hamiltonian in the same basis:

H = J

(
Sa · Sb −

1
4

)
= J

(1
2S

+
a S
−
b + 1

2S
−
a S

+
b + SzaS

z
b −

1
4

)
= J


0 0 0 0
0 −1/2 1/2 0
0 1/2 −1/2 0
0 0 0 0

 (18)

Note: The ground-state is the (total spin)Stot = 0 singlet ψs = (|↑, ↓⟩ − |↓, ↑⟩)/
√

2 at Es = −J and the
other Stot = 1 triplet states (|↑, ↓⟩+ |↓, ↑⟩)/

√
2, |↑, ↑⟩ , |↓, ↓⟩ reside at Et = 0.

• Conclusion:

– Direct kinetic exchange affects neighboring atoms with singly occupied outermost shells.
– Quantum tunneling leads to effective AFM Heisenberg Hamiltonian with J = 4t2/U > 0. Generalize

for lattice where one can usually focus on nearest-neighbor exchange (⟨i, j⟩) and drop constant:

H = J
∑
⟨i,j⟩

Si · Sj (19)

– Physical picture: Exchange paths exist for |↑, ↓⟩ , |↓, ↑⟩ but not for |σ, σ⟩, σ ∈ {↑, ↓}. Thus anti-
parallel spins can lower their energy by Hkin, e.g.:

|↑, ↓⟩ Hkin−→ |↓↑, 0⟩ Hkin−→ |↑, ↓⟩

|σ, σ⟩ Hkin−→ 0

Kinetic exchange II - Superexchange

• In real materials, the hopping between two magnetic ions often proceeds via a non-magnetic ion in
between.

• Example with 180° bond: Copper oxide, CuO2. See Fig. 32.

– copper Cu2+ has one hole in d-shell ([Ar]d9) and oxygen O2− has a completely filled p-shell (two
electrons in px-shell).
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– compare exchange paths for anti-parallel spins on Cu to exchange paths for parallel spins (none).
This again favors AFM configuration.

– Detailed calculation: Get again AFM Heisenberg interactions.

• Remark: 90° bonds can lead to weaker FM interactions. Why: Hund’s rule for intermediate configuration
in px and py state favors |↑, ↑⟩ over |↑, ↓⟩.

16 Heisenberg Model

Aims:

• Introduce basic notions around quantum Heisenberg model

• Mean-field theory (recap for FM case, new for AFM case)

• Approximately include quantum fluctuations on top of ordered state by spin-wave theory.

• Assess stability of ordered phase at T = 0 and T > 0 depending on dimensionality.

16.1 Introduction

• The Heisenberg model is defined as

H = J
∑
⟨ij⟩

Si · Sj = J
∑
⟨ij⟩

(1
2S

+
i S
−
j + 1

2S
−
i S

+
j + Szi S

z
j

)
(20)

where we assume spin S = 1/2 and nearest-neighbour couplings.

• Symmetry:

– Global SU(2) spin rotation, Si → R†SiR for all i with R = exp (−iφn
∑
i Si) and unit vector n ∈ R3

defining rotation axis.

• Remarks:

– Exactly solvable in D=1 (Bethe-Ansatz, 1931)
– FM case J < 0, the exact ground state is known for all D: It is a simple product state, |0⟩ =

∏
i⊗ |↑⟩i.

Note that the terms S−i S
+
j act trivially on |0⟩.

– AFM case J > 0, the exact ground state is not known (for D>1). Problem: The staggered state in
Fig. 33(a) is not an exact eigenstate of H due to S+

i S
−
j +h.c., but it is a good approximation to the

true ground state.

• Frustration:

– For lattices with particular motifs like a triangle in Fig. 33(b), there is not even a staggered state
that would be the unique ground-state of the Szi Szj -term (Ising model).

– Frustration might prevent magnetic order and can give rise to exotic disordered ground states like
quantum “spin-liquids”.
Example: Nearest-neighbor S = 1/2 AFM Heisenberg model on triangular lattice. The ground-state
is magnetically ordered, a few percent of next-nearest-neighbor coupling is needed to melt the order.

– Remark: If frustration stems from lattice, it is called geometric frustration. Also the coupling-type
in the Hamiltonian can result in frustration.
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0

FM (d)

0
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Figure 33: (a) Staggered state on the square lattice. (b) Frustration for an AFM Hamiltonian on a triangle. (c) Mean-
field susceptibility for a FM and (d) the same for AFM.

16.2 Mean-field theory (reminder)

• Add magnetic field B in negative z-direction, H → H − h
∑
i S

z
i with h = −2µBB.

• Mean-field approximation in H:

Si · Sj → ⟨Si⟩ · Sj + Si · ⟨Sj⟩ − ⟨Si⟩ · ⟨Sj⟩ (21)

which implies that fluctuations (thermal and quantum) are small, ⟨Si · Sj⟩ = ⟨Si⟩ · ⟨Sj⟩.

• Recall: Coordination number z, the number of nearest-neighbors. For hypercubic lattices z = 2D.

Mean-field approach to FM case (J < 0)

• Ansatz ⟨Si⟩ = ⟨Sz⟩ for all i. Up to a constant term, obtain

HMF = − (Jz ⟨Sz⟩+ h)
∑
i

Szi (22)

which is the Hamiltonian of a (independent set of) free spin S = 1/2 in a magnetic field (which depends on
⟨Sz⟩!). The magnetization has been found in Eq. (10). We obtain the familiar self-consistency equation
for ⟨Sz⟩:

⟨Sz⟩ = 1
2 tanh

(
h+ |J |z ⟨Sz⟩

2T

)
(23)

• Set h = 0, obtain critical temperature Tc = |J |z
4 and critical exponent β = 1/2 as in Part I.

• Magnetic susceptibility at zero field (use mz = −2NµB ⟨Sz⟩ and h = −2µBB):

χ0 = ∂mz

∂B
|B=0 = 4Nµ2

B∂h ⟨Sz⟩ |h=0 (24)

with
∂h ⟨Sz⟩ |h=0 = 1 + |J |z∂h ⟨Sz⟩ |h=0

4T cosh−2
( |J |z ⟨Sz⟩ |h=0

2T

)
(25)

which can be solved for ∂h ⟨Sz⟩ |h=0. We find

χ0 = Nµ2
B

1
T cosh2

(
|J |z⟨Sz⟩|h=0

2T

)
− |J |z4

T≥Tc−→ Nµ2
B

T − Tc
(26)

which is of the Curie-Weiss form, see Fig. 30(b).

• The susceptibility χ0 for all T is shown in Fig. 33(c). Below Tc, the susceptibility becomes anisotropic.
We so far calculated χ0 = χ0,∥ with the magnetic field applied parallel to the magnetization B ∥ ez.

• The transversal susceptibility χ0,⊥ with B ⊥ ez diverges as the magnetization can be rotated by an
infinitesimal field. This reflects the presence of a gapless Goldstone mode due to broken continous
symmetry.
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Mean-field approach to AFM case (J > 0)

• Split the lattice into sub-lattices A,B. Ansatz ⟨Si⟩ =
〈
SzA,B

〉
for i ∈ sub-lattice A,B.

• Note: The nearest neighbors of i on sub-lattice A are on sub-lattice B. Obtain with hA,B = −Jz
〈
SzA,B

〉
:

HMF = −hA
∑
i∈B

Szi − hB
∑
i∈A

Szi − h
∑
i

Szi (27)

• Self-consistency equation: 〈
SzA,B

〉
= 1

2 tanh

h−Jz
〈
SzB,A

〉
2T

 (28)

• Set h = 0, obtain ⟨SzA⟩ = −⟨SzB⟩ = ⟨Sz⟩ which fulfills the same self-consistency equation as in the FM
case. We find the same Tc which is known as the Néel temperature TN .

• Magnetic susceptibility at zero field:

χ0 = 2Nµ2
B (∂h ⟨SzA⟩+ ∂h ⟨SzB⟩) |h=0

T≥TN−→ ... = Nµ2
B

1
T+TN

(29)

The susceptibility is shown in Fig. 33(d), it does not diverge and splits below TN into a constant transversal
part χ0,⊥ and a decaying χ0,∥.

• Notes:

– The susceptibility to a hypothetical staggered field (taking opposite values on the two sub-lattices)
would diverge.

– The critical temperatures of an AFM and FM on the same lattice are only the same in MFT, but
quantum effects make them differ.

16.3 Spin-wave theory

• Q: What are the excitations of a magnetically ordered Heisenberg system? Naive expectation - spin flip:
↑↑↑↑↑ → ↑↑↓↑↑ would cost energy O(J).

• This is wrong, the spin-flip excitations are delocalized over the lattice such that they are gapless spin-
waves (=magnons).

16.3.1 Spin representation: Holstein-Primakoff bosons (see Ex. 14.1)

• Generalize to arbitrary spin-S, introduce one boson per site, [bi, b†j ] = δij , ni = b†ibi and b†i |ni⟩ =√
n+ 1 |ni + 1⟩, bi |ni⟩ =

√
n |ni − 1⟩:

S+
i =

√
2S − ni bi

S−i = b†i
√

2S − ni
Szi = S − ni

• The representation fulfills the spin algebra. From the last line, the correspondence between Szi quantum
number and boson occupation is mi = −ni + S. What about ni > 2S? Problem: Szi has only 2S + 1
eigenvalues mi = −S,−S+1, ..., S whereas ni = 0, 1, 2, ... has infinite number of eigenvalues. The Hilbert
space is too large and we need to restrict to ni ≤ 2S.

• The vacuum of bosons ni = 0 for all i corresponds to the fully polarized state ↑↑↑↑ ....

• Note: Holstein-Primakoff bosons single out one direction in spin space. The Sz direction is used to
define their vacuum. This is why Holstein-Primakoff bosons are used to describe phases with broken spin
rotation symmetry.
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16.3.2 Spin-wave theory for ferromagnet (J < 0)

• Insert Holstein-Primakoff representation in Heisenberg Hamiltonian

H = −|J |
∑
⟨ij⟩

(1
2S

+
i S
−
j + 1

2S
−
i S

+
j + Szi S

z
j

)

= −|J |
∑
⟨ij⟩

(
S

√
1− ni

2S bib
†
j

√
1− nj

2S + b†i

√
1− ni

2S

√
1− nj

2S bj + (S − ni) (S − nj)
)

• Assume that at low T , we are close to the fully polarized ground state state such that ni ≪ 2S. This is
the case if S is large. Then expand

√
1− ni

2S = 1− ni
4S +O(S−2) and keep only terms to order S2,1,0 and

drop terms of order 1/S and smaller.

H = −|J |S2Nz

2 + |J |S
∑
⟨ij⟩

(
b†ibi + b†jbj − b

†
jbi − b

†
ibj
)
− |J |

∑
⟨ij⟩

”b†b†bb” + ...

= H0 +H1 +H2 + ...

• Term H0 contains the classical ground state energy E0.

• Term H1 ∝ S describes spin-waves. It can be diagonalized with a Fourier transform, bi = 1√
N

∑
k e

ikRibk.
We find

H1 = |J |S
N

∑
k,k′

∑
⟨ij⟩

(
e−i(k−k′)Ri + e−i(k−k′)Rj − e−ikRjeik

′Ri − e−ikRie−ik
′Rj

)
b†kbk′

=
∑

k
|J |S

∑
∆R

(1− cos [k ·∆R])︸ ︷︷ ︸
≡ωk

b†kbk

where ∆R are the nearest-neighbor vectors and the dispersion ωk = 2|J |S(D −
∑D
µ=1 cos kµ) describes

parabolically dispersing spin-wave excitations (=magnons) that are gapless at k = 0.

• The occurrence of a zero-energy mode follows from Goldstone theorem: Spontaneous breaking of a
continous symmetry (here SU(2) spin-rotation) results in a zero-energy “Goldstone” mode.

• Term H2: Interactions between spin-waves. Hard to treat and sub-leading for large S. Discard.

• Consistency check: Is ni ≪ 2S really true? Check if ⟨Szi ⟩ is close to S.

⟨Szi ⟩ = S − ⟨ni⟩ = S − 1
N

∑
k
⟨nk⟩ = S − 1

(2π)D

ˆ π

−π
dDk 1

eβωk − 1 (30)

The integral is dominated at small k where ωk ≃ |J |Sk2 is small and can be easily occupied thermally. Ex-
tend the k-integral over all space up with a lower boundary set by system size Λ = 2π/L and approximate
the fraction,

⟨Szi ⟩ ≃ S −
ΩD

(2π)D

ˆ ∞
Λ

kD−1dk
1

β|J |Sk2 = S − ΩD

(2π)Dβ|J |S

ˆ ∞
Λ

kD−3dk. (31)

The integral is yields
ˆ ∞

Λ
kD−3dk ∼


1/Λ : D = 1
− ln Λ : D = 2
const. : D = 3

(32)

and we are interested in the behavior of the integral as the system size L grows and Λ→ 0.
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0

FM
AFM

Figure 34: Schematic spin-wave dispersion for nearest-neighbor FM (red) and AFM (blue).

– D = 1, 2: The integral diverges for any finite T , the magnetization is not close to S but goes to −∞.
Spin wave theory is not valid. Although the result for ⟨Szi ⟩ is unphysical result, we can infer that
the magnetic order melts.
This is in agreement with the [Mermin-Wagner-Hohenberg theorem: Continous symmetries
cannot be spontaneously broken at T > 0 in D ≤ 2 dimensions with short-range interactions.]

– D = 3: Closer inspection of the convergent BZ integral reveals S − ⟨Szi ⟩ = ζ(3/2)
8

(
T

π|J |S

)3/2
∼ T 3/2

which is small for small enough T . The magnetic order survives finite T .

16.3.3 Spin-wave theory for anti-ferromagnet (J > 0)

• We chose the staggered state [Néel state, see Fig. 33(a)] as the reference state.

• Recall: This is not an eigenstate for the AFM Heisenberg model → Look out for the effect of quantum
fluctuations at T = 0.

• Introduce two types of Holstein-Primakoff bosons, one for each sub-lattice. Drop the √... factor right
away to neglect interactions. The state with ni,a = 0 = ni,b is the Néel state.

– Sub-lattice A (spin up, a-bosons): Szi = −ni,a + S, S+
i ≃ ai, S

−
i ≃ a

†
i .

– Sub-lattice B (spin down, b-bosons): Szi = +ni,b − S, S+
i ≃ b

†
i , S

−
i ≃ bi.

• Insert in spin Hamiltonian:

H = −JS2Nz

2 + JS
∑

⟨ij⟩,i∈A,j∈B

(
a†iai + b†jbj + aibj + b†ja

†
i

)
(33)

and perform Fourier transform ai = 1√
N/2

∑
k e

ikRiak and bi = 1√
N/2

∑
k e
−ikRibk.

• We obtain
H = E0,MF + JSz

∑
k

(
a†kak + b†kbk + γk

[
akbk + b†ka

†
k

])
(34)

with γk = 1
D

∑D
µ=1 cos kµ and E0,MF = −JS2Nz

2 = −JS2ND the mean-field g.s.-energy.

• The latter two terms are anomalous as they do not conserve the boson number. This is analogous to
what happens in the fermionic BCS mean field theory.

• We apply a canonical Bogoliubov transformation a, b→ α, β to get rid of the anomalous terms,

ak = cosh θkαk − sinh θkβ
†
k

bk = − sinh θkα
†
k + cosh θkβk

Since the transformation is canonical, the new bosonic operators αk, βk still fulfill the standard bosonic
commutation relations.
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• We find with ck ≡ cosh θk, sk ≡ sinh θk

H = E0,MF + JSz
∑

k

{
2s2

k − 2γkcksk
}

+ JSz
∑

k

{
c2

k + s2
k − 2γkskck

}(
α†kαk + β†kβk

)
+ JSz

∑
k

{
γk
(
s2

k + c2
k

)
− 2cksk

}(
α†kβ

†
k + αkβk

)
The last line with the anomalous terms vanish if we pick θk such that tanh 2θk = γk. Then we have after
some algebra for hyperbolic functions (cosh−1 x =

√
1− tanh2 x)

H = E0,MF − JSz
N

2 +
∑

k
JSz

√
1− γ2

k︸ ︷︷ ︸
≡ωk

(
α†kαk + β†kβk + 1

)

• The magnon dispersion close to k = 0 is ωk ≃ JSz
√

1− 1
D2 [D − k2/2]2 ≃ 2JS

√
Dk. This vanishes

linearly, i.e. with a finite velocity in contrast to the parabolic dispersion for the FM case, see Fig. 34.

Zero temperature (ground state)

• Ground state is the vacuum of α and β-bosons.

• Energy: E0 = E0,MF − JSzN2 +
∑

k ωk can be calculated numerically and is smaller than E0,MF . The
results are shown in the table. For S = 1/2, agreement with Bethe-ansatz (1D) and Quantum Monte
Carlo (2D) is surprisingly good.

T = 0 (g.s.) E0/E0,MF E0/(NJ)|S=1/2 mz(Q)/mz
sat mz(Q)/mz

sat|S=1/2
SWT SWT exact SWT SWT exact

D = 1 1 + 0.363/S −0.4315 −0.4434 divergent divergent 0
D = 2 1 + 0.158/S −0.658 −0.669(2) 1− 0.197/S 0.607 0.614(12)
D = 3 1 + 0.097/S - - 1− 0.078/S - -

• Staggered magnetization [at wavevector Q = (π, π, ...)]

mz(Q) = −2µB (⟨SzA⟩ − ⟨SzB⟩)
= −2µB (2 ⟨SzA⟩)
= −2µB

(
2S − 2

〈
a†iai

〉)
= mz

sat + 4µB
N

∑
k

〈
cosh2 θkα

†
kαk − sinh θk cosh θkβkαk − cosh θk sinh θkα

†
kβ
†
k + sinh2 θkβkβ

†
k

〉

The two anomalous middle terms vanish and we use
〈
α†kαk

〉
= nB(ωk) T=0→ 0 and

〈
βkβ

†
k

〉
= 1 +

nB(ωk) T=0→ 1. We use sinh2 θk = (1/
√

1− γ2
k − 1)/2. We find

mz(Q)/mz
sat = 1− 1

2S
1

(2π)D

ˆ π

−π
dDk

 1√
1− γ2

k

− 1

 (35)

– D = 2, 3: The integral converges. See table for numerical value. Néel state is not real ground state
of AFM Heisenberg model, the true staggered magnetization (in 2D) is reduced to ~60% of the
saturated magnetization.

– D = 1, the integrand ∼ 1/k and is thus infrared log-divergent (ground state is disordered by quantum
fluctuations). Note the difference to the ordered ground state in the D = 1 FM case.
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Finite temperature

• As before, we find that staggered magnetization survives thermal fluctuations only in D = 3,

mz(Q, T ) ≃ mz(Q, T = 0)− 2
√

3µB
144

(
T

JS

)2
(36)

which is different from the ∼ T 3/2 law for the FM.

Exercises

Exercise 16.1. Spin-wave theory for FM XY model on 2D square lattice: Nearest-neigbor vs. dipolar coupling
Consider the ferromagnetic XY model on a 2D square lattice with lattice constant a = 1 for spin length S = 1/2,

H = −
∑
i ̸=j

J (|ri − rj |)
(
Sxi S

x
j + Syi S

y
j

)
. (37)

Note that each bond is counted twice! We are mostly interested in the long-range coupled case Jdip.(r) = |J |/r3

but also consider the nearest-neighbor (n.n.) case, Jn.n(r) = |J |δr,1, for reference. The goal of this exercise is
to understand how the long-range model emerges from dipole-dipole coupling and how the long-range nature
drastically alters the predictions from spin-wave theory when compared to the n.n. case.
1) Motivation for long-range coupling: Consider magnetic moments mi = (Sxi , S

y
i , S

z
i ) on the sites ri of a square

lattice interacting with dipole-dipole interactions HD,ij ∼ r−5
ij [r2

ijmi ·mj − 3(mi · rij)(mj · rij)] and show that
the in-plane nature of rij = ri − rj = rij(cosϕij , sinϕij , 0)T ⊥ ez simplifies HD to

HD,ij ∼
1

4r3
ij

[
−S+

i S
−
j − S

−
i S

+
j + 4Szi Szj − 3

(
e−2iϕijS+

i S
+
j + e+2iϕijS−i S

−
j

)]
. (38)

If a large Zeeman field ∼ h(Szi + Szj ) = hM z
ij is present, the dynamics caused by HD,ij can be restricted to

the subspace of the initial M z
ij , say M z

ij = 0 and we can drop off-resonant terms. Argue that in this case, the
long-range XY-Hamiltonian (37) emerges.
2) Assume a classical ordered state with spins pointing in the negative x-direction. Show that the energy per
site in this state in mean-field approximation is ϵ0,MF = E0,MF

N = −|J | ε0
4 where the Fourier transform of the

coupling is defined as
εk ≡

1
|J |

∑
rj ̸=0

eik·rJ (|rj |) . (39)

Note that εk is real-valued, positive and fulfills ε−k = εk due to inversion symmetry. Show the following
leading-order behaviors for small k around the ordering wavevector k = 0,

εk = ε0 −
{
cn.n.k

2 + ... (n.n.)
cdip.k + ... (dip.)

(40)

where the positive constants cn.n. and cdip. do not need to be determined.
3) Spin-wave analysis: Adapt the Holstein-Primakoff bosonic representation to the situation that the magnetic
order is in the negative x-direction, e.g. Sxi = ni − 1/2. You can work with S = 1/2 and drop the square-root
term in Sy,zi right away. Insert in Hamiltonian (37) and use a Fourier transform ai = 1√

N

∑
k e

ikriak and a
Bogoliubov transform (

bk
b†−k

)
=
(

uk −vk
−vk uk

)(
ak
a†−k

)
(41)

with u2
q − v2

q = 1 to eliminate anomalous terms b†kb
†
−k and bkb−k. Show that the spin-wave Hamiltonian and

dispersion of Goldstone modes from broken U(1) symmetry reads:

H = E0,MF + 1
2
∑

k
Ek +

∑
k
Ekb

†
kbk, where Ek = |J |

√
ε0 (ε0 − εk) ∼

{
k : n.n.√
k : dipolar

(42)
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4) Compute the spin-wave correction to the classical magnetization ∆mx = ⟨Sxi ⟩+ 1
2 =

〈
a†iai

〉
= 1

N

∑
k

〈
a†kak

〉
and show that

∆mx = 1
N

∑
k

(
1
4

2ε0 − εk√
ε0 (ε0 − εk)

1
tanh βEk

2
− 1

2

)
. (43)

Consider the cases T = 0 and small T > 0 separately. In which cases (n.n./dip. and T = 0/T > 0) does the
momentum sum converge? What can you conclude about the ordered or disordered nature of ground- and low-
temperature states for the n.n. and dipolar model? Is there a contradiction to the Mermin-Wagner-Hohenberg
theorem?

17 Antiferromagnetic Heisenberg chain (D=1)

• We consider the AFM n.n. Heisenberg chain

H = J
N∑
i=1

SiSi+1, (44)

with J > 0, N even and periodic boundary conditions, SN+1 ≡ S1.

• We have seen that AFM interactions in D = 1 are special: Even at T = 0, staggered magnetization
vanishes by quantum fluctuations.

• What are the properties of the ground-state and the excitations? Important: Keep spin-length S =
1
2 , 1,

3
2 , 2, ... general as this will matter!

Bipartite lattice

• A lattice with couplings Jij that can be separated into two disjoint sub-lattices A and B where Jij are
non-zero only for i ∈ A,B ∈ j or i ∈ B, j ∈ A is called bipartite.

• Examples for bipartite lattices: Nearest-neighbor (n.n.) coupling on a chain (D=1), the square lattice
(D=2) or the cubic lattice (D=3)

• Examples for non-bipartite lattices: Chain with n.n. and next-n.n. coupling (D=1), triangular lattice
(D=2) with n.n. coupling.

Marshall’s theorem (any D)

• Total spin defined as Stot =
∑
i Si. For Heisenberg systems, [H,Stot] = 0, the total spin in each of its

three components is conserved.

• Theorem: Consider the Heisenberg model on a bipartite lattice with sub-lattices A and B of equal and
finite size and Jij ≥ 0 (AFM) for all i ∈ A, j ∈ B (or vice versa) and every pair of sites connected by a
string of bonds with Jkl ̸= 0: The ground state |0⟩ is (i) non-degenerate and (ii) a singlet of total spin,
i.e. Stot |0⟩ = 0.

Remarks:

• Proof can be found in [Auerbach]. Simple check: AFM Heisenberg dimer with g.s. |0⟩ ∝ |↑, ↓⟩ − |↓, ↑⟩
which is indeed non-degenerate and a singlet.

• The theorem does not uniquely determine the g.s. In general, there are many total spin singlet eigenstates,
that are not the ground state.

• The theorem does not contradict a SU(2) symmetric degenerate manifold of ground states allowing for
spontaneous symmetry breaking. This happens only for N →∞.
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Lieb-Schulz-Mattis theorem [for Hamiltonian (44)]

• Theorem: For half-integer spin, S = 1/2, 3/2, ... there is an excited eigenstate with energy that approaches
the ground-state energy E0 as N →∞. (The chain is “gapless”.)

Proof:

• Denote the (non-degenerate) ground state of H by |0⟩, define state |1⟩ = U |0⟩ using twist operator
U =

∏N
j=1 exp

[
i2πj
N Szj

]
which rotates spins around z-axis by an angle increasing linearly with position j,

e.g. U |↑↑↑↑↑↑↑↑⟩ ∝ |↖←↙↓↘→↗↑⟩. Note: |1⟩ is not necessarily an eigenstate of H.

• Define unitary translation operator T1, T1SjT †1 = Sj+1. Since [H,T1] = 0, all eigenstates of H are also
eigenstates of the T1, in particular the g.s., T1 |0⟩ = eik0 |0⟩ with k0 ∈ [−π, π).

• Overlap ⟨0|1⟩:

⟨0|1⟩ = ⟨0|U |0⟩ =
〈
0|T †1T1︸ ︷︷ ︸

=1

UT †1T1|0
〉

=
〈
0|e−ik0

N∏
j=1

exp
[
i
2πj
N

Szj+1

]
eik0 |0

〉
. (45)

The e±ik0 cancel. We split off the contribution j = N from the sum, recall the periodic boundary
conditions, SzN+1 ≡ Sz1 . Then we shift j → j − 1 and note that the j = 1 contribution is trivial,

⟨0|1⟩ =
〈
0|

 N∏
j=1

exp
[
i
2π(j − 1)

N
Szj

] exp [i2πSz1 ] |0
〉
. (46)

The parentheses are almost the U operator, up to exp
[
−i2π

N

∑N
j=1 S

z
j

]
which involves Sztot. We have

⟨0|1⟩ =
〈
0|U exp [i2πSz1 ] exp

[
−i2π

N
Sztot

]
|0
〉
. (47)

We invoke Marshall’s theorem (bipartite, with N/2 sub-lattice sites each). Thus Sztot |0⟩ = 0. We are left
with ⟨0|1⟩ =

〈
0|U exp [i2πSz1 ] |0

〉
and note that Sz1 has eigenvalues mz

1 = −S,−S + 1, ..., S. Thus

exp [i2πSz1 ] =
{

+1 : S = 1, 2, 3, ...
−1 : S = 1/2, 3/2, ...

(48)

We only get a non-trivial result for the half-integer spins:

⟨0|1⟩ = −⟨0|U |0⟩ = −⟨0|1⟩ (49)

and conclude ⟨0|1⟩ = 0, the states are orthogonal!

• Energy expectation value for |1⟩:

⟨1|H|1⟩ =
〈
0|U †HU |0

〉
= J

N∑
j=1

〈
0|U †

[
Sxj S

x
j+1 + Syj S

y
j+1 + SzjS

z
j+1

]
U |0

〉

= J
N∑
j=1
⟨0|

+
(

cos 2πj
N

Sxj + sin 2πj
N

Syj

)(
cos 2π[j + 1]

N
Sxj+1 + sin 2π[j + 1]

N
Syj+1

)
+
(

cos 2πj
N

Syj − sin 2πj
N

Sxj

)(
cos 2π[j + 1]

N
Syj+1 − sin 2π[j + 1]

N
Sxj+1

)
+SzjSzj+1 |0⟩

= J
N∑
j=1
⟨0| cos 2π

N

(
Sxj S

x
j+1 + Syj S

y
j+1

)
+ sin 2π

N

(
Sxj S

y
j+1 − S

y
j S

x
j+1

)
+ SzjS

z
j+1 |0⟩

122



The middle parentheses vanish because they go to their negative under a global π-rotation around the
(1, 1, 0) axis in spin space which lets Sx,yl → Sy,xl but does not affect the singlet |0⟩.

• We finish the proof with a a few inequalities:

⟨1|H|1⟩ = E0 + J
N∑
j=1
⟨0|
[
cos 2π

N
− 1

]
︸ ︷︷ ︸

≤0

(
Sxj S

x
j+1 + Syj S

y
j+1

)
|0⟩ (50)

and use ⟨0|
(
Sxj S

x
j+1 + Syj S

y
j+1

)
|0⟩ ≥ −2S2. Finally, we use 1− cosx ≤ x2/2 and obtain

⟨1|H|1⟩ ≤ E0 + 2JNS2
(

1− cos 2π
N

)
≤ E0 + 4π2JS2/N (51)

so that ⟨1|H|1⟩ − E0
N→∞−→ 0.

• Since ⟨0|1⟩ = 0, the state |1⟩ is a superposition of exited eigenstates. If all excitations were gapped, this
would lead to a contradiction. Thus at least one excited eigenstate needs to be gapless. Q.E.D.

• Remark: Model (44) with integer S = 1, 2, 3, ... has an excitation gap (“Haldane gap”).

Spinon excitations

• Recall Goldstone theorem: Spontaneous broken continous symmetry → gapless excitation.
Lieb-Schulz-Mattis theorem shows that one does not need spontaneous symmetry breaking to obtain
gapless excitations. (The g.s. of the 1D AFM Heisenberg chain is not ordered.)

• The gapless mode in the 1D-AFM Heisenberg model (assume S = 1/2) cannot be a magnon, since we
have no long-range ordered background. Question: What is it?

• Recall: The g.s. of the 1D-AFM chain is close to a superposition of staggered configurations in all
directions (

〈
Sj
〉

= 0, no spontaneous breaking of spin-rotation symmetry, power law algebraic correlations〈
Sαj S

α
j+n

〉
∼ (−1)n/n). Snapshot of a correlated region is shown in Fig. 35.

• We (= an experimentalist’s neutron which also has S = 1/2) can flip one spin at energy cost ∼ J . This
is a |S| = 1 excitation (S = 1/2→ S = −1/2).

• Follow idea of magnons: Gain kinetic energy by moving the excitation by the S+
j S
−
j+1 + h.c. terms in H.

• We see that two domain walls (“kinks”) emerge which move independently and carry away only spin
S = 1/2. They are called spinons.

• Compare to magnon in 1D FM (Ising) setting: Can only move the flipped spin as a whole ( ↑↑↓↑↑↑↑ →
↑↑↑↓↑↑↑ → ↑↑↑↑↓↑↑ → ...)

• Spinon: Example of a fractionalized excitation. (Other example: Fractional quantum Hall effect where
electron charge is fractionalized, e.g. ν = 1/3 plateau state.)

• Separating spinons does not cost further energy (deconfined). → Spinons are well-defined quasi-particles.
From Bethe ansatz: ωk = πJ

2 | sin k| (sharp dispersion!)

• The same strategy does not work in D = 2, 3, ... due to the region of flipped spins (-----) left behind which
would create an energy cost proportional to separation.

• Remark: The discussion above draws intuition from Ising limit but stays qualitatively correct in Heisen-
berg case. The domain walls are then smoothed out.

• Spinons in neutron scattering experiment: Besides ∆S = 1, neutron deposits momentum q and a tell-tale
energy ωq. How does ωq look as a function of q?
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staggered config.

single spin flip costs ~ J

application of 

gains kinetic energy

leaves string of 
flipped spins (----)

(a) (b)

continuum

(i)

(ii)

spinonspinon

Figure 35: (a) Schematic sketch of spinon excitations (red) that emerge from a local spin-flip. (b) Continuum in ωq for
elastic neutron scattering as indirect experimental evidence for spinons.

– Two spinons are created that carry q = k1 + k2 and ωq = ωk1 + ωk2 ∼ | sin k1|+ | sin k2|. Thus there
are many possibilities, expect continuum signal and no sharp features (only individual spinon has
sharp ωk).

– Limiting cases (i): k1 = q, k2 = 0 or k1 = 0, k2 = q leads to ωq = πJ
2 | sin q|. (ii): k1 = k2 = q/2

leads to ωq = 2× πJ
2 | sin(q/2)|.

– With all intermediate cases, obtain the continuum with boundaries from the limiting cases in
Fig. 35(b). This has been measured in KCuF3 where the magnetic Cu atoms are arranged in
well isolated chains [Tennant et al., (1993)].

- - - - 06.02.2023

18 Non-magnetic states: Variational wavefunctions and parent Hamilto-
nians

• Use variational principle and educated guesses for variational wavefunctions to better understand non-
magnetic ground states.

• Similar philosophy as in fractional quantum Hall effect (e.g. Laughlin’s wavefunction)

• Focus on S = 1/2 (can be generalized to any S)

• Parent Hamiltonian: A (contrived) Hamiltonian for which variational wavefunction is exact. Might still
offer insights for more realistic models close in parameter space.

Valence-bond states

• For a given lattice, let Λα be a configuration of bonds (ij) such that each lattice site belongs to one bond.
See Fig. 36(a) for an example on the square lattice.

• For each Λα, define a product state of singlets

|α⟩ =
∏

(i,j)∈Λα

(|↑i↓j⟩ − |↓i↑j⟩) /
√

2 (52)

with Stot |α⟩ = 0 (c.f. Marshall’s theorem).
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(a) (b) (c)

0 0.2411 0.5

MG-point

phase transition

Figure 36: (a) Schematic sketch of possible configuration Λα for square lattice. (b) Spin chain: Two n.n. choices for Λα.
(c) Numerical phase diagram of the AFM J1 − J2-Heisenberg chain (58).

• The state |α⟩ breaks translational symmetry, and Λα determines spin-correlations:

⟨α|Sk · Sl|α⟩ =


3/4 : k = l

−3/4 : (kl) ∈ Λα
0 : otherwise

(53)

The correlations are short-range if Λα contains bonds of finite size.

• General valence-bond state (still spin singlet): Pick cα ∈ C,

|{cα}⟩ =
∑
α

cα |α⟩ (54)

Note: Such a general valence-bond state can restore translational symmetry.

• Resonating valence bond state (RVB): |{c}α⟩ with macroscopically many |α⟩ contributing. (This was
first proposed by Phil Anderson for the frustrated n.n. triangular lattice AFM.)

Example: Heisenberg AFM chain

• Consider again Hamiltonian (44), we still want to understand ground-state better.

• Due to n.n. nature of H, use n.n. valence bond states Λ± of Fig. 36(b). Use both to avoid translational
symmetry breaking. Since ⟨+|H|+⟩ = ⟨−|H|−⟩, the c± are not suitable for variational calculation.

• Check how state |±⟩ performs against Néel state |N⟩:

⟨N |H|N⟩ = −1
4JN = −2

8JN

⟨±|H|±⟩ = −3
4
J

2N = −3
8JN

The valence-bond state gives a tighter bound on the g.s. energy.
Fact: The true g.s. is in fact similar to valence-bond state, but with macroscopically many and long-ranged
contributions |α⟩.

Majumdar-Ghosh Hamiltonian

• Q: Is there a H so that |±⟩ of Fig. 36(b) is exact g.s.? Yes, but need to add next-n.n. coupling.

• Majumdar-Ghosh Hamiltonian with K > 0 (non-bipartite!):

HMG = K
∑
i

(
Si · Si+1 + 1

2Si · Si+2

)
(55)
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Proof that |±⟩ are g.s. of HMG:

• Define Ji = Si−1 + Si + Si+1 so that Ji · Ji has eigenvalues Ji(Ji + 1) with Ji = 1/2 or 3/2 (addition of
angular momenta).

• Projector to Ji = 3/2 case: Pi = (Ji · Ji − 3/4) /3. (Check: P 2
i = Pi, however [Pi, Pj ] ̸= 0!)

• Rewrite

Pi = 1
3

[
(Si−1 + Si + Si+1) (Si−1 + Si + Si+1)− 3

4

]
= 1

2 + 2
3 (Si−1 · Si + Si−1 · Si+1 + Si · Si+1)

so that we have twice a n.n.-bond and one next-n.n.-bond as in HMG.

• Express HMG with Pi:
HMG = 3

4K
∑
i

Pi −
3NK

8 (56)

• In |±⟩, the Ji = 3/2 cannot appear. Indeed Ji = Si−1 + (Si + Si+1) = (Si−1 + Si) + Si+1 and either the
first or second parentheses refer to total spin zero, so only Ji = 1/2 is possible. Thus

HMG |±⟩ = −3NK
8 |±⟩ (57)

• Lower bound for g.s. energy E0: The lowest eigenvalue of HMG cannot be smaller than the sum of the
lowest eigenvalues of its individual terms. The lowest eigenvalue of Pi is 0, thus E0 ≥ −3NK

8 which is
saturated by the eigenvalue of |±⟩.

Generalization: J1 − J2 AFM Heisenberg chain

• Interpolation from n.n. AFM Heisenberg chain to MG-model: AFM J1 − J2-Heisenberg chain

H =
∑
i

(J1Si · Si+1 + J2Si · Si+2) (58)

• Phase diagram is known numerically, see Fig. 36(c).

J2/J1 ∈ [0, 0.2411) J2/J1 ∈ (0.2411,∞)
excitations gapless gapped

valence-bonds macroscopically many long-range |α⟩ dominated by |±⟩
| ⟨Si · Si+n⟩ | ∼ 1/na (algebraic decay) ∼ exp(−n/ξ)

19 Kitaev’s honeycomb model

Aims:

• Q: Does spin fractionalization and quantum spin liquid exist beyond D=1?

• No realistic parent Hamiltonian is known for D=2 resonating valence-bond state.

• [A. Kitaev, (2006)]: Exactly solvable spin S = 1/2 model in D=2. Fractionalization of spin-1/2 in
Majorana fermions.

• Proposals for material realization in spin-orbital Jeff = 1/2 Mott insulators. Most famous material to
date: α− RuCl3.
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(a) (b) (c)

y

x

z

hopping sense
for u(0)

Figure 37: (a) An elementary hexagonal plaquette of the honeycomb lattice with bond directions labeled as x, y, z. (b)
For the classical model, the g.s. is highly degenerate and once can expect quantum fluctuations to cause a superposition of
these states. (c) The S = 1/2 at each lattice site are represented by four Majorana fermions. The resulting Hamiltonian
H̃ features interactions between four adjacent Majoranas in the colored regions. (Figures adapted from [Kitaev, (2006)]
and [Tagaki et al, Nature 2019])

Spin-Hamiltonian

• Spins S = 1/2 on sites of a honeycomb lattice, see Fig. 37(a).

• Ising interactions along links, special feature: Axis of Ising interaction depends on orientation of link (→
frustration)

H = −Jx
∑〈
ij
〉

x

σxi σ
x
j − Jy

∑〈
ij
〉

y

σyi σ
y
j − Jz

∑〈
ij
〉

z

σzi σ
z
j (59)

The signs of Jx,y,z do not matter for what follows, they can be flipped by unitary rotations (e.g. flip Jz
by applying π-spin rotation around x-axis along every other horizontal zig-zag line).

• Classical picture (spins S replaced by vector, assume FM interactions): Huge g.s.-degeneracy, can make
1/3 of the bonds happy, see Fig. 37(b). Hope: With quantum effects, have superposition of classical g.s.,
similar to RVB state.

• Plaquette operator for plaquette p [see Fig. 37(a)] Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 commutes with H and Wp′ for

p′ any other plaquette. We also have W 2
p = 1 so that Wp has eigenvalues wp = ±1 (=“flux”) which can

be chosen for each plaquette.

• Unfortunately, this is not quite enough for exact solution: Of each spin, only 1/3 belongs to a plaquette.
Thus we have 2 spins per plaquette, but only one constraint.

Majorana Hamiltonian

• Majorana fermion operators: For usual fermions fa (a = 1, 2, ...n}, we have {fa, f †b } = δab. For each a,
define the two Majorana operators η2a−1 = fa + f †a and η2a = (fa − f †a)/i. It is easy to check that η2

j = 1
and {ηj , ηk} = 0 for j ̸= k.

• Kitaev Majorana spin-representation (c.f. Ex. 14.1): Four Majoranas bxi , b
y
i , b

z
i , ci per site σ̃xi = ibxi ci,

σ̃yi = ibyi ci, σ̃zi = ibzi ci. Faithful for S = 1/2 only in subspace Di = bxi b
y
i b
z
i ci

!= 1 (D2
i = 1 and [Di, H] = 0

for any spin Hamiltonian, thus Di = ±1).

• Projector on physical subspace: P = ΠiPi with Pi = (1 +Di)/2.
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• In the Kitaev-Majorana representation, the Hamiltonian reads

H̃ = iJx
∑〈
ij
〉

x

(
ibxi b

x
j

)
cicj + iJy

∑〈
ij
〉

y

(
ibyi b

y
j

)
cicj + iJz

∑〈
ij
〉

z

(
ibzi b

z
j

)
cicj (60)

see Fig. 37(b).

• Key fact for exact solution: Extensive set of conserved quantities. Define

Uij ≡


(
ibxi b

x
j

)
: ⟨ij⟩ = x− bond(

ibyi b
y
j

)
: ⟨ij⟩ = y − bond(

ibzi b
z
j

)
: ⟨ij⟩ = z − bond

(61)

with Uij = −Uji and see that (i)
[
H̃, Uij

]
= 0, (ii) [Uij , Ukl] = 0. Since U2

ij = 1, we have eigenvalues
uij = ±1. These eigenvalues can be chosen individually for each bond.

• Hopping Hamiltonian for ci: The Hilbert space of H̃ splits into eigenspaces that are indexed by the
configuration of u⟨ij⟩ denoted by u, L =

⊕
u Lu. Relation between physical wp and u (in physical

subspace):
wp =

∏
⟨ij⟩∈∂p

uij (62)

• Note: Seen from the c-Majoranas, the uij = ±1 are similar to Peierls phase factors as from hopping in
the presence of a vector potential = gauge field. Thus uij is called a Z2 gauge field. A local Z2 gauge
transformation changes ci → −ci and bαi → −bαi for all α = x, y, z. This does not change σ̃αi = ibαi ci.

• If restricted to Lu, H̃ is a non-interacting hopping Hamiltonian for the ci-Majoranas,

H̃u = iJx
∑
⟨ij⟩x

uijcicj + iJy
∑
⟨ij⟩y

uijcicj + iJz
∑
⟨ij⟩z

uijcicj (63)

• Huge simplification: For N lattice sites, we only have to diagonalize N × N Hamiltonian for c-hopping
problem instead of 2N × 2N Hamiltonian for the original spin model.

• Procedure for finding the g.s. of H:

1. Fix some wp = ±1 for all p
2. Find any u satisfying Eq. (62)
3. Solve the non-interacting Hamiltonian (63) and find its g.s.-energy E0({wp}) and g.s.

∣∣ψ({wp})
〉

4. Repeat for all {wp}, pick the {wp} than minimizes the energy
5. Compute physical observables from the state projected to the physical subspace, P

∣∣ψ〉
• Shortcut - Lieb’s theorem: For lattices with mirror symmetry that does not cut through lattice sites,

plaquettes of length 2 mod 4 carry zero flux in the g.s. (plaquettes of length 0 mod 4 carry π-flux).

• Conclude: Set wp = +1 to find the g.s.! Suitable choice of uij configuration u(0) which is translational
invariant: uij = +1 if i ∈ even sub-lattice, uij = −1 otherwise. See gray arrows in Fig. 37(c).

Spectrum of the Fermions in the Kitaev-Honeycomb model

• Translational invariance of H̃u(0) suggests spatial Fourier transform. Follow Fig. 38(a) and use the basis
n1,2 =

(
±1

2 ,
√

3
2

)
and reciprocal basis q1,2 = 2π

(
±1, 1√

3

)
.
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y

where the f-fermions live

(a) (b)

Figure 38: Kitaev honeycomb model: (a) Choice of (reciprocal-) lattice vectors. (b) Ground-state phase diagram.
Adapted from [Kitaev, (2006)] and [Kitaev and Laumann, (2009)].

• Sub-lattice index λ = {◦, •} goes into a 2x2 grading, cri,λ = 1√
2N
∑

k e
−ik·rick,λ which leads to

(
ck,λ

)† =
c−k,λ and k is from the BZ of the triangular lattice. We find:

H̃u(0) = i

2
∑

k
ck,•

(
Jxe
−ik·n1 + Jye

−ik·n2 + Jz
)
c−k,◦

• We move over to complex (ordinary) f -fermions, treating the Majoranas with kx < 0 as the other species.
Thus we need to restrict the k for fkλ to kx > 0 (primed sum):

fk,λ ≡ ck,λ, f
†
k,λ = c−k,λ

Note that
(
fk,λ

)† = f †k,λ. We get

H̃u(0) =
∑′

k

(
f †k,•
f †k,◦

)T (
0 i

2

(
Jxe

ik·n1 + Jye
ik·n2 + Jz

)
c.c. 0

)(
fk,•
fk,◦

)
+ const.

• The spectrum has gapless Dirac points at k⋆ iff (...)k=k⋆ = 0. This will happen if the Jx,y,z fulfill the
triangle inequality, |Ji| ≤ |Jj | + |Jk|, (i, j, k) are permutations of (x, y, z). Otherwise, the spectrum is
gapped. This leads to the g.s. phase diagram of Fig. 38(b).

• For the symmetric case Jx = Jy = Jz, the gapless condition reads eik⋆·n1 + eik
⋆·n2 = −1 which is fulfilled

for k⋆ = 2π
(

1
3 ,
√

3
)
.

• Further facts:

– The A-phases are adiabatically connected to Toric code model (a spin model with 4-spin interactions,
exotic anyon excitations and topological order).

– Gapless B-phase can be gapped by breaking time-reversal symmetry, e.g. by physical magnetic field.
The Majorana bands carry non-trivial Chern number C, which leads to edge states and a quantized
thermal heat conductivity. This was claimed to be measured in α−RuCl3in [Kasahara et al, Nature
559, 227 (2018)], but the result is highly controversial.
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