https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 15: Optional: Frequency Comb

Solution Optional Problem 1: Poisson summation formulas [3]

(a) We multiply the completeness relation with $f(y / L)$ and integrate over $x=y / L$:

$$
\begin{array}{lrl}
\text { Completeness: } & \frac{1}{L} \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i} 2 \pi n y / L} & =\sum_{m \in \mathbb{Z}} \delta(y-L m)=\frac{1}{L} \sum_{m \in \mathbb{Z}} \delta\left(\frac{y}{L}-m\right) \tag{1}\\
\int \mathrm{d} x f(x)(1): & \sum_{n \in \mathbb{Z}} \int_{-\infty}^{\infty} \mathrm{d} x f(x) \mathrm{e}^{-\mathrm{i} 2 \pi n x} & =\sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} \mathrm{d} x f(x) \delta(x-m)=\sum_{m \in \mathbb{Z}} f(m) .
\end{array}
$$

The left integral corresponds to the Fourier transform, $\tilde{f}(k)=\int_{-\infty}^{\infty} \mathrm{d} x f(x) \mathrm{e}^{-\mathrm{i} k x}$, with $k=$ $2 \pi n$. Thus we obtain:

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \tilde{f}(2 \pi n)=\sum_{m \in \mathbb{Z}} f(m) \text {. } \tag{2}
\end{equation*}
$$

(b) We set $f(x)=\mathrm{e}^{-a|x|}$, and then calculate the Fourier transform:

$$
\tilde{f}(k)=\int_{-\infty}^{\infty} \mathrm{d} x \mathrm{e}^{-\mathrm{i} k x} f(x)=\int_{-\infty}^{\infty} \mathrm{d} x \mathrm{e}^{-(\mathrm{i} k x+a|x|)}=\frac{2 a}{k^{2}+a^{2}} .
$$

The Poisson summation formula $\sum_{n} \tilde{f}(2 \pi n)=\sum_{m} f(m)$ then gives:

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}} \frac{2 a}{\left(2 \pi n^{2}+a^{2}\right)} & =\sum_{m \in \mathbb{Z}} \mathrm{e}^{-a|m|}=2 \sum_{m=0}^{\infty} \mathrm{e}^{-a m}-1 \\
& =\frac{2}{1-\mathrm{e}^{-a}}-1=\frac{1+\mathrm{e}^{-a}}{1-\mathrm{e}^{-a}}=\frac{\mathrm{e}^{a / 2}+\mathrm{e}^{-a / 2}}{\mathrm{e}^{a / 2}-\mathrm{e}^{-a / 2}}=\operatorname{coth}(a / 2) .
\end{aligned}
$$

(c) We set $f(x)=\mathrm{e}^{-\left(a x^{2}+b x+c\right)}$, and then calculate the Fourier transform:

$$
\begin{aligned}
\tilde{f}(k) & =\int_{-\infty}^{\infty} \mathrm{d} x \mathrm{e}^{-\mathrm{i} k x} f(x)=\int_{-\infty}^{\infty} \mathrm{d} x \mathrm{e}^{-a\left(x^{2}+\frac{1}{a}(b+\mathrm{i} k) x\right)-c} \\
& =\int_{-\infty}^{\infty} \mathrm{d} x \mathrm{e}^{-a\left(x+\frac{b+\mathrm{i} k}{2 a}\right)^{2}} \mathrm{e}^{a\left(\frac{b+\mathrm{i} k}{2 a}\right)^{2}-c}=\sqrt{\frac{\pi}{a}} \mathrm{e}^{\frac{1}{4 a}\left(b^{2}+2 i b k-k^{2}\right)-c} .
\end{aligned}
$$

The Poisson summation formula $\sum_{m} f(m)=\sum_{n} \tilde{f}(2 \pi n)$ then gives:

$$
\sum_{m \in \mathbb{Z}} \mathrm{e}^{-\left(a m^{2}+b m+c\right)}=\sqrt{\frac{\pi}{a}} \mathrm{e}^{\left(\frac{b^{2}}{4 a}-c\right)} \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\frac{1}{a}\left(\pi^{2} n^{2}+\mathrm{i} \pi n b\right)} .
$$

Solution Optional Problem 2: Fourier integral representation of a periodic function, frequency comb [6]

(a) We insert the Fourier series for $p(t)$ into the formula for the Fourier transform of $p(t)$:

$$
\tilde{p}(\omega)=\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} p(t)=\frac{1}{\tau} \sum_{m} \underbrace{\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} \mathrm{e}^{-\mathrm{i} \omega_{m} t}}_{2 \pi \delta\left(\omega-\omega_{m}\right)} \tilde{p}_{m}=\omega_{r} \sum_{m} \tilde{p}_{m} \delta\left(\omega-\omega_{m}\right)
$$

with $\omega_{r}=2 \pi / \tau$. We now clearly see that $\tilde{p}(\omega)$ is a periodic frequency comb of δ functions, whose weights are fixed by the coefficients \tilde{p}_{m} of the Fourier series.
(b) We insert the Fourier representation, $f(t)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{-\mathrm{i} \omega t} \tilde{f}(\omega)$, into the definition of $p(t)$ and then perform the substitution $\omega=y \omega_{r}$ (implying $\omega \tau=2 \pi y$):

$$
\begin{aligned}
& p(t)=\sum_{n} f(t-n \tau)=\sum_{n} \int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{-\mathrm{i} \omega(t-n \tau)} \tilde{f}(\omega) \\
& \stackrel{\omega=y \omega_{r}}{=} \sum_{n} \int_{-\infty}^{\infty} \mathrm{d} y \mathrm{e}^{\mathrm{i} 2 \pi y n} \underbrace{\left[\mathrm{e}^{-\mathrm{i} y \omega_{r} t} \frac{1}{\tau} \tilde{f}\left(y \omega_{r}\right)\right]}_{\equiv F(y)}=\sum_{n} \tilde{F}(2 \pi n)^{\text {(Poisson) }}=\sum_{m} F(m)
\end{aligned}
$$

Here we have defined the function $F(y)=\mathrm{e}^{-\mathrm{i} y \omega_{r} t} \frac{1}{\tau} \tilde{f}\left(y \omega_{r}\right)$, with Fourier transform $\tilde{F}(k)$, and used the Poisson summation formula. Using $\omega_{m}=m \omega_{r}=2 \pi m / \tau$, we thus obtain:
$p(t)=\sum_{m} F(m)=\frac{1}{\tau} \sum_{m} \mathrm{e}^{-\mathrm{i} m \omega_{r} t} \underbrace{\tilde{f}\left(m \omega_{r}\right)}_{\equiv \tilde{p}_{m}} \stackrel{\omega_{m}=m \omega_{r}}{=} \frac{1}{\tau} \sum_{m} \mathrm{e}^{-\mathrm{i} \omega_{m} t} \tilde{p}_{m}$ with $\tilde{p}_{m}=\tilde{f}\left(\omega_{m}\right)$.
The middle term has the form of a discrete Fourier series, from which we can read off the discrete Fourier coefficients \tilde{p}_{m} of $p(t)$. They are clearly given by $\tilde{p}_{m}=\tilde{f}\left(\omega_{m}\right)$, and correspond to the Fourier transform of $f(t)$ evaluated at the discrete frequencies ω_{m}.
(c) From (a) and (b) we directly obtain the following form for the Fourier transform of $p(t)$:

Fourier spectrum:

$$
\tilde{p}(\omega) \stackrel{(a)}{=} \omega_{r} \sum_{m} \tilde{p}_{m} \delta\left(\omega-\omega_{m}\right) \stackrel{(\text { b) }}{=} \omega_{r} \sum_{m} \tilde{f}\left(\omega_{m}\right) \delta\left(\omega-\omega_{m}\right) \text {. }
$$

This is a comb of peaks at equally spaced frequencies ω_{m}, with weights governed by the envelope function $\tilde{f}\left(\omega_{m}\right)$. For a series of Gaussian functions, $p_{G}(t)=\sum_{n} f_{G}(t-n \tau)$, the corresponding envelope, $\tilde{f}_{G}(\omega)$, has the form of a Gaussian, too (Sheet 12, Example Pro-
blem 2):
Envelope: $\quad \tilde{f}_{G}(\omega)=\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} f_{G}(t)=\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} \frac{1}{\sqrt{2 \pi T^{2}}} \mathrm{e}^{-\frac{t^{2}}{2 T^{2}}}=\mathrm{e}^{-\frac{1}{2} T^{2} \omega^{2}}$.

(d) The Fourier transform of $E(t)=\mathrm{e}^{-\mathrm{i} \omega_{c} t} p(t)$, to be denoted $\tilde{E}(\omega)$, is the same as that of $p(t)$, except that the frequency argument is shifted by ω_{c} :

$$
\begin{aligned}
\tilde{E}(\omega) & =\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} E(t)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{\prime}}{2 \pi} \tilde{p}\left(\omega^{\prime}\right) \underbrace{\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i}\left(\omega-\omega_{c}-\omega^{\prime}\right) t}}_{2 \pi \delta\left(\omega-\omega_{c}-\omega^{\prime}\right)}=\tilde{p}\left(\omega-\omega_{c}\right) \\
& \stackrel{\text { (c) }}{=} \frac{2 \pi}{\tau} \sum_{m} \tilde{f}\left(\omega_{m}\right) \delta\left(\omega-\omega_{m}-\omega_{c}\right) \stackrel{m=n-N}{=} \frac{2 \pi}{\tau} \sum_{n} \tilde{f}\left(\omega_{n-N}\right) \delta\left(\omega-\omega_{n}-\omega_{\text {off }}\right)
\end{aligned}
$$

For the last step we used $\omega_{c}=N \omega_{r}+\omega_{\text {off }}$ and renamed the summation index, $m=n-N$, such that $\omega_{m}+\omega_{c}=\omega_{n}+\omega_{\text {off. }}$. Thus $\tilde{E}(\omega)$ forms an 'offset-shifted' frequency comb, whose peaks relative to the Fourier frequencies ω_{n} are shifted by the offset frequency $\omega_{\text {off }}$. The 'center' of the comb lies at the frequency where $\tilde{f}\left(\omega_{n-N}\right)$ is maximal, i.e. at $n=N$, with frequency $\omega_{N} \simeq \omega_{c}$.
(e) We begin with the definition of the Fourier transform of $p_{\gamma}(t)$:

Definition:

$$
\begin{equation*}
t^{\prime}=t-n \tau: \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\tilde{p}_{\gamma}(\omega) & =\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} p_{\gamma}(t)=\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} \sum_{n} f(t-n \tau) \mathrm{e}^{-|n| \tau \gamma} \\
& =\underbrace{\sum_{n} \mathrm{e}^{\mathrm{i} n \tau \omega} \mathrm{e}^{-|n| \tau \gamma}}_{\equiv S[\gamma, \omega r](\omega)} \underbrace{\int_{-\infty}^{\infty} \mathrm{d} t^{\prime} \mathrm{e}^{\mathrm{i} \omega t^{\prime}} f\left(t^{\prime}\right)}_{=\tilde{f}(\omega)}
\end{aligned}
$$

The sum

$$
\begin{equation*}
S^{\left[\gamma, \omega_{r}\right]}(\omega) \equiv \sum_{n \in \mathbb{Z}} \mathrm{e}^{\mathrm{i} n \tau \omega} \mathrm{e}^{-|n| \tau \gamma} \stackrel{\tau=2 \pi / \omega_{r}}{=} \sum_{n \in \mathbb{Z}} \mathrm{e}^{\mathrm{i} 2 \pi n \omega / \omega_{r}} \mathrm{e}^{-2 \pi|n| \gamma / \omega_{r}} \tag{4}
\end{equation*}
$$

has the same form as a damped sum over Fourier modes,

$$
\begin{equation*}
S^{[\epsilon, L]}(x) \equiv \sum_{k \in \frac{2 \pi}{L} \mathbb{Z}} \mathrm{e}^{\mathrm{i} k x-\epsilon|k|}=\sum_{n \in \mathbb{Z}} \mathrm{e}^{\mathrm{i} 2 \pi n x / L} \mathrm{e}^{-2 \pi|n| \epsilon / L} \tag{5}
\end{equation*}
$$

The latter can summed using geometric series in the variables $\mathrm{e}^{-2 \pi(\epsilon \mp \mathrm{ix}) / L}$ (sheet 11 , Homework Problem 3)]:

$$
\begin{equation*}
S^{[\epsilon, L]}(x)=\frac{1-\mathrm{e}^{-4 \pi \epsilon / L}}{1+\mathrm{e}^{-4 \pi \epsilon / L}-2 \mathrm{e}^{-2 \pi \epsilon / L} \cos (2 \pi x / L)} \simeq L \sum_{m \in \mathbb{Z}} \delta_{\mathrm{LP}}^{[\epsilon]}(x-m L) . \tag{6}
\end{equation*}
$$

The result is a periodic sequence of peaks at the positions $x \simeq m L$, each with the form of a Lorentzian peak (LP), $\delta_{\mathrm{LP}}^{[\epsilon]}(x)=\frac{\epsilon / \pi}{x^{2}+\epsilon^{2}}$ for $x, \epsilon \ll L$. Using the association $x \mapsto \omega, \epsilon \mapsto \gamma$ and $L \mapsto \omega_{r}$ we obtain:
and

$$
\begin{align*}
& S^{\left[\gamma, \omega_{r}\right]}(\omega) \stackrel{(4,6)}{=} \omega_{r} \sum_{m \in \mathbb{Z}} \delta_{\mathrm{LP}}^{[\gamma]}\left(\omega-m \omega_{r}\right) \tag{7}\\
& \quad \tilde{p}_{\gamma}(\omega) \stackrel{(3,7)}{=} \omega_{r} \sum_{m \in \mathbb{Z}} \delta_{\mathrm{LP}}^{[\gamma]}\left(\omega-\omega_{m}\right) \tilde{f}(\omega) .
\end{align*}
$$

Thus the spectrum of a series of periodic pulses, truncated beyond $|n| \lesssim 1 /(\tau \gamma)$, corresponds to a frequency comb with Lorentz-broadened peaks as teeth, each with width $\simeq \gamma$.
[Total Points for Optional Problems: 9]

