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(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced
Optional Problem 1: Poisson summation formulas [3]
Points: (a)[1](M); (b)[1](E); (c)[1](M). [T]

(a) Show that every function f(x), for which a Fourier-integral representation of the form f(x) =�∞
−∞

dk
2π

eikxf̃(k) exists, fulfills the following remarkable relationship:

‘Poisson summation formula’:
∑
m∈Z

f(m) =
∑
n∈Z

f̃(2πn) .

The sum of the function values f(m) over all the integers is exactly the same as the sum
over all the Fourier coefficients f̃(2πn)!

Hint: multiply the completeness relation for discrete Fourier modes, 1
L

∑
n∈Z e−i2πny/L =∑

m∈Z δ(y − Lm), with f(y/L) then integrate over x = y/L.

Using the Poisson summation formula and the following functions f(x), prove the following iden-
tities (with 0 < a ∈ R):

(b) f(x) = e−a|x|:
∑
n∈Z

2a

(2πn)2 + a2
= coth (a/2) .

(c) f(x) = e−(ax
2+bx+c):

∑
m∈Z

e−(am
2+bm+c) =

√
π

a
e

(
b2

4a
−c

)∑
n∈Z

e−
1
a(π2n2+iπnb) .

The identity (c) is the so-called ‘Poisson resummation formula’ for infinite sums over discrete
Gaussian functions. Note that this is an example of Fourier reciprocity: the width of the discrete
Gaussian functions on the left and right hand sides of the equation are proportional to 1/a and
a/π2 respectively.

Optional Problem 2: Fourier integral representation of a periodic function, frequency
comb [6]
Points: (a)[1](E); (b)[2](M); (c)[1](E); (d)[2](M); (e)[3,Bonus](A).

The most precise method we have today of measuring optical frequencies employs an optical
‘frequency comb’. John L. Hall (University of Colorado, USA) and Theodor W. Hänsch (Ludwig-
Maximilians-University Munich) shared the Nobel prize in physics 2005 for the development of this
technology.
An optical cavity is used to generate a precisely periodic series of light pulses, whose Fourier
spectrum has the form of a frequency comb. This comb has more than a million ’teeth’; they span
more than an octave and their frequencies are known to a precision of better than one part in
1015. To measure the frequency of a beam of light in the optical spectrum, it is superimposed
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with the frequency comb. Whichever tooth is closest in frequency to the frequency to be measured
will combine with the latter to form a ’beat’ in the radio frequency range, allowing the unknown
frequency to be determined to better than one part in 1015.
In the following, we describe the mathematical principles underlying the frequency comb technique.
The main idea is simple: the Fourier transform of a periodic signal yields a periodic δ-function —
the frequency comb. We are interested in finding the positions, heights and widths of the comb’s
‘teeth’, and how these change when the input signal is not perfectly periodic, as is bound to be
the case in the lab.

)t(p

τ π/τ= 2rω
ωt

rmω=mω
)ω(p̃

/T1T

= 00ω

Let p(t) be a periodic function with period τ . It has a Fourier series representation, p(t) =
1
τ

∑
m∈Z e−iωmt p̃m, whose discrete Fourier frequencies, ωm = mωr, are multiples of ωr = 2π/τ .

The same function also has a Fourier integral representation, p(t) =
�∞
−∞

dω
2π

e−iωtp̃(ω).

(a) Show that the Fourier transform p̃(ω) is given by a sum of discrete δ functions — the
‘frequency comb’ — whose teeth coincide with the discrete Fourier frequencies ωm, weighted
with the discrete Fourier coefficients p̃m:

p̃(ω) = ωr
∑
m

p̃m δ(ω − ωm). (1)

We henceforth consider a periodic function of the form p(t) ≡∑
n∈Z f(t−nτ), consisting of a series

of shifted versions of the same ‘seed function’, f(t). For example, if the seed function describes
a single peak, the periodic function describes a train of such peaks. Let f(t) =

�∞
−∞

dω
2π

e−iωtf̃(ω)
denote the Fourier integral representation of the seed function.

(b) Show that the coefficients p̃m of the Fourier series representation of p(t) are determined by
the Fourier transform of the seed function via p̃m = f̃(ωm). Hint: Insert the Fourier integral
representation of the seed function f(t) into the definition of p(t). Then use the Poisson
summation formula,

∑
m F̃ (2πm) =

∑
n F (n) (see corresponding example problem), to bring

p(t) into the form of a Fourier series. Read off the Fourier coefficients p̃m from the latter.

To be concrete, let us now consider a seed function having the form of a Gaussian peak, fG(t) =
1√

2πT 2
e−t

2/(2T 2). Let pG(t) denote a periodic train of such peaks. Moreover, we take the Gaussian
peak width, T , to be much smaller than the period of the periodic train, T � τ .

(c) According to Eq. (1), the Fourier transform, p̃G(ω), of the Gaussian train constitutes a fre-
quency comb. Find a formula for p̃G(ω) and identify the positions and weights of the comb’s
peaks. Show that the peak weights are governed by a Gaussian envelope whose width is
inversely proportional to that of the Gaussian seed function — Fourier reciprocity!
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An optical frequency comb generator emits a beam of light, whose electric field (which we present
in a simplified manner) has the form E(t) = e−iωctp(t). Here e−iωct represents the oscillation of a
‘carrier signal’, with carrier frequency ωc. It is modulated by a pulse train p(t), a precisely periodic
series of short pulses (with pulse duration/period = T/τ � 10−6). The pulse train and the carrier
signal are typically ‘incommensurate’: the carrier frequency ωc typically lies between two teeth
(rather than on a tooth) of the frequency comb generated by the pulse train. It thus has the generic
form ωc = Nωr + ωoff, with an ‘offset frequency’ ωoff ∈ (0, ωr). Due to this incommensurability,
the combined signal E(t) is not periodic: the phase of the carrier signal relative to the pulse train
shifts or ‘slips’ from one pulse to the next by an amount ∆φ = ωoffτ < 2π.

(d) Show that the Fourier spectrum of E(t) forms a frequency comb, whose ‘center’ has been
shifted from 0 to ωc, and whose teeth are shifted relative to the Fourier frequencies ωn by the
offset frequency ωoff:

Ẽ(ω) = ωr
∑
n

f̃(ωn−N)δ(ω − ωn − ωoff) . (2)

Precise frequency measurements using a frequency comb require accurate knowledge of the teeth
positions, Ωn = nωr + ωoff, and hence also of ωr and ωoff. The frequency ωr = 2π/τ is typically
very stable, but ωoff undergoes slow, irregular fluctuations as function of time. Trying to measure
frequencies with such a comb would be like trying to measure distances with a shaking ruler. The
key insight, due to Hänsch, that made it possible to ‘control this shaking’ is that ωoff can be
measured accurately if the teeth span at least a full octave. In this case, a tooth near the lower
end of the comb, with frequency Ωn, has the property that twice its frequency again lies within
the range of the comb. By doubling Ωn (a standard procedure in optics) and superimposing the
resulting signal with the comb, one thus obtains beats between 2Ωn and a tooth of frequency Ω2n.
The beat frequency is 1

2
(2Ωn−Ω2n) = 1

2
[2(nωr + ωoff)− (2nωr + ωoff)] = 1

2
ωoff. By observing the

beat signal one may thus monitor ωoff and stabilize its value via a feedback loop. This ultimately
allows a frequency comb to be stabilized to a precision of one part in 1015.

So far, we have assumed the pulse train p(t) to be strictly periodic. Deviations from perfect
periodicity cause the teeth of the frequency comb to be broadened. To illustrate this, let us
consider a ‘truncated’ pulse train existing only for a finite amount of time, of the form pγ(t) =∑

n∈Z f(t − nτ)e−|n|τγ, with τγ � 1. The factor e−|n|τγ suppresses the contributions for which
|n| & 1/(τγ)� 1, thereby ‘truncating’ the series.

(e) Compute the Fourier transform p̃γ(ω) of the truncated pulse train. What shape do the individu-
al teeth have? Show that their width is inversely proportional to the ‘duration’ of the truncated
pulse chain — Fourier reciprocity again! Hint: To compute p̃γ(ω) =

�∞
−∞ dt eiωtpγ(t), express

pγ(t) in terms of the Fourier representation of f(t). Use the substitution t′ = t − nτ in the
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time integral to arrive at an expression of the form p̃γ(ω) = S(ω)f̃(ω), where S(ω) is given
by a geometries series. Evaluate this series and analyze the shape of the peak at ω ' mωr in
the limit γτ � 1.

To summarize, we have encountered the following general relationships, which, remarkably, all
come into play in the frequency comb measuring technique: (a) A periodic function p(t) has a
discrete Fourier series representation, with discrete Fourier frequencies ωn. Therefore its Fourier
integral representation, p̃(ω), must consist of a series of δ functions at these discrete frequencies —
forming a frequency comb. (b) For a periodic function of the form p(t) =

∑
n f(t−nτ), where f(t)

is some seed function, the envelope of the frequency comb corresponds to the Fourier transform of
the seed function, p̃m = f̃(ωm). (c) Fourier reciprocity applies: if the seed function f(t) describes a
peak, then the narrower this peak, the broader the peak described by its Fourier transform, f̃(ωm),
and hence the broader the envelope of the frequency comb. (d) When the periodic function p(t)
is multiplied with a periodic carrier signal whose frequency is incommensurate with that of the
comb, then the comb is shifted by an offset frequency. (e) If p(t) is truncated to lie within some
bounded time interval, then the teeth of the frequency comb are broadened — Fourier reciprocity
again.

[Total Points for Optional Problems: 9]
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