

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR PHYSIK

R: RECHENMETHODEN FÜR PHYSIKER, WISE 2021/22

Dozent: Jan von Delft

ÜBUNGEN: ANXIANG GE, NEPOMUK RITZ

https://moodle.lmu.de → Kurse suchen: 'Rechenmethoden'

Sheet 11: Delta Function and Fourier Series

Posted: Mo 10.01.22 Central Tutorial: Th 13.01.22 Due: Th 20.01.22, 14:00 (b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 1, 3(a), 4, 5. Videos exist for example problems 4 (C6.2.1), 5 (C6.3.5).

Example Problem 1: Integrals with δ function [3]

Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](M); (d)[1](M); (e)[0.1](E).

Calculate the following integrals (with $a \in \mathbb{R}$):

(a)
$$I_1(a) = \int_{-\infty}^{\infty} dx \, \delta(x - \pi) \sin(ax)$$

(b)
$$I_2(a) = \int_{\mathbb{R}^3} \mathrm{d}x^1 \mathrm{d}x^2 \mathrm{d}x^3 \, \delta(\mathbf{x} - \mathbf{y}) \, \|\mathbf{x}\|^2 \,, \quad \text{with } \mathbf{y} = (a, 1, 2)^T$$

(c)
$$I_3(a) = \int_0^a dx \, \delta(x-\pi) \frac{1}{a + \cos^2(x/2)}$$

(d)
$$I_4(a) = \int_0^3 dx \, \delta(x^2 - 6x + 8) \sqrt{e^{ax}}$$

(e)
$$I_5(a) = \int_{\mathbb{R}^2} dx^1 dx^2 \, \delta(\mathbf{x} - a\mathbf{y}) \, \mathbf{x} \cdot \mathbf{y}$$
, with $\mathbf{y} = (1, 3)^T$. Remark: $\delta(\mathbf{x}) = \delta(x^1) \delta(x^2)$.

[Check your results: $I_1(\frac{1}{2})=1$, $I_2(1)=6$, $I_3(\pi)=\frac{1}{2\pi}$, $I_4(\ln 2)=1$, $I_5(1)=10$.]

Example Problem 2: Lorentz representation of the Dirac δ -function [4] Points: [4](M).

Explain why in the limit $\epsilon \to 0^+$, the Lorentz peak function $\delta^\epsilon(x)$ given below is a representation of the Dirac delta function $\delta(x)$. To this end, compute (i) the height, (ii) the width $x_{\rm w}$ (defined by $\delta^\epsilon(x_{\rm w}) = \frac{1}{2}\delta^\epsilon(0)$, $x_{\rm w} > 0$) and (iii) the area of the peak. How do these quantities behave for $\epsilon \to 0^+$? Furthermore, calculate the functions (iv) $\Theta^\epsilon(x) = \int_{-\infty}^x {\rm d}x' \delta^\epsilon(x')$ and (v) $\delta'^\epsilon(x) = \frac{{\rm d}}{{\rm d}x}\delta^\epsilon(x)$. Sketch Θ^ϵ , $\epsilon\delta^\epsilon$ and $\epsilon^2\delta'^\epsilon$ as functions of x/ϵ in three separate sketches (one beneath the other, with aligned y-axes and the same scaling for the x/ϵ -axes).

$$\text{Lorentz-Peak: } \delta^{\epsilon}(x) = \frac{\epsilon/\pi}{x^2 + \epsilon^2} \, .$$

Hint: When calculating the peak weight, use the substitution $x = \epsilon \tan y$.

Remark: Lorentzian functions are common in physics. Example: the energy spectrum of a discrete quantum state, which is weakly coupled to the environment, has the form of a Lorentzian function, the width of which is determined by the strength of the coupling to the environment. As the coupling strength approaches zero, we obtain a δ peak.

Example Problem 3: Series representation of hyperbolic functions [3]

Points: [3](E).

Compute the following series for $y \in \mathbb{R}^+$, by expressing each as a geometric series in $\omega \equiv e^{-y}$.

(a)
$$\sum_{n=0}^{\infty} e^{-y(n+1/2)}$$
,

(a)
$$\sum_{n=0}^{\infty} e^{-y(n+1/2)}$$
, (b) $\sum_{n=0}^{\infty} (-1)^n e^{-y(n+1/2)}$, (c) $\sum_{n \in \mathbb{Z}} e^{-y|n|}$.

(c)
$$\sum_{n\in\mathbb{Z}} e^{-y|n|}$$

Example Problem 4: Fourier series of the sawtooth function [2]

Points: [2](M).

Let f(x) be a sawtooth function, defined by f(x) = x for $-\pi < x < \pi$, $f(\pm \pi) = 0$ and $f(x+2\pi)=f(x)$. Calculate the Fourier coefficients \tilde{f}_n in the representation $f(x)=\frac{1}{L}\sum_n e^{\mathrm{i}k_nx}\tilde{f}_n$. How should k_n and L be chosen? Sketch the function f(x), as well as the sum of the n=1 and n=-1 terms of the Fourier series (i.e. the first term of the corresponding sine series). [Check your result: $\tilde{f}_6 = \frac{1}{3}i\pi$.]

Example Problem 5: Parseval's identity and convolution [7]

Points: (a)[3](M); (b)[2](M); (c)[2](M).

Let f(x) be a sawtooth function, defined by f(x) = x for $-\pi < x < \pi$, $f(\pm \pi) = 0$ and $f(x+2\pi)=f(x)$. In the Fourier representation $f(x)=\frac{1}{2\pi}\sum_{n\in\mathbb{Z}}\mathrm{e}^{\mathrm{i}nx}\tilde{f}_n$, its Fourier coefficients are $\tilde{f}_0 = 0$, $\tilde{f}_{n \neq 0} = 2\pi i (-1)^n/n$. (See example problem 4.) Let $g(x) = \sin x$.

- (a) Using this concrete example, check that Parseval's identity holds, by computing both the integral $\int_{-\pi}^{\pi} \mathrm{d}x \, \overline{f}(x) g(x)$ and the sum $(1/2\pi) \sum_n \tilde{f}_n \, \tilde{g}_n$ explicitly.
- (b) Prove the famous identity $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, by computing the integral $\int_{-\pi}^{\pi} \mathrm{d}x \, f^2(x)$ in two ways: first, by direct integration, and second, by expressing it as a sum over Fourier modes using Parseval's identity.
- (c) Calculate the convolution (f * g)(x) both by directly computing the convolution integral and by using the convolution theorem and a summation of Fourier coefficients.

[Total Points for Example Problems: 19]

Homework Problem 1: Integrals with δ function [4]

Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](M); (d)[1](M); (e)[1](A); (f)[0.5](E).

Calculate the following integrals (with $a \in \mathbb{R}$, $n \in \mathbb{N}$):

(a)
$$I_1(a) = \int_1^4 dx \, \delta(x-2) \, (a^x+3)$$

(b)
$$I_2(a) = \int_{\mathbb{R}^2} dx^1 dx^2 \, \delta(\mathbf{x} - \mathbf{y}) \, (x^1 + x^2)^2 \, e^{3-x^1}$$
, with $\mathbf{y} = (3, a)^T$

(c)
$$I_3(a) = \int_{-1}^1 dx \sqrt{2 + 2x} \, \delta(ax - 2), \text{ with } a \neq 0$$

(d)
$$I_4(a) = \int_{-\infty}^{\infty} dx \, \delta(3^{-x} - 9)(1 - x^a)$$

(e)
$$I_5(n) = \int_{-\pi/2}^{9\pi/2} dx \cos(nx) \delta(\sin x)$$

(f)
$$I_6(a) = \int_{\mathbb{R}^2} \mathrm{d}x^1 \mathrm{d}x^2 \, \delta(\mathbf{x} - \mathbf{y}) \mathrm{e}^{\|\mathbf{x}\|^2}$$
, with $\mathbf{y} = (a, -a)^T$

[Check your results: $I_1(3)=12$, $I_2(-5)=4$, $I_3(2)=\frac{1}{2}$, $I_4(3)=\frac{1}{\ln 3}$, $I_5(7)=1$, $I_6(\frac{1}{\sqrt{2}})=e$.]

Homework Problem 2: Representations of the Dirac δ -function [4] Points: [4](M).

Explain why in the limit $\epsilon \to 0^+$, the peak-shaped function $\delta^\epsilon(x)$ given below is a representation of the Dirac delta function $\delta(x)$. To this end, compute (i) the height, (ii) the width $x_{\rm w}$ (defined by $\delta^\epsilon(x_{\rm w}) = \frac{1}{2}\delta^\epsilon(0)$, $x_{\rm w} > 0$) and (iii) the area of the peak. How do these quantities behave for $\epsilon \to 0^+$? Furthermore, calculate the functions (iv) $\Theta^\epsilon(x) = \int_{-\infty}^x {\rm d}x' \delta^\epsilon(x')$ and (v) $\delta'^\epsilon(x) = \frac{{\rm d}}{{\rm d}x}\delta^\epsilon(x)$. Sketch Θ^ϵ , $\epsilon\delta^\epsilon$ and $\epsilon^2\delta'^\epsilon$ as functions of x/ϵ in three separate sketches (one beneath the other, with aligned y-axes and the same scaling for the x/ϵ -axes).

Derivative of the Fermi function: $\delta^\epsilon(x) = \frac{1}{4\epsilon} \frac{1}{\cosh^2[x/(2\epsilon)]} \,.$

Hint: When calculating the peak weight, use the substitution $y = \tanh[x/(2\epsilon)]$.

Remark: In condensed matter physics and nuclear physics the function $\delta^\epsilon(x)$ plays an important role: it arises as the derivative of the so-called **Fermi function**, $f(E) = \frac{1}{\mathrm{e}^{E/k_\mathrm{B}T}+1} = \Theta^{k_\mathrm{B}T}(-E)$, with $-\frac{\mathrm{d}}{\mathrm{d}E}f(E) = \delta^{k_\mathrm{B}T}(E)$, where f(E) is the occupation probability of a fermionic single-particle state with energy E as function of the system's temperature T (k_B is the so-called Boltzmann constant). In the limit of zero temperature, $T \to 0$, the derivative of the Fermi function reduces to a Dirac δ -function.

Homework Problem 3: Series representation of the periodic δ function [5]

Points: (a)[0.5](E); (b)[0.5](M); (c)[1.5](A); (d)[0.5](E); (e)[1](A); (f)[0.5](E); (g)[0.5](E)

Show that the function $\delta^{\epsilon}(x)$, defined by

$$\delta^{\epsilon}(x) = \frac{1}{L} \sum_{k} e^{ikx - \epsilon|k|} , \quad k = 2\pi n/L, \quad n \in \mathbb{Z} , \quad x, \epsilon, L \in \mathbb{R} , \quad 0 < \epsilon \ll L ,$$
 (1)

has the following properties:

(a)
$$\delta^{\epsilon}(x) = \delta^{\epsilon}(x+L)$$
.

(b)
$$\int_{-L/2}^{L/2} \mathrm{d}x \, \delta^{\epsilon}(x) = 1 \; . \quad \textit{Hint: Treat } k = 0 \; \text{and} \; k \neq 0 \; \text{separately in} \; \sum_{k}. \tag{3}$$

(c)
$$\delta^{\epsilon}(x) = \frac{1}{2L} \left[\frac{1+w}{1-w} + \frac{1+\overline{w}}{1-\overline{w}} \right] = \frac{1}{L} \frac{1 - e^{-4\pi\epsilon/L}}{1 + e^{-4\pi\epsilon/L} - 2e^{-2\pi\epsilon/L} \cos(2\pi x/L)},$$
 (4)

where $w=\mathrm{e}^{2\pi(\mathrm{i}x-\epsilon)/L}$ and $\overline{w}=\mathrm{e}^{2\pi(-\mathrm{i}x-\epsilon)/L}.$

Hint: Write out the sum in Eq. (1) as a geometric series in powers of w and \overline{w} .

- (d) $\lim_{\epsilon \to 0} \delta^{\epsilon}(x) = 0$ for $x \neq mL$, with $m \in \mathbb{Z}$. Hint: Start from Eq. (4).
- (e) $\delta^{\epsilon}(x) \simeq \frac{\epsilon/\pi}{\epsilon^2 + x^2}$ for $|x|/L \ll 1$ and $\epsilon/L \ll 1$.

Hint: Taylor expand the numerator in Eq. (4) up to first order in $\tilde{\epsilon} = 2\pi\epsilon/L$, and the denominator up to second order in $\tilde{\epsilon}$ and $\tilde{x} = 2\pi x/L$.

- (f) Sketch the function $\delta^{\epsilon}(x)$ qualitatively for $\epsilon/L \ll 1$ and $x \in [-\frac{7}{2}L, \frac{7}{2}L]$.
- (g) Deduce that in the limit of $\epsilon \to 0$, $\delta^{\epsilon}(x)$ represents a periodic δ function, with

$$\delta^{0}(x) = \frac{1}{L} \sum_{k} e^{ikx} = \sum_{m \in \mathbb{Z}} \delta(x - mL) .$$

Homework Problem 4: Fourier series [4]

Points: (a)[2](E); (b)[2](M)

Determine the Fourier series for the following periodic functions, i.e. calculate the Fourier coefficients \tilde{f}_n in the representation $f(x) = \frac{1}{L} \sum_n \mathrm{e}^{\mathrm{i} k_n x} \tilde{f}_n$. How should k_n and L be chosen in each case? Sketch the functions first.

[Check your results: (a) $\tilde{f}_3 = -\frac{2}{35}$, (b) $\tilde{f}_3 = \frac{2}{9}(2 - 9i\pi)$.]

Homework Problem 5: Computing an infinite series using the convolution theorem [1] Points: (a)[0.5](E); (b)[0.5](M); (c)[2](A,Bonus)

This problem illustrates how a complicated sum may be calculated explicitly using the convolution theorem.

Consider the periodic function $f_{\gamma}(t)=f_{\gamma}(0)\mathrm{e}^{\gamma t}$ for $t\in[0,\tau)$ and $f(t+\tau)=f(t)$, with $f_{\gamma}(0)=1/(\mathrm{e}^{\gamma\tau}-1)$. Take both γ and τ to be positive numbers, so that $f_{\pm\gamma}(0)\geqslant0$.

(a) Consider a Fourier series representation of $f_{\gamma}(t)$ of the following form:

$$f_{\gamma}(t) = \frac{1}{\tau} \sum_{\omega_n} e^{-i\omega_n t} \tilde{f}_{\gamma,n}, \qquad \tilde{f}_{\gamma,n} = \int_0^{\tau} dt e^{i\omega_n t} f_{\gamma}(t), \quad \text{with} \quad \omega_n = 2\pi n/\tau, \quad n \in \mathbb{Z}.$$

Show that the Fourier coefficients are given by $\tilde{f}_{\gamma,n}=1/(\mathrm{i}\omega_n+\gamma)$.

(b) Use this result and the convolution theorem to express the following series as a convolution of f_{γ} and $f_{-\gamma}$:

$$S(t) = \sum_{n=-\infty}^{\infty} \frac{e^{-i\omega_n t}}{\omega_n^2 + \gamma^2} = -\tau \int_0^{\tau} dt' f_{\gamma}(t - t') f_{-\gamma}(t') .$$
 (5)

(c) Sketch the functions $f_{\gamma}(t-t')$ and $f_{-\gamma}(t')$ occurring in the convolution theorem as functions of t', for $t' \in [-\tau, 2\tau]$. Assume $0 \le t \le \tau$ and show that the convolution integral (5) is given by the following expression:

$$S(t) = \frac{\tau \left[\sinh \left(\gamma \left(t - \tau \right) \right) - \sinh \left(\gamma t \right) \right]}{2\gamma \left[1 - \cosh \left(\gamma \tau \right) \right]}.$$

Hint: The integral $\int_0^\tau \mathrm{d}t'$ involves an interval of t' values for which t-t' lies outside of $[0,\tau)$. It is therefore advisable to split the integral into two parts, with $\int_0^t \mathrm{d}t'$ and $\int_t^\tau \mathrm{d}t'$.

[Total Points for Homework Problems: 18]