MÜNCHEN

Fakultät für Physik
R: Rechenmethoden für Physiker, WiSe 2021/22
Dozent: Jan von Delft
Übungen: Anxiang Ge, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 09: Taylor Series. Differential Equations I

Posted: Mo 13.12.21 Central Tutorial: Fr(!) 17.12.21 Due: Th 23.12.21, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 2, 3, 5.

Videos exist for example problems 4 (L8.3.1).

Example Problem 1: Addition theorems for sine and cosine [1]

Points: (a)[0.5](E); (b)[0.5](E).
Prove the addition theorems for sine and cosine, for any $a, b \in \mathbb{C}$:
(a) $\cos (a+b)=\cos a \cos b-\sin a \sin b$,
(b) $\sin (a+b)=\cos a \sin b+\sin a \cos b$.

Hint: Use the Euler formula on both sides of $\mathrm{e}^{\mathrm{i}(a+b)}=\mathrm{e}^{\mathrm{i} a} \mathrm{e}^{\mathrm{i} b}$.

Example Problem 2: Taylor expansions [2]

Points: (a)[1](E); (b)[1](E); (c)[1](M,Bonus).
Taylor expand the following functions. You may choose to either calculate the coefficients of the Taylor series by taking the corresponding derivatives, or to use the known Taylor expansions of $\sin (x), \cos (x), \frac{1}{1-x}$ and $\ln (1+x)$.
(a) $f(x)=\frac{1}{1-\sin (x)}$ around $x=0$, up to and including fourth order.
(b) $g(x)=\sin (\ln (x))$ around $x=1$, up to and including second order.
(c) $h(x)=\mathrm{e}^{\cos x}$ around $x=0$, up to and including second order.
[Check your results: the highest-order term requested in each case is: (a) $\frac{2}{3} x^{4}$, (b) $-\frac{1}{2}(x-1)^{2}$, (c) $-\frac{1}{2} e x^{2}$.]

Example Problem 3: Functions of matrices [4]

Points: (a)[0.5](E); (b)[1](E); (c)[1](M); (d)[1.5](M).
The purpose of this problem is to gain familiarity with the concept of a 'function of a matrix'.
Let f be an analytic function, with Taylor series $f(x)=\sum_{l=0}^{\infty} c_{l} x^{l}$, and $A \in \operatorname{mat}(\mathbb{R}, n, n)$ a square matrix, then $f(A)$ is defined as $f(A)=\sum_{l=0}^{\infty} c_{l} A^{l}$, with $A^{0}=\mathbb{1}$.
(a) A matrix A is called 'nilpotent' if an $l \in \mathbb{N}$ exists such that $A^{l}=0$. Then the Taylor series of $f(A)$ ends after l terms. Example with $n=2$: Compute e^{A} for $A=\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$.
(b) If $A^{2} \propto \mathbb{1}$, then $A^{2 m} \propto \mathbb{1}$ and $A^{2 m+1} \propto A$, and the Taylor series for $f(A)$ has the form $f_{0} \mathbb{1}+f_{1} A$. Example with $n=2$: Compute e^{A} explicitly for $A=\theta \tilde{\sigma}$, with $\tilde{\sigma}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. [Check your result: if $\theta=-\frac{\pi}{6}$, then $\mathrm{e}^{A}=\frac{1}{2}\left(\begin{array}{cc}\sqrt{3} & 1 \\ -1 & \sqrt{3}\end{array}\right)$.]
(c) If A is diagonalizable, then $f(A)$ can be expressed in terms of its eigenvalues. Let T be the similarity transformation that diagonalizes A, with diagonal matrix $D=T^{-1} A T$ and diagonal elements $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Show that the following relations then hold:

$$
f(A)=T f(D) T^{-1}=T\left(\begin{array}{cccc}
f\left(\lambda_{1}\right) & 0 & \cdots & 0 \\
0 & f\left(\lambda_{2}\right) & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & f\left(\lambda_{n}\right)
\end{array}\right) T^{-1}
$$

Remark: Both equalities are to be established independently of each other.
(d) Now compute the matrix function e^{A} from (b) using diagonalization, as in (c).

Example Problem 4: Exponential representation of 2-dimensional rotation matrix [1]

 Points: (a)[0.5](E); (b)[0.5](E).The matrix $R_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \left.\begin{array}{c}\cos \theta\end{array}\right) \text { describes a rotation by the angle } \theta \text { in } \mathbb{R}^{2} \text {. Use the following 'infinite }{ }^{2} \text {. }\end{array}\right.$ product decomposition' to find an exponential representation of this matrix:
(a) A rotation by the angle θ can be represented as a sequence of m rotations, each by the angle $\theta / m: R_{\theta}=\left[R_{(\theta / m)}\right]^{m}$. For $m \rightarrow \infty$ we have $\theta / m \rightarrow 0$, thus the matrix $R_{(\theta / m)}$ can be written as $R_{(\theta / m)}=\mathbb{1}+(\theta / m) \tilde{\sigma}+\mathcal{O}\left((\theta / m)^{2}\right)$ Find the matrix $\tilde{\sigma}$.
(b) Now use the identity $\lim _{m \rightarrow \infty}[1+x / m]^{m}=\mathrm{e}^{x}$ to show that $R_{\theta}=\mathrm{e}^{\theta \tilde{\sigma}}$. Remark: Justification for this identity: We have $\mathrm{e}^{x}=\left[\mathrm{e}^{x / m}\right]^{m}=\left[1+x / m+\mathcal{O}\left((x / m)^{2}\right)\right]^{m}$. In the limit $m \rightarrow \infty$ the terms of order $\mathcal{O}\left((x / m)^{2}\right)$ can be neglected.
[Check your result: does the Taylor series for $\mathrm{e}^{\theta \tilde{\sigma}}$ reproduce the matrix for R_{θ} given above?]
Remark: The procedure illustrated here, by which an infinite sequence of identical, infinitesimal transformations is exponentiated, is a cornerstone of the theory of 'Lie groups', whose elements are associated with continuous parameters (here the angle θ). In that context the Hermitian matrix $\mathrm{i} \tilde{\sigma}$ is called the 'generator' of the rotation.

Example Problem 5: Separation of variables [2]

Points: (a)[1](E); (b)[1](E).
A first-order differential equation is called autonomous if it has the form $\dot{x}=f(x)$, i.e. the right hand side is time independent (non-autonomous equations have $\dot{x}=f(x, t)$). Such an equation can the solved by separation of variables.
(a) Consider the autonomous differential equation $\dot{x}=x^{2}$ for the function $x(t)$. Solve it by separation of variables for two different initial conditions: (i) $x(0)=1$ and (ii) $x(2)=-1$. [Check your results: (i) $x(-2)=\frac{1}{3}$, and (ii) $x(2)=-1$.]
(b) Sketch your solutions qualitatively. Convince yourself that your sketches for the function $x(t)$ and its derivative $\dot{x}(t)$ satisfy the relation specified by the differential equation.

Example Problem 6: Separation of variables: barometric formula [1]

Points: [1](E).

The standard barometric formula for atmospheric pressure, $p(x)$, as a function of the height, x, is given by: $\frac{\mathrm{d} p(x)}{\mathrm{d} x}=-\alpha \frac{p(x)}{T(x)}$. Solve this equation with initial value $p\left(x_{0}\right)=p_{0}$ for the case of a linear temperature gradient, $T(x)=T_{0}-b\left(x-x_{0}\right)$.
[Check your result: if $\alpha, b, T_{0}, x_{0}, p_{0}=1$, then $p(1)=1$.]

Example Problem 7: Linear homogeneous differential equation with constant coefficients [2]

Points: [2](E).
Use an exponential ansatz to solve the following differential equation:

$$
\dot{\mathbf{x}}(t)=A \cdot \mathbf{x}(t), \quad A=\frac{1}{5}\left(\begin{array}{rr}
3 & -4 \\
-4 & -3
\end{array}\right), \quad \mathbf{x}(0)=(2,1)^{T} .
$$

[Total Points for Example Problems: 13]

Homework Problem 1: Powers of Sine and Cosine [1]

Points: (a)[0.5](E); (b)[0.5](E)
Use the Euler-de Moivre identity to prove the following identities, for any $a \in \mathbb{C}$:
(a) $\cos ^{2} a=\frac{1}{2}+\frac{1}{2} \cos (2 a)$,
$\sin ^{2} a=\frac{1}{2}-\frac{1}{2} \cos (2 a)$.
(b) $\cos ^{3} a=\frac{3}{4} \cos a+\frac{1}{4} \cos (3 a), \quad \sin ^{3} a=\frac{3}{4} \sin a-\frac{1}{4} \sin (3 a)$.

Homework Problem 2: Taylor expansions [3]

Points: (a)[1](E); (b)[1](E); (c)[1](M)
Taylor expand the following functions. You may choose to either calculate the coefficients of the Taylor series by taking the corresponding derivatives, or to use the known Taylor expansions of $\sin (x), \cos (x), \frac{1}{1-x}$ and $\ln (1+x)$.
(a) $f(x)=\frac{\cos (x)}{1-x}$ around $x=0$. Keep all terms up to and including third order.
(b) $g(x)=\mathrm{e}^{\cos \left(x^{2}+x\right)}$ about $x=0$, up to and including third order.
(c) $h(x)=\mathrm{e}^{-x} \ln (x)$ around $x=1$, up to and including third order.
[Check your results: the highest-order term requested in each case is: (a) $\frac{1}{2} x^{3}$, (b) -e x^{3}, (c) $\frac{4}{3} \mathrm{e}^{-1}(x-1)^{3}$.]

Homework Problem 3: Functions of matrices [3]

Points: (a)[0.5](E); (b)[1](E); (c)[1.5](M); (d)[1](A,Bonus).
Express each of the following matrix functions explicitly in terms of a matrix:
(a) e^{A}, with $A=\left(\begin{array}{lll}0 & a & 0 \\ 0 & 0 & b \\ 0 & 0 & 0\end{array}\right)$.
(b) e^{B}, with $B=b \sigma_{1}$ and $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, using the Taylor series of the exponential function. [Check your result: if $b=\ln 2$, then $\mathrm{e}^{B}=\frac{1}{4}\left(\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right)$.]
(c) The same function as in (b), now by diagonalizing B.
(d) e^{C}, with $C=\mathrm{i} \theta \Omega$, where $\Omega=n_{j} S_{j}$, while $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)^{T}$ is a unit vector $(\|\mathbf{n}\|=1)$ and S_{j} are the spin- $\frac{1}{2}$ matrices: $S_{1}=\frac{1}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), S_{2}=\frac{1}{2}\left(\begin{array}{rr}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right), S_{3}=\frac{1}{2}\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$.
Hint: Start by computing Ω^{2} (for this, the property $S_{i} S_{j}+S_{j} S_{i}=\frac{1}{2} \delta_{i j} \mathbb{1}$ of the spin- $\frac{1}{2}$ matrices is useful), and then use the Taylor series of the exponential function.
[Check your result: if $\theta=-\frac{\pi}{2}$ and $n_{1}=-n_{2}=n_{3}=\frac{1}{\sqrt{3}}$, then $\mathrm{e}^{C}=\frac{1}{\sqrt{6}}\left(\begin{array}{cc}\sqrt{3}-\mathrm{i} & 1-\mathrm{i} \\ -1-\mathrm{i} & \sqrt{3}+\mathrm{i}\end{array}\right)$.]
Remark: The exponential form e^{C} is a representation of $\mathrm{SU}(2)$ transformations, the group of all special unitary transformations in \mathbb{C}^{2}. Its elements are characterized by three continuous real parameters (here θ, n_{1} and n_{2}, with $n_{3}=\sqrt{1-n_{1}^{2}-n_{2}^{2}}$). The S_{j} matrices are 'generators' of these transformations; they satisfy the $\mathrm{SU}(2)$ algebra, i.e. their commutators yield $\left[S_{i}, S_{j}\right]=$ $\mathrm{i} \epsilon_{i j k} S_{k}$.

Homework Problem 4: Exponential representation 3-dimensional rotation matrix [4]

Points: (a)[1](E); (b)[1](M); (c)[1](M); (d)[1](A)
$\ln \mathbb{R}^{3}$, a rotation by an angle θ, about an axis whose direction is given by the unit vector $\mathbf{n}=$ $\left(n_{1}, n_{2}, n_{3}\right)$, is represented by a 3×3 matrix that has the following matrix elements:

$$
\begin{equation*}
\left(R_{\theta}(\mathbf{n})\right)_{i j}=\delta_{i j} \cos \theta+n_{i} n_{j}(1-\cos \theta)-\epsilon_{i j k} n_{k} \sin \theta \quad\left(\epsilon_{i j k}=\text { Levi-Civita symbol }\right) . \tag{1}
\end{equation*}
$$

The goal of the following steps is to supply a justification for Eq. (1).
(a) Consider first the three matrices $R_{\theta}\left(\mathbf{e}_{i}\right)$ for rotations by the angle θ about the three coordinate axes \mathbf{e}_{i}, with $i=1,2,3$. Elementary geometrical considerations yield:

$$
R_{\theta}\left(\mathbf{e}_{1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right), \quad R_{\theta}\left(\mathbf{e}_{2}\right)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right), \quad R_{\theta}\left(\mathbf{e}_{3}\right)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

For each of these matrices, use an infinite product decomposition of the form $R_{\theta}(\mathbf{n})=$ $\lim _{m \rightarrow \infty}\left[R_{\theta / m}(\mathbf{n})\right]^{m}$ to obtain an exponential representation of the form $R_{\theta}\left(\mathbf{e}_{i}\right)=\mathrm{e}^{\theta \tau_{i}}$. Find the three 3×3 matrices τ_{1}, τ_{2} and τ_{3}. [Check your results: The τ_{i} commutators yield $\left[\tau_{i}, \tau_{j}\right]=$ $\epsilon_{i j k} \tau_{k}$. This is the so-called $\mathrm{SO}(3)$ algebra, which underlies the representation theory of 3dimensional rotations. Moreover, $\tau_{1}^{2}+\tau_{2}^{2}+\tau_{3}^{2}=-2 \mathbb{1}$.]
(b) Now consider a rotation by the angle θ about an arbitrary axis \mathbf{n}. To find an exponential representation for it using an infinite product decomposition, we need an approximation for $R_{\theta / m}(\mathbf{n})$ up to first order in the small angle θ / m. It has the following form:

$$
\begin{equation*}
R_{\theta / m}(\mathbf{n})=R_{n_{1} \theta / m}\left(\mathbf{e}_{1}\right) R_{n_{2} \theta / m}\left(\mathbf{e}_{2}\right) R_{n_{3} \theta / m}\left(\mathbf{e}_{3}\right)+\mathcal{O}\left((\theta / m)^{2}\right) \tag{2}
\end{equation*}
$$

Intuitive justification: If the rotation angle θ / m is sufficiently small, the rotation can be performed in three substeps, each about a different direction \mathbf{e}_{i}, by the 'partial' angle $n_{i} \theta / m$. The prefactors n_{i} ensure that for $\mathbf{n}=\mathbf{e}_{i}$ (rotation about a coordinate axis i) only one of the three factors in (2) is different from $\mathbb{1}$, namely the one that yields $R_{\theta / m}\left(\mathbf{e}_{i}\right)$; for example, for $\mathbf{n}=\mathbf{e}_{2}=(0,1,0)^{T}: R_{0 \theta / m}\left(\mathbf{e}_{1}\right) R_{1 n_{2} \theta / m}\left(\mathbf{e}_{2}\right) R_{0 \theta / m}\left(\mathbf{e}_{3}\right)=R_{n_{2} \theta / m}\left(\mathbf{e}_{2}\right)$.

Show that such a product decomposition of $R_{\theta}(\mathbf{n})$ yields the following exponential representation:

$$
R_{\theta}(\mathbf{n})=\mathrm{e}^{\theta \Omega}, \quad \Omega=n_{i} \tau_{i}=\left(\begin{array}{rrr}
0 & -n_{3} & n_{2} \tag{3}\\
n_{3} & 0 & -n_{1} \\
-n_{2} & n_{1} & 0
\end{array}\right), \quad(\Omega)_{i j}=-\epsilon_{i j k} n_{k}
$$

(c) Show that Ω, the 'generator' of the rotation, has the following properties:

$$
\begin{equation*}
\left(\Omega^{2}\right)_{i j}=n_{i} n_{j}-\delta_{i j}, \quad \Omega^{l}=-\Omega^{l-2} \quad \text { for } 3 \leq l \in \mathbb{N} . \quad \text { [Cayley-Hamilton theorem] } \tag{4}
\end{equation*}
$$

Hint: First compute Ω^{2} and Ω^{3}, then the form of $\Omega^{l>3}$ will be obvious.
(d) Show that the Taylor expansion of $R_{\theta}(\mathbf{n})=\mathrm{e}^{\theta \Omega}$ yields the following expression,

$$
\begin{equation*}
R_{\theta}(\mathbf{n})=\mathbb{1}+\Omega \sin \theta+\Omega^{2}(1-\cos \theta) \tag{5}
\end{equation*}
$$

and that its matrix elements correspond to Eq. (1).

Homework Problem 5: Separation of variables [2]

Points: (a)[1](E); (b)[1](E)
(a) Consider the differential equation $y^{\prime}=-x^{2} / y^{3}$ for the function $y(x)$. Solve it by separation of variables, for two different initial conditions: (i) $y(0)=1$, and (ii) $y(0)=-1$. [Check your result: (i) $y(-1)=\left(\frac{7}{3}\right)^{1 / 4}$, (ii) $y(-1)=-\left(\frac{7}{3}\right)^{1 / 4}$.]
(b) Sketch your solutions qualitatively. Convince yourself that your sketches for the function $y(x)$ and its derivative $y^{\prime}(x)$ satisfy the relation specified by the differential equation.

Homework Problem 6: Separation of variables: bacterial culture with toxin [4]

Points: (a)[1](E); (b)[1](M); (c)[1](E); (d)[1](E)

A bacterial culture is exposed to the effects of a toxin. The death rate induced by the toxin is proportional to the number, $n(t)$, of bacteria still alive in the culture at a time t and the amount of toxin, $T(t)$, remaining in the system, which is given by $\tau n(t) T(t)$, where τ is a positive constant. On the other hand, the natural growth rate of the bacteria in the culture is exponential, i.e. it grows with a rate $\gamma n(t)$, with $\gamma>0$. In total, the number of bacteria in the culture is given by the differential equation

$$
\dot{n}=\gamma n-\tau n T(t), \quad \text { for } t \geq 0
$$

(a) Find the general solution to this linear DEQ, with initial condition $n(0)=n_{0}$.
(b) Assume now that the toxin is injected into the system at a constant rate $T(t)=a t$, where $a>0$. Use a qualitative analysis of the differential equation (i.e. without solving it explicitly) to show that the bacterial population grows up to a time $t=\gamma /(a \tau)$, and decreases thereafter. Furthermore, show that as $t \rightarrow \infty, n(t) \rightarrow 0$, i.e. the bacterial culture is practically wiped out.
(c) Now find the explicit solution, $n(t)$, to the differential equation and sketch $n(t)$ qualitatively as a function of t. Convince yourself that the sketch fulfils the relation between $n(t), \dot{n}(t)$ and t that is specified by the differential equation. [Check your result: if $\tau=1, a=1, n_{0}=1$ and $\gamma=\sqrt{\ln 2}$, then $n(\sqrt{\ln 2})=\sqrt{2}$.]
(d) Find the time t_{h} at which the number of bacteria in the culture drops to half the initial value. [Check your result: if $\tau=4, a=2 / \ln 2$ and $\gamma=3$, then $t_{h}=\ln 2$.]

Homework Problem 7: Linear homogeneous differential equation with constant coefficients [2]

Points: [2](E).
Use an exponential ansatz to solve the following differential equation:

$$
\dot{\mathbf{x}}(t)=A \cdot \mathbf{x}(t), \quad A=\frac{1}{2}\left(\begin{array}{rr}
3 & -1 \\
-1 & 3
\end{array}\right), \quad \mathbf{x}(0)=(1,3)^{T} .
$$

[Total Points for Homework Problems: 19]

