

 $https://moodle.lmu.de \rightarrow Kurse \ suchen: \ 'Rechenmethoden'$

Sheet 08: Matrices III: Unitary, Orthogonal, Diagonalization

Posted: Mo 06.12.21 Central Tutorial: Do 09.12.21 Due: Th 16.12.21, 14:00 (b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 2, 5, 6. Videos exist for example problems 2 (L7.3.1), 6 (C4.5.5).

Example Problem 1: Orthogonal and unitary matrices [2]

Points: (a)[1](E); (b)[0,5](E); (c)[0,5](E).

(a) Is the matrix A given below an orthogonal matrix? Is B unitary?

$$A = \begin{pmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{pmatrix}, \qquad B = \frac{1}{1-i} \begin{pmatrix} 2 & 1+i & 0 \\ 1+i & -1 & 1 \\ 0 & 2 & i \end{pmatrix}$$

- (b) Let $\mathbf{x} = (1,2)^T$. Calculate $\mathbf{a} = A\mathbf{x}$ explicitly, as well as the norm of \mathbf{x} and \mathbf{a} . Does the action of A on \mathbf{x} conserve its norm?
- (c) Let $y = (1, 2, i)^T$. Calculate b = By explicitly, and also the norm of y and b. Does the action of B on y conserve its norm?

Example Problem 2: Matrix diagonalization [4]

Points: (a)[1](E); (a)[1](E); (c)[2](E).

For each of the following matrices, find the eigenvalues λ_j and a set of eigenvectors \mathbf{v}_j . Also find a similarity transformation, T, and its inverse, T^{-1} , for which $T^{-1}AT$ is diagonal.

(a)
$$A = \begin{pmatrix} -1 & 6 \\ -2 & 6 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} -i & 0 \\ 2 & i \end{pmatrix}$ (c) $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2i & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

[Consistency checks: Do the eigenvalues satisfy $\sum_j \lambda_j = \operatorname{Tr} A$ and $\prod_j \lambda_j = \det A$? Does $T^{-1}AT$ yield a matrix, $D = \operatorname{diag}\{\lambda_j\}$, containing the eigenvalues on the diagonal, or conversely, does TDT^{-1} reproduce A? Which of the latter two checks do you find more efficient?]

Example Problem 3: Diagonalizing symmetric or Hermitian matrices [4] Points: (a)[1](E); (a)[1](E); (c)[2](E).

For each of the following matrices, find the eigenvalues λ_j and a set of eigenvectors \mathbf{v}_j . Also find a similarity transformation, T, and its inverse, T^{-1} , for which $T^{-1}AT$ is diagonal.

(a)
$$A = \begin{pmatrix} 3 & -4 \\ -4 & -3 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$, (c) $A = \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & 0 \\ i & 0 & 1 \end{pmatrix}$.

Hint: Each of these matrices is either symmetric or Hermitian. Therefore T can respectively be chosen to be either orthogonal or unitary, which facilitates computing its inverse using $T^{-1} = T^T$ or $T^{-1} = T^{\dagger}$. To achieve this, the columns of T, containing the eigenvectors \mathbf{v}_j , must form an orthonormal system w.r.t. to the real or complex scalar product, respectively. It is therefore advisable to normalize all eigenvectors as $\|\mathbf{v}_j\| = 1$. Moreover, recall that non-degenerate eigenvectors of symmetric or Hermitian matrices are guaranteed to be orthogonal.

[Consistency checks: Do the sum and the product of all eigenvalues yield Tr(A) and det(A), respectively? Let D be the diagonal matrix containing all eigenvalues; does TDT^{-1} yield A?]

Example Problem 4: Diagonalising a matrix that depends on a variable [2] Points: [2](M).

Consider the matrix $A = \begin{pmatrix} x & 1 & 0 \\ 1 & 2 & 1 \\ 3-x & -1 & 3 \end{pmatrix}$, which depends on the variable $x \in \mathbb{R}$. Find the eigenvalues λ_j and eigenvectors $\mathbf{v}_j \in \mathbb{R}^3$ of A as functions of x, with j = 1, 2, 3.

Hints: One of the eigenvalues is $\lambda = x$. (Of course the other results, too, can depend on x.) Avoid fully multiplying out the characteristic polynomial; try instead to directly bring it to a completely factorized form! [Check your results: for x = 4, two of the (unnormalized) eigenvectors are given by $(1, -2, -1)^T$ and $(1, -1, -2)^T$.]

Example Problem 5: Degenerate eigenvalue problem [3]

Points: [3](A).

Consider the matrix $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -2 \\ 2 & -2 & 5 \end{pmatrix}$. Find its eigenvalues λ_j , a set of *orthonormal* eigenvectors \mathbf{v}_j , and a similarity transformation T,

Find its eigenvalues λ_j , a set of *orthonormal* eigenvectors \mathbf{v}_j , and a similarity transformation T, as well as its inverse, T^{-1} , such that $T^{-1}AT$ is diagonal. *Hint:* One eigenvalue is $\lambda_1 = 1$. [Consistency checks: Do the sum and the product of all eigenvalues yield $\operatorname{Tr}(A)$ and $\det(A)$, respectively? Let D be the diagonal matrix containing all eigenvalues; does TDT^{-1} yield A?]

Example Problem 6: Multi-dimensional Gaussian integrals [4]

Points: (a)[2](M); (b)[1](E); (c)[1](E).

Multiple Gaussian integrals are integrals of the form

$$I = \int_{\mathbb{R}^n} \mathrm{d}x^1 \dots \mathrm{d}x^n \,\mathrm{e}^{-\mathbf{x}^T A \mathbf{x}} \,,$$

where $\mathbf{x} = (x^1, ..., x^n)^T$ and the matrix A is symmetric and positive definite (i.e. all eigenvalues of A are > 0). The characteristic property of this class of integrals is that the exponent is a 'quadratic form', i.e. a *quadratic* function of all integration variables. In general this function contains mixed terms, but these can be removed by a basis transformation: Let T be the similarity transformation that diagonalizes A, so that $D = T^{-1}AT$ is diagonal, with eigenvalues $\lambda_1, ..., \lambda_n$. Since A is symmetric, T can be chosen orthogonal, with $T^{-1} = T^T$ and det T = 1. Now define $\tilde{\mathbf{x}} = (\tilde{x}^1, ..., \tilde{x}^n)^T$ by $\tilde{\mathbf{x}} \equiv T^T \mathbf{x}$, then we have

$$\mathbf{x}^{T} A \mathbf{x} = \mathbf{x}^{T} T D T^{T} \mathbf{x} = \tilde{\mathbf{x}}^{T} D \, \tilde{\mathbf{x}} = \sum_{i} \lambda_{i} (\tilde{x}^{i})^{2} \,. \tag{1}$$

When expressed through the new variables $\tilde{\mathbf{x}}$, the exponent thus no longer contains any mixed terms, so that the Gaussian integral can be solved by the variable substitution $\mathbf{x} = T\tilde{\mathbf{x}}$:

$$I = \int_{\mathbb{R}^n} \mathrm{d}x^1 \dots \mathrm{d}x^n \,\mathrm{e}^{-\mathbf{x}^T A \mathbf{x}} = \int_{\mathbb{R}^n} \mathrm{d}\tilde{x}^1 \dots \mathrm{d}\tilde{x}^n \,J \,\mathrm{e}^{-\sum_i^n \lambda_n (\tilde{x}^i)^2} = \sqrt{\frac{\pi}{\lambda_1}} \dots \sqrt{\frac{\pi}{\lambda_n}} = \boxed{\sqrt{\frac{\pi^n}{\det A}}}$$

We have here exploited two facts: (i) Since $\partial x^i / \partial \tilde{x}^j = T^i_j$, the Jacobian determinant of the variable substitution equals the determinant of T and is thus equal to 1:

$$J = \left| \frac{\partial(x^1, \dots, x^n)}{\partial(\tilde{x}^1, \dots, \tilde{x}^n)} \right| = \left| \det \begin{pmatrix} \frac{\partial x^1}{\partial \tilde{x}^1} & \dots & \frac{\partial x^1}{\partial \tilde{x}^n} \\ \vdots & & \vdots \\ \frac{\partial x^n}{\partial \tilde{x}^1} & \dots & \frac{\partial x^n}{\partial \tilde{x}^n} \end{pmatrix} \right| = \left| \det \begin{pmatrix} T_1^1 & \dots & T_n^1 \\ \vdots & & \vdots \\ T_1^n & \dots & T_n^n \end{pmatrix} \right| = \left| \det T \right| = 1.$$

(ii) The product of the eigenvalues of a matrix equals its determinant, $\prod_{i=1}^{n} \lambda_{i} = \det A$. Now use the above strategy to compute the following integral (a > 0):

$$I(a) = \int_{\mathbb{R}^2} \mathrm{d}x \,\mathrm{d}y \,\mathrm{e}^{-\left[(a+3)x^2 + 2(a-3)xy + (a+3)y^2\right]}$$

Execute all steps of the above argumentation explicitly:

- (a) Bring the exponent into the form $-\mathbf{x}^T A \mathbf{x}$, with $\mathbf{x} = (x, y)^T$ and A symmetric. Identify and diagonalize the matrix A. In particular, explicitly write out equation (1) for the present case.
- (b) Find T. Calculate the Jacobian determinant explicitly.
- (c) What is the value of the Gaussian integral? [Check your result: $I(1) = \frac{\pi}{2\sqrt{3}}$.]

Example Problem 7: Spin- $\frac{1}{2}$ **matrices: eigenvalues and eigenvectors [Bonus]** Points: [3](Bonus,E).

The following matrices are used to describe quantum mechanical particles with spin $\frac{1}{2}$:

$$S_x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad S_y = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad S_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

For each matrix S_j (j = x, y, z), compute its two eigenvalues $\lambda_{j,a}$ and normalized eigenvectors $\mathbf{v}_{j,a}$ (a = 1, 2). Choose the phase of the eigenvector normalization factor in such a way that the 1-component, $v_{j,a}^1$ (or, if it vanishes, the 2-component), is positive and real.

[Check your results: all three matrices have the same eigenvalues, and $\sum_{a=1}^{2} \lambda_{j,a} = 0.$]

[Total Points for Example Problems: 19]

Homework Problem 1: Orthogonal and unitary matrices [2] Points: (a)[1](E); (b)[0,5](E); (c)[0,5](E)

(a) Determine if whether the following matrices are orthogonal or unitary:

$$A = \begin{pmatrix} 0 & 3 & 0 \\ 2 & 0 & 1 \\ -1 & 0 & 2 \end{pmatrix}, \quad B = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}, \quad C = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ -1 & -i \end{pmatrix}$$

- (b) Let $\mathbf{x} = (1, 2, -1)^T$. Calculate $\mathbf{a} = A\mathbf{x}$ and $\mathbf{b} = B\mathbf{x}$ explicitly. Also, calculate the norm of \mathbf{x} , a and b. Which of these norms should be equal? Why?
- (c) Let $\mathbf{y} = (1, \mathbf{i})^T$. Calculate $\mathbf{c} = C\mathbf{y}$ explicitly, and also determine the norm of \mathbf{y} and \mathbf{c} . Should the norms be equal? Why?

Homework Problem 2: Matrix diagonalization [4]

Points: (a)[1](E); (a)[1](E); (c)[2](E).

For each of the following matrices, find the eigenvalues λ_j and a set of eigenvectors \mathbf{v}_j . For definiteness, choose the first element of each eigenvector equal to unity, $\mathbf{v}_j^1 = 1$. Find a similarity transformation, T, and its inverse, T^{-1} , for which $T^{-1}AT$ is diagonal.

(a)
$$A = \begin{pmatrix} 4 & -6 \\ 3 & -5 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 2-i & 1+i \\ 2+2i & -1+2i \end{pmatrix}$ (c) $A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{pmatrix}$

[Consistency checks: Do the sum and the product of all eigenvalues yield Tr(A) and det(A), respectively? Let D be the diagonal matrix containing all eigenvalues; does TDT^{-1} yield A?]

Homework Problem 3: Diagonalizing symmetric or Hermitian matrices [4] Points: (a)[1](E); (a)[1](E); (c)[2](E).

For each of the following matrices, find the eigenvalues λ_j and a set of eigenvectors \mathbf{v}_j . Also find a similarity transformation, T, and its inverse, T^{-1} , for which $T^{-1}AT$ is diagonal.

(a)
$$A = \frac{1}{10} \begin{pmatrix} -19 & 3 \\ 3 & -11 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, (c) $A = \begin{pmatrix} 1 & i & 0 \\ -i & 2 & -i \\ 0 & i & 1 \end{pmatrix}$.

[Consistency checks: Do the sum and the product of all eigenvalues yield Tr(A) and det(A), respectively? Let D be the diagonal matrix containing all eigenvalues; does TDT^{-1} yield A?]

Homework Problem 4: Diagonalizing a matrix depending on two variables: qubit [3] Points: (a)[1](M); (b)[2](M)

A qubit (for "quantum bit" = quantum version of a classical bit) is a manipulable two-level quantum systems (http://en.wikipedia.org/wiki/Qubit). The simplest version of a qubit is described by the matrix $H = \begin{pmatrix} B & \overline{\Delta} \\ \Delta & -B \end{pmatrix}$, with $B \in \mathbb{R}$ and $\Delta \in \mathbb{C}$.

- (a) Calculate the eigenvalues E_j (choose $E_1 < E_2$) and normalized eigenvectors \mathbf{v}_1 and \mathbf{v}_2 of H as a function of B, Δ and $X \equiv [B^2 + |\Delta|^2]^{1/2}$.
- (b) Show that the eigenvectors can be brought to the form $\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -\sqrt{1-Y} \\ e^{i\phi}\sqrt{1+Y} \end{pmatrix}$ and $\mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{1+Y} \\ e^{i\phi}\sqrt{1-Y} \end{pmatrix}$, where $e^{i\phi}$ is the phase factor of $\Delta \equiv |\Delta|e^{i\phi}$. How does Y depend on B and X? On three diagrams arranged below each other, each showing two curves, sketch first E_1 and E_2 , second $|v_1^1|^2$ and $|v_2^1|^2$, the squares of the absolute values of the components of the eigenvector \mathbf{v}_1 , and third $|v_2^1|^2$ and $|v_2^2|^2$, the squares of the absolute values of the components of the eigenvector \mathbf{v}_2 , all as functions of $B/|\Delta| \in \{-\infty, \infty\}$ for fixed $|\Delta|$.

Background information: The first sketch shows the so called "avoided crossing", a typical trait of a quantum bit. The second and third sketches show that the eigenvectors "exchange their roles" if B/Δ goes from $-\infty$ to $+\infty$. Both these properties have been detected in many experiments. (See for e.g. http://www.sciencemag.org/content/299/5614/1869.abstract, Fig. 2A and 2B.)

Homework Problem 5: Degenerate eigenvalue problem [3]

Points: (a)[3](A); (b)[3](A,Bonus)

For each of the following matrices, find the eigenvalues λ_j , a set of *orthonormal* eigenvectors \mathbf{v}_j , and a similarity transformation, T, and its inverse, T^{-1} , for which $T^{-1}AT$ is diagonal.

(a)
$$A = \begin{pmatrix} 15 & 6 & -3 \\ 6 & 6 & 6 \\ -3 & 6 & 15 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} -1 & 0 & 0 & 2i \\ 0 & 7 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ -2i & 0 & 0 & 2 \end{pmatrix}$.

Hints: Both these matrices have a pair of degenerate eigenvalues. Call these $\lambda_2 = \lambda_3$. One of the corresponding eigenvectors is $\mathbf{v}_3 = \frac{1}{\sqrt{3}}(1,1,1)^T$ for (a) and $\mathbf{v}_3 = \frac{1}{\sqrt{5}}(0,1,-2,0)^T$ for (b). [Consistency checks: Do the sum and the product of all eigenvalues yield $\operatorname{Tr}(A)$ and $\det(A)$, respectively? Let D be the diagonal matrix containing all eigenvalues; does TDT^{-1} yield A?]

Homework Problem 6: Three-dimensional Gaussian integral with mixed terms in the exponent [3]

Points: (a)[1](M); (b)[1](M); (c)[1](M)

Compute the following three-dimensional Gaussian integral (a > 0):

$$I(a) = \int_{\mathbb{R}^3} \mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z \,\mathrm{e}^{-\left[(a+2)x^2 + (a+2)y^2 + (a+2)z^2 + 2(a-1)xy + 2(a-1)yz + 2(a-1)xz\right]}$$

- (a) Bring the exponent into the form $-\mathbf{x}^T A \mathbf{x}$, with $\mathbf{x} = (x, y, z)^T$ and A symmetric.
- (b) Diagonalize the matrix A. You do not need to compute the corresponding similarity transformation explicitly.
- (c) Compute I(a) by expressing it as a product of three one-dimensional Gaussian integrals. [Check your result: $I(3) = \frac{1}{9}\sqrt{\pi^3}$.]

Homework Problem 7: Spin-1 **matrices: eigenvalues and eigenvectors [Bonus]** Points: [3](Bonus,E).

The following matrices are used to describe quantum mechanical particles with spin 1:

$$S_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad S_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -\mathbf{i} & 0 \\ \mathbf{i} & 0 & -\mathbf{i} \\ 0 & \mathbf{i} & 0 \end{pmatrix}, \quad S_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

For each matrix S_j (j = x, y, z), compute its three eigenvalues $\lambda_{j,a}$ and normalized eigenvectors $\mathbf{v}_{j,a}$ (a = 1, 2, 3). Choose the phase of the eigenvector normalization factor in such a way that the 1-component, $v_{j,a}^1$ (or, if it vanishes, the 2- or 3-component), is positive and real.

[Check your results: all three matrices have the same eigenvalues, and $\sum_{a=1}^{3} \lambda_{j,a} = 0.$]

[Total Points for Homework Problems: 19]