
LUDWIGMAXIMILIANS UNIVERSITÄT MÜNCHEN

Fakultät für Physik
R: Rechenmethoden für Physiker, WiSe 2021/22
Dozent: Jan von Delft
Übungen: Anxiang Ge, Nepomuk Ritz

https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 07: Matrices II: Inverse, Basis Transformation

Posted: Mo 29.11.21 Central Tutorial: Th 02.12.21 Due: Th 09.12.21, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced

Suggestions for central tutorial: example problems 2, 3, 4, 6.
Videos exist for example problems 1 (L5.4.1), 5 (V2.5.1). Also see tutorvideos on "basis transformations".

Example Problem 1: Gaussian elimination and matrix inversion [4]

Points: (a)[1](M); (b)[1](M); (c)[1](M); (d)[1](M)
Gaussian elimination is a convenient book-keeping scheme for solving a linear system of equations of the form $A \mathbf{x}=\mathbf{b}$. For example, consider the system

$$
\begin{aligned}
& A_{1}^{1} x^{1}+A_{2}^{1} x^{2}+A_{3}^{1} x^{3}=b^{1}, \\
& A_{1}^{2} x^{1}+A_{2}^{2} x^{2}+A_{3}^{2} x^{3}=b^{2}, \\
& A_{1}^{3} x^{1}+A_{2}^{3} x^{2}+A_{3}^{3} x^{3}=b^{3} .
\end{aligned}
$$

It can be solved by a sequence of steps, each of which involves taking a linear combination of rows, chosen such that the system is brought into the form

$$
\begin{aligned}
& 1 x^{1}+0 x^{2}+0 x^{3}=c^{1}, \\
& 0 x^{1}+1 x^{2}+0 x^{3}=c^{2}, \\
& 0 x^{1}+0 x^{2}+1 x^{3}=c^{3} .
\end{aligned}
$$

The solution can then be read off from the right-hand side, $\left(x^{1}, x^{2}, x^{3}\right)^{T}=\left(c^{1}, c^{2}, c^{3}\right)^{T}$.
During these manipulations, time and ink can be saved by refraining from writing down the x^{i} 's over and over again. Instead, it suffices to represent the linear system by an augmented matrix, containing the coefficients in array form, with a vertical line instead of the equal signs. This augmented matrix is to be manipulated in a sequence of steps, each of which involves taking a linear combination of rows, chosen such that the left side is brought into the form of the unit matrix. The right column then contains the desired solution for $\left(x^{1}, x^{2}, x^{3}\right)^{T}$.

x^{1}	x^{2}	x^{3}			x^{1} x^{2} x^{3}		
A_{1}^{1}	A_{2}^{1}	$A^{1}{ }_{3}$	b^{1}				
A_{1}^{2}	A_{2}^{2}	$A^{2}{ }_{3}$	b^{2}				
$A^{3}{ }_{1}$	A_{2}^{3}	$A^{3}{ }_{3}$	b^{3}		0	0	c^{1}
0	1	0	c^{2}				
0	0	1	c^{3}				

Gaussian elimination is also useful for matrix inversion. The inverse of A has the form $A^{-1}=$ $\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$, where the j th column is the solution of the linear system $A \mathbf{a}_{j}=\mathbf{e}_{j}$. The computation of all n vectors \mathbf{a}_{j} can be done simultaneously by setting up an augmented matrix with n columns on the right, each containing an \mathbf{e}_{j}. After manipulating the augmented matrix such that the left
side is the unit matrix, the columns on the right contain the desired vectors \mathbf{a}_{j}.

A_{1}^{1}	$A^{1}{ }_{2}$	$A^{1}{ }_{3}$	1	0	0		1	0	0	a_{1}	a^{1}	$a^{1}{ }_{3}$
A_{1}^{2}	A^{2}	$A^{2}{ }_{3}$	0	1	0	\rightarrow	0	1	0	a^{2}	a^{2}	$a^{2}{ }_{3}$
A_{1}^{3}	A^{3}	A_{3}^{3}	0	0	1		0	0	1	a_{1}^{3}	a_{2}	a_{3}^{3}

(a) Solve the following system of linear equations using Gaussian elimination.

$$
\begin{aligned}
3 x^{1}+2 x^{2}-x^{3} & =1, \\
2 x^{1}-2 x^{2}+4 x^{3} & =-2, \\
-x^{1}+\frac{1}{2} x^{2}-x^{3} & =0 .
\end{aligned}
$$

[Check your result: the norm of \mathbf{x} is $\|\mathbf{x}\|=3$.]
(b) How does the solution change when the last equation is removed?
(c) What happens if the last equation is replaced by $-x^{1}+\frac{2}{7} x^{2}-x^{3}=0$?
(d) The system of equations given in (a) can also be expressed in the form $A \mathbf{x}=\mathbf{b}$. Calculate the inverse A^{-1} of the 3×3 matrix A using Gaussian elimination. Verify your answer to (a) using $\mathbf{x}=A^{-1} \mathbf{b}$.

Example Problem 2: Two-dimensional rotation matrices [4]

Points: (a)[1](M); (b)[1](E); (c)[1](M); (d)[1](M)
A rotation in two dimensions is a linear map, $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, that rotates every vector by a given angle about the origin without changing its length.
(a) Let the (2×2)-dimensional rotation matrix R_{θ} describing a rotation by the angle θ be defined by $\mathbf{e}_{j} \xrightarrow{R_{\theta}} \mathbf{e}_{j}^{\prime}=\mathbf{e}_{i}\left(R_{\theta}\right)_{j}^{i}$. Find R_{θ} by proceeding as follows: Make a sketch that illustrates the effect, $\mathbf{e}_{j} \xrightarrow{R_{\theta}} \mathbf{e}_{j}^{\prime}$, of the rotation on the two basis vectors $\mathbf{e}_{j}(j=1,2)$ (e.g. for $\theta=\frac{\pi}{6}$). The image vectors \mathbf{e}_{j}^{\prime} of the basis vectors \mathbf{e}_{j} yield the columns of the matrix R_{θ}.
(b) Write down the matrix $R_{\theta_{i}}$ for the angles $\theta_{1}=0, \theta_{2}=\pi / 4, \theta_{3}=\pi / 2$ and $\theta_{4}=\pi$. Compute the action of $R_{\theta_{i}}(i=1,2,3,4)$ on $\mathbf{a}=(1,0)^{T}$ and $\mathbf{b}=(0,1)^{T}$, and make a sketch to visualize the results.
(c) The composition of two rotations again is a rotation. Show that $R_{\theta} R_{\phi}=R_{\theta+\phi}$. Hint: Utilize the following 'addition theorems':

$$
\begin{aligned}
\cos (\theta+\phi) & =\cos \theta \cos \phi-\sin \theta \sin \phi \\
\sin (\theta+\phi) & =\sin \theta \cos \phi+\cos \theta \sin \phi
\end{aligned}
$$

Remark: A geometric proof of these theorems (not requested here) follows from the figure by inspecting the three right-angled triangles with diagonals of length $1, \cos \phi$
 and $\sin \phi$.
(d) Show that the rotation of an arbitrary vector $\mathbf{r}=(x, y)^{T}$ by the angle θ does not change its length, i.e. that $R_{\theta} \mathbf{r}$ has the same length as \mathbf{r}.

Example Problem 3: Basis transformations and linear maps in \mathbb{E}^{2} [4]

Points: (a)[0.5](M); (b)[0.5](M); (c)[0.5](E); (d)[0.5](E); (e)[0.5](M); (f)[0.5](M); (g)[0.5](E); (h)[0.5](E)
Remark on notation: For this problem we denote vectors in Euclidean space \mathbb{E}^{2} using hats (e.g. $\hat{\mathbf{v}}_{j}, \hat{\mathbf{x}}, \hat{\mathbf{y}} \in \mathbb{E}^{2}$). Their components with respect to a given basis are vectors in \mathbb{R}^{2} and are written without hats (e.g. $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$).
Consider two bases for the Euclidean vector space \mathbb{E}^{2}, one old, $\left\{\hat{\mathbf{v}}_{j}\right\}$, and one new, $\left\{\hat{\mathbf{v}}_{i}^{\prime}\right\}$, with

$$
\hat{\mathbf{v}}_{1}=\frac{3}{4} \hat{\mathbf{v}}_{1}^{\prime}+\frac{1}{3} \hat{\mathbf{v}}_{2}^{\prime}, \quad \hat{\mathbf{v}}_{2}=-\frac{1}{8} \hat{\mathbf{v}}_{1}^{\prime}+\frac{1}{2} \hat{\mathbf{v}}_{2}^{\prime} .
$$

(a) The relation $\hat{\mathbf{v}}_{j}=\hat{\mathbf{v}}_{i}^{\prime} T_{j}^{i}$ expresses the old basis in terms of the new basis. Find the transformation matrix $T=\left\{T_{j}^{i}\right\}$. [Check your result: $\sum_{j} T^{1}{ }_{j}=\frac{5}{8}$.]
(b) Find the matrix T^{-1}, and use the inverse transformation $\hat{\mathbf{v}}_{i}^{\prime}=\hat{\mathbf{v}}_{j}\left(T^{-1}\right)_{i}^{j}$ to express the new basis in terms of the old basis. [Check your result: $\hat{\mathbf{v}}_{1}^{\prime}-4 \hat{\mathbf{v}}_{2}^{\prime}=-8 \hat{\mathbf{v}}_{2}$.]
(c) Let $\hat{\mathbf{x}}$ be a vector with components $\mathbf{x}=(1,2)^{T}$ in the old basis. Find its components \mathbf{x}^{\prime} in the new basis. [Check your result: $\sum_{i} x^{\prime i}=\frac{11}{6}$.]
(d) Let $\hat{\mathbf{y}}$ by a vector with components $\mathbf{y}^{\prime}=\left(\frac{3}{4}, \frac{1}{3}\right)^{T}$ in the new basis. Find its components \mathbf{y} in the old basis. [Check your result: $\sum_{j} y^{j}=1$.]
(e) Let \hat{A} be the linear map defined by $\hat{\mathbf{v}}_{1}^{\prime} \stackrel{\hat{A}}{\mapsto} 2 \hat{\mathbf{v}}_{1}^{\prime}$ and $\hat{\mathbf{v}}_{2}^{\prime} \stackrel{\hat{A}}{\mapsto} \hat{\mathbf{v}}_{2}^{\prime}$. First find the matrix representation A^{\prime} of this map in the new basis, then use a basis transformation to find its matrix representation A in the old basis. [Check your result: $(A)^{2}{ }_{1}=-\frac{3}{5}$.]
(f) Let $\hat{\mathbf{z}}$ be the image vector onto which the vector $\hat{\mathbf{x}}$ is mapped by \hat{A}, i.e. $\hat{\mathbf{x}} \stackrel{\hat{A}}{\mapsto} \hat{\mathbf{z}}$. Find its components \mathbf{z}^{\prime} with respect to the new basis by using A^{\prime}, and its components \mathbf{z} with respect to the old basis by using A. Are your results for \mathbf{z}^{\prime} and \mathbf{z} consistent? [Check your result: $\mathbf{z}^{\prime}=\left(1, \frac{4}{3}\right)^{T}$.]
(g) Now make the choice $\hat{\mathbf{v}}_{1}=3 \hat{\mathbf{e}}_{1}+\hat{\mathbf{e}}_{2}$ and $\hat{\mathbf{v}}_{2}=-\frac{1}{2} \hat{\mathbf{e}}_{1}+\frac{3}{2} \hat{\mathbf{e}}_{2}$ for the old basis, where $\hat{\mathbf{e}}_{1}=(1,0)^{T}$ and $\hat{\mathbf{e}}_{2}=(0,1)^{T}$ are the standard Cartesian basis vectors of \mathbb{E}^{2}. What are the components of $\hat{\mathbf{v}}_{1}^{\prime}, \hat{\mathbf{v}}_{2}^{\prime}, \hat{\mathbf{x}}$ and $\hat{\mathbf{z}}$ in the standard basis \mathbb{E}^{2} ? [Check your results: $\left\|\hat{\mathbf{v}}_{1}^{\prime}\right\|=4,\left\|\hat{\mathbf{v}}_{2}^{\prime}\right\|=3$, $\|\hat{\mathbf{x}}\|=2 \sqrt{5},\|\hat{\mathbf{z}}\|=4 \sqrt{2}$.]
(h) Make a sketch (with $\hat{\mathbf{e}}_{1}$ and $\hat{\mathbf{e}}_{2}$ as unit vectors in the horizontal and vertical directions respectively), showing the old and new basis vectors, as well as the vectors $\hat{\mathbf{x}}$ and $\hat{\mathbf{z}}$. Are the coordinates of these vectors, discussed in (c) and (f), consistent with your sketch?

Example Problem 4: Computing determinants [2]

Points: [2](E)

Compute the determinants of the following matrices by expanding them along an arbitrary row or column. Hint: The more zeros the row or column contains, the easier the calculation.

$$
A=\left(\begin{array}{rr}
2 & 1 \\
5 & -3
\end{array}\right), \quad B=\left(\begin{array}{rrr}
3 & 2 & 1 \\
4 & -3 & 1 \\
2 & -1 & 1
\end{array}\right), \quad C=\left(\begin{array}{llll}
a & a & a & 0 \\
a & 0 & 0 & b \\
0 & 0 & b & b \\
a & b & b & 0
\end{array}\right) .
$$

[Check your result: if $a=1, b=2$, then $\operatorname{det} C=-4$.]

Example Problem 5: Jacobian determinant for cylindrical coordinates [2]

Points: (a)[0.5](E); (b)[0.5](E); (c)[1](E).
(a) Compute the Jacobi matrix, $\frac{\partial(x, y, z)}{\partial(\rho, \phi, z)}$, for the transformation expressing Cartesian through cylindrical coordinates.
(b) Compute the Jacobi matrix, $J^{-1}=\frac{\partial(\rho, \phi, z)}{\partial(x, y, z)}$, for the inverse transformation expressing cylindrical through Cartesian coordinates. [Check your result: verify that $J J^{-1}=\mathbb{1}$.]
(c) Compute the Jacobi determinants $\operatorname{det}(J)$ and $\operatorname{det}\left(J^{-1}\right)$. [Check your results: does their product equal 1?]

Example Problem 6: Triple Gaussian integral via transformation of variables [2]
 Points: [2](M)

Calculate the following three-dimensional Gaussian integral (with $a, b, c>0, a, b, c \in \mathbb{R}$):

$$
I=\int_{\mathbb{R}^{3}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{e}^{-\left[a^{2}(x+y)^{2}+b^{2}(z-y)^{2}+c^{2}(x-z)^{2}\right]}
$$

Hint: Use the substitution $u=a(x+y), v=b(z-y), w=c(x-z)$ and calculate the Jacobian determinant, using $J=\left|\frac{\partial(u, v, w)}{\partial(x, y, z)}\right|^{-1}$. You may use $\int_{-\infty}^{\infty} \mathrm{d} x \mathrm{e}^{-x^{2}}=\sqrt{\pi}$. [Check your result: if $a=b=c=\sqrt{\pi}$, then $I=\frac{1}{2}$.]

Example Problem 7: Variable transformation for two-dimensional integral [Bonus]
 Points: (a)[1](E,Bonus); (b)[1](M,Bonus); (c)[1](M,Bonus).

(a) Consider the transformation of variables $x=\frac{1}{2}(X+Y), y=\frac{1}{2}(X-Y)$. Invert it to find $X(x, y)$ and $Y(x, y)$. Compute the Jacobian matrices $J=\frac{\partial(x, y)}{\partial(X, Y)}$ and $J^{-1}=\frac{\partial(X, Y)}{\partial(x, y)}$, and their determinants. [Check your results: verify that $J J^{-1}=\mathbb{1}$ and $(\operatorname{det} J)\left(\operatorname{det} J^{-1}\right)=1$.]

Use the transformation from (a) to compute the following integrals as $\int \mathrm{d} X \mathrm{~d} Y$ integrals:
(b) $I_{1}=\int_{S} \mathrm{~d} x \mathrm{~d} y$, integrated over the square $S=\{0 \leq x \leq 1,0 \leq y \leq 1\}$.
(c) $I_{2}(n)=\int_{T} \mathrm{~d} x \mathrm{~d} y|x-y|^{n}$, integrated over the triangle $T=\{0 \leq x \leq 1,0 \leq y \leq 1-x\}$. [Check your result: $I_{2}(1)=\frac{1}{6}$.]

Homework Problem 1: Gaussian elimination and matrix inversion [3]

Points: (a)[1](E); (b)[1](E); (c)[1](M)
Consider the linear system of equations $A \mathbf{x}=\mathbf{b}$, with

$$
A=\left(\begin{array}{ccc}
8-3 a & 2-6 a & 2 \tag{1}\\
2-6 a & 5 & -4+6 a \\
2 & -4+6 a & 5+3 a
\end{array}\right)
$$

(a) For $a=\frac{1}{3}$, use Gaussian elimination to compute the inverse matrix A^{-1}. (Remark: It is advisable to avoid the occurrence of fractions until the left side has been brought into row echelon form.) Use the result to find the solution \mathbf{x} for $\mathbf{b}=(4,1,1)^{T}$. [Check your result: the norm of \mathbf{x} is $\|\mathrm{x}\|=\sqrt{117} / 18$.]
(b) For which values of a can the matrix A not be inverted?
(c) If A can be inverted, the system of equations $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \mathbf{b}, namely $\mathbf{x}=A^{-1} \mathbf{b}$. If A cannot be inverted, then either the solution is not unique, or no solution exists at all - it depends on \mathbf{b} which of these two cases arises. Decide this for $\mathbf{b}=(4,1,1)^{T}$ and the values for a found in (b), and determine \mathbf{x}, if possible.

Homework Problem 2: Three-dimensional rotation matrices [4]

Points: (a)[1](E); (b)[1](E); (c)[1](E); (d)[0,5]; (e)[0,5](E); (f)[2](Bonus,A)
Rotations in three dimensions are represented by (3×3)-dimensional matrices. Let $R_{\theta}(\mathbf{n})$ be the rotation matrix that describes a rotation by the angle θ about an axis whose direction is given by the unit vector \mathbf{n}. Its elements are defined via $\mathbf{e}_{j} \xrightarrow{R_{\theta}(\mathbf{n})} \mathbf{e}_{j}^{\prime}=\mathbf{e}_{l}\left(R_{\theta}(\mathbf{n})\right)_{j}^{l}$.
(a) Find the three rotation matrices $R_{\theta}\left(\mathbf{e}_{i}\right)$ for rotations about the three Cartesian coordinate axes $\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3}, by proceeding as follows. Use three sketches, one each for $i=1,2,3$, illustrating the effect, $\mathbf{e}_{j} \xrightarrow{R_{\theta}\left(\mathbf{e}_{i}\right)} \mathbf{e}_{j}^{\prime}$, of a rotation about the i axis on all three basis vectors \mathbf{e}_{j} $(j=1,2,3)$ (e.g. for $\theta=\frac{\pi}{6}$). The image vectors \mathbf{e}_{j}^{\prime} of the basis vectors \mathbf{e}_{j} yield the columns of $R_{\theta}\left(\mathbf{e}_{i}\right)$.
(b) It can be shown that for a general direction, $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)^{T}$, of the axis of rotation, the matrix elements have the following form:

$$
\left(R_{\theta}(\mathbf{n})\right)_{j}^{i}=\delta_{i j} \cos \theta+n_{i} n_{j}(1-\cos \theta)-\epsilon_{i j k} n_{k} \sin \theta \quad\left(\epsilon_{i j k}=\text { Levi-Civita symbol }\right) .
$$

Use this formula to find the three rotation matrices $R_{\theta}\left(\mathbf{e}_{i}\right)(i=1,2,3)$ explictly. Are your results consistent with those from (a)?
(c) Write down the following rotation matrices explicitly, and compute and sketch their effect on the vector $\mathbf{v}=(1,0,1)^{T}$:
(i) $A=R_{\pi}\left(\mathbf{e}_{3}\right)$,
(ii) $B=R_{\frac{\pi}{2}}\left(\frac{1}{\sqrt{2}}\left(\mathbf{e}_{3}-\mathbf{e}_{1}\right)\right)$.
(d) Rotation matrices form a group. Use A and B from (c) to illustrate that this group is not commutative (in contrast to the two-dimensional case!).
(e) Show that a general rotation matrix R satisfies the relation $\operatorname{Tr}(R)=1+2 \cos \theta$, where the 'trace' of a matrix R is defined by $\operatorname{Tr}(R)=\sum_{i}(R)_{i}^{i}$.
(f) The product of two rotation matrices is again a rotation matrix. Consider the product $C=A B$ of the two matrices from (c), and find the corresponding unit vector \mathbf{n} and rotation angle θ. Hint: these are uniquely defined only up to an arbitrary sign, since $R_{\theta}(\mathbf{n})$ and $R_{-\theta}(-\mathbf{n})$ describe the same rotation. (To be concrete, fix this sign by choosing the component n_{2} positive.) $|\theta|$ and $\left|n_{i}\right|$ are fixed by the trace and the diagonal elements of the rotation matrix, respectively; their relative sign is fixed by the off-diagonal elements. [Check your result: $n_{2}=$ $1 / \sqrt{3}$.]

Homework Problem 3: Basis transformations in $\mathbb{E}^{\mathbf{2}}$ [4]

Points: (a)[0.5](M); (b)[0.5](M); (c)[0.5](E); (d)[0.5](E); (e)[0.5](M); (f)[0.5](M); (g)[0.5](E); (h)[0.5](E)
Remark on notation: For this problem we denote vectors in Euclidean space \mathbb{E}^{2} using hats (e.g. $\hat{\mathbf{v}}_{j}, \hat{\mathbf{x}}, \hat{\mathbf{y}} \in \mathbb{E}^{2}$). Their components with respect to a given basis are vectors in \mathbb{R}^{2} and are written without hats (e.g. $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$).
Consider two bases for the Euclidean vector space \mathbb{E}^{2}, one old, $\left\{\hat{\mathbf{v}}_{j}\right\}$, and one new, $\left\{\hat{\mathbf{v}}_{i}^{\prime}\right\}$, with

$$
\hat{\mathbf{v}}_{1}=\frac{1}{5} \hat{\mathbf{v}}_{1}^{\prime}+\frac{3}{5} \hat{\mathbf{v}}_{2}^{\prime}, \quad \hat{\mathbf{v}}_{2}=-\frac{6}{5} \hat{\mathbf{v}}_{1}^{\prime}+\frac{2}{5} \hat{\mathbf{v}}_{2}^{\prime} .
$$

(a) The relation $\hat{\mathbf{v}}_{j}=\hat{\mathbf{v}}_{i}^{\prime} T^{i}{ }_{j}$ expresses the old basis in terms of the new basis. Find the transformation matrix $T=\left\{T_{j}^{i}\right\}$. [Check your result: $\sum_{j} T_{j}^{2}=1$.]
(b) Find the matrix T^{-1}, and use the inverse transformation $\hat{\mathbf{v}}_{i}^{\prime}=\hat{\mathbf{v}}_{j}\left(T^{-1}\right)_{i}^{j}$ to express the new basis in terms of the old basis. [Check your result: $\hat{\mathbf{v}}_{1}^{\prime}+3 \hat{\mathbf{v}}_{2}^{\prime}=5 \hat{\mathbf{v}}_{1}$.]
(c) Let $\hat{\mathbf{x}}$ be a vector with components $\mathbf{x}=\left(2,-\frac{1}{2}\right)^{T}$ in the old basis. Find its components \mathbf{x}^{\prime} in the new basis. [Check your result: $\sum_{i} x^{\prime i}=2$.]
(d) Let $\hat{\mathbf{y}}$ by a vector with components $\mathbf{y}^{\prime}=(-3,1)^{T}$ in the new basis. Find its components \mathbf{y} in the old basis. [Check your result: $\sum_{j} y^{j}=\frac{5}{2}$.]
(e) Let \hat{A} be the linear map defined by $\hat{\mathbf{v}}_{1} \stackrel{\hat{A}}{\mapsto} \frac{1}{3}\left(\hat{\mathbf{v}}_{1}-2 \hat{\mathbf{v}}_{2}\right)$ and $\hat{\mathbf{v}}_{2} \stackrel{\hat{A}}{\mapsto}-\frac{1}{3}\left(4 \hat{\mathbf{v}}_{1}+\hat{\mathbf{v}}_{2}\right)$. First find the matrix representation A of this map in the old basis, then use a basis transformation to find its matrix representation A^{\prime} in the new basis. [Check your result: $\left(A^{\prime}\right)^{2}{ }_{1}=\frac{2}{3}$.]
(f) Let $\hat{\mathbf{z}}$ be the image vector onto which the vector $\hat{\mathbf{x}}$ is mapped by \hat{A}, i.e. $\hat{\mathbf{x}} \stackrel{\hat{A}}{\mapsto} \hat{\mathbf{z}}$. Find its components \mathbf{z} with respect to the old basis by using A, and its components \mathbf{z}^{\prime} with respect to the new basis by using A^{\prime}. Are your results for \mathbf{z} and \mathbf{z}^{\prime} consistent? [Check your result: $\left.\mathbf{z}^{\prime}=\frac{1}{3}(5,1)^{T}.\right]$
(g) Now make the choice $\hat{\mathbf{v}}_{1}=\hat{\mathbf{e}}_{1}+\hat{\mathbf{e}}_{2}$ and $\hat{\mathbf{v}}_{2}=2 \hat{\mathbf{e}}_{1}-\hat{\mathbf{e}}_{2}$ for the old basis, where $\hat{\mathbf{e}}_{1}=(1,0)^{T}$ and $\hat{\mathbf{e}}_{2}=(0,1)^{T}$ are the standard Cartesian basis vectors of \mathbb{E}^{2}. What are the components of $\hat{\mathbf{v}}_{1}^{\prime}, \hat{\mathbf{v}}_{2}^{\prime}, \hat{\mathbf{x}}$ and $\hat{\mathbf{z}}$ in the standard basis \mathbb{E}^{2} ? [Check your results: $\left\|\hat{\mathbf{v}}_{1}^{\prime}\right\|=\frac{\sqrt{41}}{4},\left\|\hat{\mathbf{v}}_{2}^{\prime}\right\|=\frac{\sqrt{89}}{4}$, $\|\hat{\mathbf{x}}\|=\|\hat{\mathbf{z}}\|=\frac{\sqrt{29}}{2}$.]
(h) Make a sketch (with $\hat{\mathbf{e}}_{1}$ and $\hat{\mathbf{e}}_{2}$ as unit vectors in the horizontal and vertical directions, respectively), showing the old and new basis vectors, as well as the vectors $\hat{\mathbf{x}}$ and $\hat{\mathbf{z}}$. Are the coordinates of these vectors, discussed in (c) and (f), consistent with your sketch?

Homework Problem 4: Computing determinants [4]

Points: (a)[1](E); (b)[1,5](E); (c)[1,5](E)
(a) Compute the determinant of the matrix $D=\left(\begin{array}{lll}1 & c & 0 \\ d & 2 & 3 \\ 2 & 2 & e\end{array}\right)$.
[Check your result: if $c=1, d=3, e=2$, then $\operatorname{det} C=-2$.]
(i) Which values must c and d have to ensure that $\operatorname{det} D=0$ for all values of e ?
(ii) Which values must d and e have to ensure that $\operatorname{det} D=0$ for all values of c ? Could you have found the results of (i,ii) without explicitly calculating $\operatorname{det} D$?

Now consider the two matrices $A=\left(\begin{array}{rrrr}2 & -1 & -3 & 1 \\ 0 & 1 & 5 & 5\end{array}\right)$ and $B=\left(\begin{array}{rr}2 & 1 \\ 6 & 6 \\ -2 & 8 \\ -2 & -2\end{array}\right)$.
(b) Compute the product $A B$, as well as its determinant $\operatorname{det}(A B)$ and inverse $(A B)^{-1}$.
(c) Compute the product $B A$, as well as its determinant $\operatorname{det}(B A)$ and inverse $(B A)^{-1}$. Is it possible to calculate the determinant and the inverse of A and B ?

Homework Problem 5: Jacobian determinant for spherical coordinates [2]

Points: (a)[0.5](E); (b)[0.5](E); (c)[1](E).
(a) Compute the Jacobi matrix, $J=\frac{\partial(x, y, z)}{\partial(r, t, \phi)}$, for the transformation expressing Cartesian through spherical coordinates.
(b) Compute the Jacobi matrix $J^{-1}=\frac{\partial(r, \theta, \phi)}{\partial(x, y, z)}$ for the inverse transformation expressing spherical through Cartesian coordinates. [Check your result: verify that $J J^{-1}=\mathbb{1}$.]
(c) Compute the Jacobi determinants $\operatorname{det}(J)$ and $\operatorname{det}\left(J^{-1}\right)$. [Check your results: does their product equal 1?]

Homework Problem 6: Triple Lorentz integral via transformation of variables [2]

Points: [2](M)
Calculate the following triple Lorentz integral (with $a, b, c, d>0, a, b, c, d \in \mathbb{R}$):

$$
I=\int_{\mathbb{R}^{3}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \frac{1}{\left[(x d+y)^{2}+a^{2}\right]} \cdot \frac{1}{\left[(y+z-x)^{2}+b^{2}\right]} \cdot \frac{1}{\left[(y-z)^{2}+c^{2}\right]} .
$$

Hint: Use the change of variables $u=(x d+y) / a, v=(y+z-x) / b, w=(y-z) / c$ and compute the Jacobian determinant using $J=\left|\frac{\partial(u, v, w)}{\partial(x, y, z)}\right|^{-1}$. You may use $\int_{-\infty}^{\infty} \mathrm{d} x\left(x^{2}+1\right)^{-1}=\pi$. [Check your result: if $a=b=c=\pi, d=2$, then $I=\frac{1}{5}$.]

Homework Problem 7: Variable transformation for two-dimensional integral [Bonus]

 Points: (a)[1](E,Bonus); (b)[1](M,Bonus).(a) Consider the transformation of variables $x=\frac{3}{5} X+\frac{3}{5} Y$ and $y=\frac{3}{5} X-\frac{2}{5} Y$. Invert it to find $X(x, y)$ and $Y(x, y)$. Compute the Jacobian matrices $J=\frac{\partial(x, y)}{\partial(X, Y)}$ and $J^{-1}=\frac{\partial(X, Y)}{\partial(x, y)}$, and their determinants. [Check your results: verify that $J J^{-1}=\mathbb{1}$ and $(\operatorname{det} J)\left(\operatorname{det} J^{-1}\right)=1$.]
(b) Compute the integral $I(a)=\int_{T_{a}} \mathrm{~d} x \mathrm{~d} y \cos \left[\pi\left(\frac{2}{3} x+y\right)^{3}\right](x-y)$ over the trapezoid T_{a} enclosed by the lines $x=0, y=1-\frac{2}{3} x, y=0$ and $y=a-\frac{2}{3} x$, with $a \in(0,1)$. Hint: Express $I(a)$ as an $\int \mathrm{d} X \mathrm{~d} Y$ integral using the transformation from (a).
[Check your result: $I\left(2^{-1 / 3}\right)=-\frac{1}{8 \pi}$.]

