MÜNCHEN
https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 06: Fields II. Matrices I

Posted: Mo 22.11.21 Central Tutorial: Th 25.11.21 Due: Th 02.12.21, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 4, 5(bii), 1.

Videos exist for example problems 1 (V3.4.1), 5 (V3.7.3).

Example Problem 1: Potential of a vector field [5]

Points: (a)[1](E); (b)[1](E); (c)[1](M); (d)[1](E);(e)[1](M)
Consider a vector field, $\mathbf{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathbf{r} \mapsto \mathbf{u}(\mathbf{r})=\left(2 x y+z^{3}, x^{2}, 3 x z^{2}\right)^{T}$.
(a) Calculate the line integral $I_{1}=\int_{\gamma_{1}} \mathrm{~d} \mathbf{r} \cdot \mathbf{u}(\mathbf{r})$ from $\mathbf{0}=(0,0,0)^{T}$ to $\mathbf{b}=(1,1,1)^{T}$, along the path $\gamma_{1}=\left\{\mathbf{r}(t)=(t, t, t)^{T} \mid 0<t<1\right\}$.
(b) Does the line integral depend on the shape of the path?
(c) Calculate the potential $\varphi(\mathbf{r})$ of the vector field $\mathbf{u}(\mathbf{r})$, using the line integral, $\varphi(\mathbf{r})=\int_{\gamma_{\mathbf{r}}} \mathrm{d} \mathbf{r} \cdot \mathbf{u}(\mathbf{r})$, along a suitably parametrized path $\gamma_{\mathbf{r}}$ from $\mathbf{0}$ to $\mathbf{r}=(x, y, z)^{T}$.
(d) Consistency check: Verify by explicit calculation that your result for $\varphi(\mathbf{r})$ satisfies the equation $\nabla \varphi(\mathbf{r})=\mathbf{u}(\mathbf{r})$.
(e) Calculate the integral I_{1} from part (a) over the vector field by considering the difference in potential $\varphi(\mathbf{r})$ (the antiderivative!) at the integration limits \mathbf{b} and $\mathbf{0}$. Consistency check: Do you obtain the same result as in part (a) of the exercise?

Example Problem 2: Divergence [1]

Points: (a)[E](0,5), (b)[E](0,5).
(a) Compute the divergence, $\boldsymbol{\nabla} \cdot \mathbf{u}$, of the vector field $\mathbf{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathbf{u}(\mathbf{r})=\left(x y z, y^{2}, z^{3}\right)^{T}$.
[Check your results: if $\mathbf{r}=(1,1,1)^{T}$, then $\boldsymbol{\nabla} \cdot \mathbf{u}=6$.]
(b) Let $\mathbf{a} \in \mathbb{R}^{3}$ be a constant vector and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \mathbf{r} \mapsto f(r)$ a scalar function of $r=\|\mathbf{r}\|$. Show that

$$
\boldsymbol{\nabla} \cdot[\mathbf{a} f(r)]=\frac{\mathbf{r} \cdot \mathbf{a}}{r} f^{\prime}(r) .
$$

Rule of thumb: $\boldsymbol{\nabla}$ acting on $f(r)$ generates $\hat{\mathbf{r}}=\mathbf{r} / r$ times the derivative, $f^{\prime}(r)$.

Example Problem 3: Curl [1]
Points: (a)[E](0,5), (b)[E](0,5).
(a) Compute the curl, $\boldsymbol{\nabla} \times \mathbf{u}$, of the vector field, $\mathbf{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathbf{u}(\mathbf{r})=\left(x y z, y^{2}, z^{2}\right)^{T}$.
[Check your results: if $\mathbf{r}=(3,2,1)^{T}$, then $\boldsymbol{\nabla} \times \mathbf{u}=(0,6,-3)^{T}$.]
(b) Let $\mathbf{a} \in \mathbb{R}^{3}$ be a constant vector and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \mathbf{r} \mapsto f(r)$ a scalar function of $r=\|\mathbf{r}\|$. Show that

$$
\boldsymbol{\nabla} \times[\mathbf{a} f(r)]=\frac{\mathbf{r} \times \mathbf{a}}{r} f^{\prime}(r)
$$

Rule of thumb: $\boldsymbol{\nabla}$ acting on $f(r)$ generates $\hat{\mathbf{r}}=\mathbf{r} / r$ times the derivative, $f^{\prime}(r)$.

Example Problem 4: Curl of gradient field [1]

Points: $[1](\mathrm{M})$
Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth scalar field. Show that the curl of its gradient vanishes:

$$
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} f)=\mathbf{0}
$$

Recommendation: Use Cartesian coordinates, for which contra- and covariant components are equal, $\partial^{i}=\partial_{i}$, and write all indices downstairs.

Example Problem 5: Nabla identities [7]

Points: (a)[2](E); (b)[2](M); (c)[3](E)
(a) Consider the scalar fields $f(x, y, z)=z \mathrm{e}^{-x^{2}}$ and $g(x, y, z)=y z^{-1}$, and the vector fields $\mathbf{u}(x, y, z)=\mathbf{e}_{x} x^{2} y$ and $\mathbf{w}(x, y, z)=\left(x^{2}+y^{3}\right) \mathbf{e}_{x}$. Compute $\boldsymbol{\nabla} f, \boldsymbol{\nabla} g, \boldsymbol{\nabla}^{2} f, \boldsymbol{\nabla}^{2} g, \boldsymbol{\nabla} \cdot \mathbf{u}$, $\boldsymbol{\nabla} \times \mathbf{u}, \boldsymbol{\nabla} \cdot \mathbf{w}, \boldsymbol{\nabla} \times \mathbf{w}$. [Check your results: at the point $(x, y, z)^{T}=(1,1,1)^{T}$, we have $\boldsymbol{\nabla} f=\left(-2 \mathrm{e}^{-1}, 0, \mathrm{e}^{-1}\right)^{T}, \boldsymbol{\nabla} g=(0,1,-1)^{T}, \boldsymbol{\nabla}^{2} f=\frac{2}{\mathrm{e}}, \boldsymbol{\nabla}^{2} g=2, \boldsymbol{\nabla} \cdot \mathbf{u}=2, \boldsymbol{\nabla} \times \mathbf{u}=-\mathbf{e}_{z}$, $\left.\boldsymbol{\nabla} \cdot \mathbf{w}=2, \boldsymbol{\nabla} \times \mathbf{w}=-3 \mathbf{e}_{z}.\right]$
(b) Prove the following identities for general smooth scalar and vector fields, $f(x, y, z), g(x, y, z)$ and $\mathbf{u}(x, y, z), \mathbf{w}(x, y, z)$. Do not represent \mathbf{u}, \mathbf{w} and $\boldsymbol{\nabla}$ as column vectors; instead use index notation. Recommendation: Use Cartesian coordinates and write all indices downstairs.
(i) $\boldsymbol{\nabla}(f g)=f(\boldsymbol{\nabla} g)+g(\boldsymbol{\nabla} f)$
(ii) $\boldsymbol{\nabla}(\mathbf{u} \cdot \mathbf{w})=\mathbf{u} \times(\boldsymbol{\nabla} \times \mathbf{w})+\mathbf{w} \times(\boldsymbol{\nabla} \times \mathbf{u})+(\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{w}+(\mathbf{w} \cdot \boldsymbol{\nabla}) \mathbf{u}$
(iii) $\boldsymbol{\nabla} \cdot(f \mathbf{u})=f(\boldsymbol{\nabla} \cdot \mathbf{u})+\mathbf{u} \cdot(\boldsymbol{\nabla} f)$
(c) Check the identities from (b) explicitly for the fields given in (a). [Check your results: at the point $(x, y, z)^{T}=(1,-1,1)^{T}$, we have $\boldsymbol{\nabla}(f g)=\mathrm{e}^{-1}(2,1,0)^{T}, \boldsymbol{\nabla}(\mathbf{u} \cdot \mathbf{w})=(-2,-3,0)^{T}$, $\boldsymbol{\nabla} \cdot(f \mathbf{u})=0$.]

Example Problem 6: Line integral of magnetic field of a current-carrying conductor [4]

Points: (a)[1](E); (b)[1](M); (c)[1](M); (d)[1](E)
This problem illustrates that $\partial_{i} B^{j}-\partial_{j} B^{i}=0$ does not necessarily imply $\oint \mathrm{d} \mathbf{r} \cdot \mathbf{B}=0$.
The magnetic field of an infinitely long current-carrying conductor has the form

$$
\mathbf{B}(\mathbf{r})=\frac{c}{x^{2}+y^{2}}\left(\begin{array}{c}
-y \\
x \\
0
\end{array}\right)
$$

(a) Show that $\partial_{i} B^{j}-\partial_{j} B^{i}=0$ holds if $\sqrt{x^{2}+y^{2}} \neq 0$.
(b) Compute the line integral $W\left[\gamma_{C}\right]=\int_{\gamma_{C}} \mathrm{~d} \mathbf{r} \cdot \mathbf{B}$ for the closed path along the circle C with radius R around the origin, $\gamma_{C}=\left\{\mathbf{r}(t)=R(\cos t, \sin t, 0)^{T} \mid t \in[0,2 \pi]\right\}$.
(c) Compute the line integral $W\left[\gamma_{R}\right]=\int_{\gamma_{R}} \mathrm{~d} \mathbf{r} \cdot \mathbf{B}$ for the closed path γ_{R} along the edges of the rectangle with corners $(1,0,0)^{T},(2,0,0)^{T},(2,3,0)^{T}$ and $(1,3,0)^{T}$.
(d) Are your results from (a) to (c) consistent with each other? Explain!

Example Problem 7: Sketching a vector field [Bonus]

Points: (a)[1](M,Bonus); (b)[1](M,Bonus)
Sketch the following vector fields in two dimensions, with $\mathbf{r}=(x, y)^{T}$:
(a) $\mathbf{u}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad \mathbf{r} \mapsto \mathbf{u}(\mathbf{r})=(\cos y, 0)^{T}$.
(b) $\mathbf{w}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad \mathbf{r} \mapsto \mathbf{w}(\mathbf{r})=\frac{1}{\sqrt{x^{2}+y^{2}}}(x,-y)^{T}$.

For several points \mathbf{r} in the domain of the vector field map (e.g. \mathbf{u}), the sketch should depict the corresponding vectors, $\mathbf{u}(\mathbf{r})$, from the codomain of the map. For a chosen point \mathbf{r} one draws an arrow with midpoint at \mathbf{r}, whose direction and length represents the vector $\mathbf{u}(\mathbf{r})$. The unit of length may be chosen differently for vectors, \mathbf{r}, from the domain and vectors, $\mathbf{u}(\mathbf{r})$, from the codomain, in order to avoid arrows from overlapping and to obtain an uncluttered figure (e.g. by drawing unit vectors $\hat{\mathbf{u}}(\mathbf{r})$ shorter than unit vectors $\hat{\mathbf{r}})$. Indeed, for the visual depiction of codomain vectors usually only their directions and relative lengths are of interest, not their absolute lengths.

Example Problem 8: Matrix multiplication [2]

Points: [2](E)
Compute all possible products of pairs of the following matrices, including their squares, where possible:

$$
P=\left(\begin{array}{rrr}
4 & -3 & 1 \\
2 & 2 & -4
\end{array}\right), \quad Q=\left(\begin{array}{rrr}
3 & 0 & 1 \\
1 & 2 & 5 \\
1 & -6 & -1
\end{array}\right), \quad R=\left(\begin{array}{rr}
3 & 0 \\
1 & 2 \\
1 & -6
\end{array}\right) .
$$

[Check your results: the sum of all elements of the first column of the following matrix products is: $\sum_{i}(P Q)^{i}=14, \sum_{i}(P R)_{1}^{i}=14, \sum_{i}(Q R)^{i}{ }_{1}=16, \sum_{i}(R P)^{i}{ }_{1}=12, \sum_{i}(Q Q)^{i}{ }_{1}=16$.]

[Total Points for Example Problems: 21]

Homework Problem 1: Line integral of a vector field [2]

Points: [2](M)
Compute the line integral $W[\gamma]=\int_{\gamma} \mathrm{d} \mathbf{r} \cdot \mathbf{u}$ of the three-dimensional vector field $\mathbf{u}(\mathbf{r})=\left(x \mathrm{e}^{y z}, y \mathrm{e}^{x z}, z \mathrm{e}^{x y}\right)^{T}$ along the straight line γ from the point $\mathbf{0}=(0,0,0)^{T}$ to the point $\mathbf{b}=b(1,2,1)^{T}$, with $b \in \mathbb{R}$. [Check your result: for $b^{2}=\ln 2, W[\gamma]=7 / 2$.] Does the line integral depend on the path taken?

Homework Problem 2: Divergence [1]

Points: (a) $[E](0,5)$, (b) $[E](0,5)$.
(a) Compute the divergence, $\boldsymbol{\nabla} \cdot \mathbf{u}$, of the vector field

$$
\mathbf{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad \mathbf{u}(\mathbf{r})=\left(x y z, z^{2} y^{2}, z^{3} y\right)^{T} .
$$

[Check your results: if $\mathbf{r}=(1,1,1)^{T}$, then $\boldsymbol{\nabla} \cdot \mathbf{u}=6$.]
(b) Let \mathbf{a} and \mathbf{b} be constant vectors in \mathbb{R}^{3}. Show that $\boldsymbol{\nabla} \cdot[(\mathbf{a} \cdot \mathbf{r}) \mathbf{b}]=\mathbf{a} \cdot \mathbf{b}$.

Rule of thumb: $\boldsymbol{\nabla}$ 'kills' the \mathbf{r} in a way that generates another meaningful scalar product.

Homework Problem 3: Curl [1]

Points: (a)[E](0,5), (b)[E](0,5).
(a) Compute the curl, $\boldsymbol{\nabla} \times \mathbf{u}$, of the vector field $\mathbf{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathbf{u}(\mathbf{r})=\left(x y z, y^{2} z^{2}, x y z^{3}\right)^{T}$. [Check your result: if $\mathbf{r}=(3,2,1)^{T}$, then $\boldsymbol{\nabla} \times \mathbf{u}=(-5,4,-3)^{T}$.
(b) Let \mathbf{a} and \mathbf{b} be constant vectors in \mathbb{R}^{3}. Show that $\boldsymbol{\nabla} \times[(\mathbf{a} \cdot \mathbf{r}) \mathbf{b}]=\mathbf{a} \times \mathbf{b}$. Rule of thumb: $\boldsymbol{\nabla}$ 'kills' the \mathbf{r} in a way that generates another meaningful vector product.

Homework Problem 4: Derivatives of curl of vector field [1]

Points: (a)[1](M), (b)[0,5](M,Bonus), (c)[0,5](E,Bonus).
Let $\mathbf{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a smooth vector field. Show that the following identities hold:
(a) $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{u})=0$.
(b) $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{u})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{u})-\boldsymbol{\nabla}^{2} \mathbf{u}$.

Recommendation: Use Cartesian coordinates and write all indices downstairs.
(c) Check both identities for the field $\mathbf{u}(x, y, z)=\left(x^{2} y z, x y^{2} z, x y z^{2}\right)^{T}$.

Homework Problem 5: Nabla identities [5]

Points: (a)[2](E); (bi,ii)[2](M); (biii)[0,5](M,Bonus); (ci,ii)[1](E); (ciii)[0,5](E,Bonus).
(a) Consider the scalar field $f(x, y, z)=y^{-1} \cos z$ and two vector fields, $\mathbf{u}(x, y, z)=\left(-y, x, z^{2}\right)^{T}$ and $\mathbf{w}(x, y, z)=(x, 0,1)^{T}$. Compute $\boldsymbol{\nabla} f, \boldsymbol{\nabla}^{2} f, \boldsymbol{\nabla} \cdot \mathbf{u}, \boldsymbol{\nabla} \times \mathbf{u}, \boldsymbol{\nabla} \cdot \mathbf{w}, \boldsymbol{\nabla} \times \mathbf{w}$. [Check your results: at the point $(x, y, z)^{T}=(1,1,0)^{T}, \boldsymbol{\nabla} f=-\mathbf{e}_{y}, \boldsymbol{\nabla}^{2} f=1, \boldsymbol{\nabla} \cdot \mathbf{u}=0, \boldsymbol{\nabla} \times \mathbf{u}=2 \mathbf{e}_{z}$, $\boldsymbol{\nabla} \cdot \mathbf{w}=1, \boldsymbol{\nabla} \times \mathbf{w}=\mathbf{0}$.]
(b) Prove the following identities for general smooth scalar and vector fields $f(x, y, z), \mathbf{u}(x, y, z)$ and $\mathbf{w}(x, y, z)$. Do not represent \mathbf{u}, \mathbf{w} and $\boldsymbol{\nabla}$ as column vectors; instead use index notation. Recommendation: Use Cartesian coordinates and write all indices downstairs.
(i) $\boldsymbol{\nabla} \cdot(\mathbf{u} \times \mathbf{w})=\mathbf{w} \cdot(\boldsymbol{\nabla} \times \mathbf{u})-\mathbf{u} \cdot(\boldsymbol{\nabla} \times \mathbf{w})$
(ii) $\boldsymbol{\nabla} \times(f \mathbf{u})=f(\boldsymbol{\nabla} \times \mathbf{u})-\mathbf{u} \times(\boldsymbol{\nabla} f)$
(iii) $\boldsymbol{\nabla} \times(\mathbf{u} \times \mathbf{w})=(\mathbf{w} \cdot \boldsymbol{\nabla}) \mathbf{u}-(\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{w}+\mathbf{u}(\boldsymbol{\nabla} \cdot \mathbf{w})-\mathbf{w}(\boldsymbol{\nabla} \cdot \mathbf{u})$
(c) Check the identities from (b) explicitly for the fields given in (a).
[Check your results: at the point $(x, y, z)^{T}=(1,1,0)^{T}: \boldsymbol{\nabla} \cdot(\mathbf{u} \times \mathbf{w})=2, \boldsymbol{\nabla} \times(f \mathbf{u})=$ $\left.(0,0,1)^{T}, \boldsymbol{\nabla} \times(\mathbf{u} \times \mathbf{w})=(0,2,0)^{T}.\right]$

Homework Problem 6: Line integral of vector field on non-simply connected domain [3]
Points: (a)[1](E); (b)[2](M); (c)[2](A,Bonus)
Consider the vector field

$$
\mathbf{B}(\mathbf{r})=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\left(\begin{array}{c}
-y x^{n} \\
x^{n+1} \\
0
\end{array}\right)
$$

(a) For what value of the exponent n does $\partial_{i} B^{j}-\partial_{j} B^{i}=0$ hold, if $\sqrt{x^{2}+y^{2}} \neq 0$?

In the following questions, use the value of n found in (a).
(b) Compute the line integral $W\left[\gamma_{C}\right]=\oint_{\gamma_{C}} \mathrm{~d} \mathbf{r} \cdot \mathbf{B}$ for the closed path along the circle C with radius R around the origin, $\gamma_{C}=\left\{\mathbf{r}(t)=R(\cos t, \sin t, 0)^{T} \mid t \in[0,2 \pi]\right\}$.
(c) What is the value of the line integral $W\left[\gamma_{T}\right]=\oint_{\gamma_{T}} \mathrm{~d} \mathbf{r} \cdot \mathbf{B}$ for the closed path γ_{T} along the edges of the triangle with corners $(-1,-1,0)^{T},(1,-1,0)^{T}$ and $(a, 1,0)^{T}$, with $a \in \mathbb{R}$? Sketch the result as function of $a \in[-2,2]$. Hint: You may write down the result without a calculation, but should offer a justification for it.

Homework Problem 7: Sketching a vector field [Bonus]

Points: (a)[1](M,Bonus); (b)[1](M,Bonus)
Sketch the following vector fields in two dimensions:
(a) $\mathbf{u}(x, y)=(\cos x, 0)^{T}$,
(b) $\mathbf{w}(x, y)=(2 y,-x)^{T}$.

Homework Problem 8: Matrix multiplication [2]

Points: [2](M)
Compute all possible products of pairs of the following matrices, including their squares, where possible:

$$
P=\left(\begin{array}{rrr}
2 & 0 & 3 \\
-5 & 2 & 7 \\
3 & -3 & 7 \\
2 & 4 & 0
\end{array}\right), \quad Q=\left(\begin{array}{rr}
-3 & 1 \\
-1 & 0 \\
2 & 1
\end{array}\right), \quad R=\left(\begin{array}{rrr}
6 & -1 & 4 \\
4 & 4 & -4 \\
-4 & -4 & 6
\end{array}\right) .
$$

[Check your results: the sum of all elements of the first column of the following matrix products is: $\left.\sum_{i}(P Q)_{1}^{i}=25, \sum_{i}(P R)^{i}{ }_{1}=-44, \sum_{i}(R Q)^{i}=-5, \sum_{i}(R R)_{1}^{i}=8.\right]$

