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Sheet 02: Vector Spaces, Euclidean Spaces

Solution Optional Problem 1: Vector space of real functions [2]

We have to verify that all the axioms for a vector space are satisfied. First, (F, 4+ ) indeed has all
the properties of an abelian group:

(i)  Closure holds by definition: adding two functions from F' again yields a function in F. v/

(ii,v) Associativity and commutativity follow trivially from the corresponding properties of R. For
example associativity:

£+ g+ @) = 1) + [g+R] (@) = f(@) + (g(2) + ()
— (f(@)+9(x)) +h(2) = [f +9](x) + hiw) = | [f +9] +](2). ¥
(iii) The neutral element is the null function, defined by fou : 2 — fou(z) =0, since f 4+ foun :
= f(z)+ fou(x) = f()+ 0= f(x). vV

(iv) The additive inverse of f is —f, defined by —f : = — (—f)(x) = —f(x), since f+(—f) :
z = f(z)+ (=f(z))=0. v

Moreover, multiplication of any function with a scalar also has all the properties required for
(F, +,+) to be a vector space. Closure holds per definition. Furthermore:

(vi) Multiplication of a sum of scalars and a function is distributive:

[(y+ N - fl(@) = (v + N f (@) = 7f (@) + Af(2) = [y« f] () + [A- f] (=)
=[y-fH+ASfl@). v

(vii) Multiplication of a scalar and a sum of functions is distributive:

(4 )] (@) = A([f+9)@)) = A(F@) + 9(2)) = M () + Ag(a)
=X fl@)+[A-gl@)=[A-f+Ar-g](x). v

(viii) Multiplication of a product of scalars and a function is associative:
() - 1) = (N f(@) =7 (M (@) =3[A- F1(2) = [y+ (- P (@) v

(ix) Neutral element: [1- f](z) = 1f(z) = f(z). v


https://moodle.lmu.de/course/view.php?id=17525

Therefore, the triple (F, 4 ,+) is an R-vector space.

Solution Optional Problem 2: Vector space of polynomials of degree n [3]

(a)

The definition of addition of polynomials and the usual addition rule in R yield

Pa() + pp(2) = apx® + a1’ + ... apx™ + b’ + bzt + .. bpa”
= (ag +bo)z’ + (a1 +by)x' + ... (an + bp)2™ = pasp(T) ,

sincea+b = (ag+by,...,a, +b,)T € R". Therefore ’pa+pb = Patb ‘ v

The definition for the multiplication of a polynomial with a scalar and the usual multiplication
rule in R vyield

cpal(z) = c(apr® + a1t + ... a,2"™) = capr® + carxt + ... canx™ = pea(w)

since ca = (cay, . .., ca,)’ € R™. Therefore [C*Pa=DPeal vV

We have to verify that all the axioms for a vector space are satisfied. First, (P,, +) indeed
has all the properties of an abelian group:

(i) Closure: adding two polynomials of degree n again yields a polynomial of degree at most
n. v’

(ii,v) Associativity and commutativity follow trivially from the corresponding properties of
R"*!. For example, consider associativity:

pa+(pb+pc) = pPatDbic = Pa+(b+c) = P(a+b)+c = Pa+b +p. = (pa+pb)+pc- v

(iii) The neutral element is the null polynomial py, i.e. the polynomial whose coefficients are
all equal to 0. Vv

(iv) The additive inverse of p, is p_a. v/

Moreover, multiplication of any polynomial with a scalar also has all the properties required
for (P,, +,+) to be a vector space. Multiplication with a scalar ¢ € R satisfies closure, since
C*Pa = Pea again yields a polynomial of degree n. v All the rules for multiplication by scalars
follow directly from the corresponding properties of R"*!. v/

Each element p, € P, is uniquely identified by the element a € R™"! — this identification is
a bijection between P, and R""!, hence (P,, +,-) is isomorphic to R""! and has dimension
n+1. v

The bijection between P, and R™™! associates the standard basis vectors in R™™!, namely
e, = (0,...1,...,0)T (with a 1 at position k and 0 < k < n), with a basis in the vector
space (P,, +,+), namely {pe,,- - -, Pe, }, corresponding to the monomials {1,z,z?%, ... z"},
since pe, () = z*. This statement corresponds to the obvious fact that every polynomial of
degree n can be written as linear combination of monomials of degree < n.

Solution Optional Problem 3: Unconventional inner products on R? [2]

All the defining properties of an inner product are satisfied:



(i) Symmetric:

(x,y) = 2191 + T1Y2 + T2y1 + 3T2y2 = Y171 + Y122 + Y21 + 3Yors = (y,X) . V

(Ax+y,2z) = (Azy +y1)z1 + (A +y1) 20 + (Am2 + y2) 21 + 3( Az + 12) 22
( xr121 + )\33122 + )\1’22’1 + 3)\1’222) -+ (y121 —+ Y129 —+ Ya221 + 3y222)
=Mx,z) +(y,2). v

(iii) Positive semi-definite:
(X,X) = 2121 + 2109 + Toxy + 3T9T0 = (T + 22)* + 222 > 0.V

If (x,x), then x = (0,0)7. v/

Solution Optional Problem 4: Inner product and norm for the vector space of continuous
functions [3]

(a) All the defining properties of an inner product are satisfied:

() Symmetrc: (19) = [ da f@)gte) = [ dea@rrie) = t0.0).v

1

(ii,iii) Linear: (A f4+g,h) = /Idx (Af(x) + g(x))h(z)
2 [ do p)ha) + [ deglalh@) = AL+ (0.1
(iv) Positive semi-definite:  (f, f) = /Idxfz(a:) >0

Since the integrand is everywhere > 0, the integral is also > 0. v* Moreover, since f is continuous,
the integral can equal 0 if and only if the integrand f? vanishes everywhere. Therefore f(z) = 0,
i.e. f is the zero function. v/

Optional: mathematical justification for the last statement: Suppose f # 0, then there exists an

xg € I such that (f(zg))? # 0. Since f is continuous, (f(z))? is non-zero in some neighbourhood

of z, i.e., there exists a § > 0, such that for all |zo—z| < &, |(f())?| > £|(f(%0))?|. Thus the inte-

gral must be larger than zero; e.g. we can find a lower bound as follows: (f, f) = [, dz (f(z))* >

f;;ﬁf de (f(x))? > ;025 dz 3(f(x0))* = 6f(z0)*> > 0. Furthermore, for f(z) = 0, we have
= [,dz (f(z))? flde—O.\/
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(b) <f1,f2>=/_11dxf1(a:)f2(:):):/

-1

dx sin <£> cos (£> = @ ,

™ s

because the integrand is antisymmetric. Thus the two functions are 'orthogonal’ to each other.



Explicitly, the substitution v = sin (xz/7), du = dx cos (x/7) /7 gives:

/_11 e sin (;) s (%) _ 71./s:n((}rl)) du — %uz sin(2) o

_ 1 (1
p fsm(;)

[Total Points for Optional Problems: 10]




