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Solution Optional Problem 1: Vector space of real functions [2]

We have to verify that all the axioms for a vector space are satisfied. First, (F, ) indeed has all
the properties of an abelian group:

(i) Closure holds by definition: adding two functions from F again yields a function in F . X

(ii,v) Associativity and commutativity follow trivially from the corresponding properties of R. For
example associativity:[

f
[
g h

]]
(x) = f(x) +

[
g h

]
(x) = f(x) +

(
g(x) + h(x)

)
=
(
f(x)+g(x)

)
+h(x) =

[
f g

]
(x) + h(x) =

[[
f g

]
h
]
(x) . X

(iii) The neutral element is the null function, defined by fnull : x 7→ fnull(x) ≡ 0, since f fnull :
x 7→ f(x) + fnull(x) = f(x) + 0 = f(x). X

(iv) The additive inverse of f is −f , defined by −f : x 7→ (−f)(x) ≡ −f(x), since f (−f) :
x 7→ f(x) + (−f(x)) = 0. X

Moreover, multiplication of any function with a scalar also has all the properties required for
(F, , •) to be a vector space. Closure holds per definition. Furthermore:

(vi) Multiplication of a sum of scalars and a function is distributive:[
(γ + λ) • f

]
(x) = (γ + λ)f(x) = γf(x) + λf(x) =

[
γ • f

]
(x) +

[
λ • f

]
(x)

=
[
γ • f λ • f

]
(x) . X

(vii) Multiplication of a scalar and a sum of functions is distributive:[
λ • (f + g)

]
(x) = λ

([
f g

]
(x)
)
= λ

(
f(x) + g(x)

)
= λf(x) + λg(x)

=
[
λ · f

]
(x) +

[
λ · g

]
(x) =

[
λ · f λ · g

]
(x) . X

(viii) Multiplication of a product of scalars and a function is associative:[
(γλ) • f

]
(x) = (γλ)f(x) = γ

(
λf(x)

)
= γ

[
λ • f

]
(x) =

[
γ • (λ • f)

]
(x) . X

(ix) Neutral element:
[
1 · f

]
(x) = 1f(x) = f(x). X
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Therefore, the triple (F, , •) is an R-vector space.

Solution Optional Problem 2: Vector space of polynomials of degree n [3]

(a) The definition of addition of polynomials and the usual addition rule in R yield

pa(x) + pb(x) = a0x
0 + a1x

1 + . . . anx
n + b0x

0 + b1x
1 + . . . bnx

n

= (a0 + b0)x
0 + (a1 + b1)x

1 + . . . (an + bn)x
n = pa+b(x) ,

since a+ b = (a0 + b0, . . . , an + bn)
T ∈ Rn+1. Therefore pa pb = pa+b . X

The definition for the multiplication of a polynomial with a scalar and the usual multiplication
rule in R yield

cpa(x) = c(a0x
0 + a1x

1 + . . . anx
n) = ca0x

0 + ca1x
1 + . . . canx

n = pca(x) ,

since ca = (ca0, . . . , can)
T ∈ Rn+1. Therefore c • pa = pca . X

(b) We have to verify that all the axioms for a vector space are satisfied. First, (Pn, ) indeed
has all the properties of an abelian group:

(i) Closure: adding two polynomials of degree n again yields a polynomial of degree at most
n. X

(ii,v) Associativity and commutativity follow trivially from the corresponding properties of
R
n+1. For example, consider associativity:

pa (pb pc) = pa pb+c = pa+(b+c) = p(a+b)+c = pa+b pc = (pa pb) pc.X

(iii) The neutral element is the null polynomial p0, i.e. the polynomial whose coefficients are
all equal to 0. X

(iv) The additive inverse of pa is p−a. X

Moreover, multiplication of any polynomial with a scalar also has all the properties required
for (Pn, , •) to be a vector space. Multiplication with a scalar c ∈ R satisfies closure, since
c •pa = pca again yields a polynomial of degree n. X All the rules for multiplication by scalars
follow directly from the corresponding properties of Rn+1. X

Each element pa ∈ Pn is uniquely identified by the element a ∈ Rn+1 – this identification is
a bijection between Pn and Rn+1, hence (Pn, , •) is isomorphic to Rn+1 and has dimension
n+ 1. X

(c) The bijection between Pn and Rn+1 associates the standard basis vectors in Rn+1, namely
ek = (0, . . . 1, . . . , 0)T (with a 1 at position k and 0 ≤ k ≤ n), with a basis in the vector
space (Pn, , •), namely {pe0 , . . . , pen}, corresponding to the monomials {1, x, x2, . . . , xn},
since pek(x) = xk. This statement corresponds to the obvious fact that every polynomial of
degree n can be written as linear combination of monomials of degree ≤ n.

Solution Optional Problem 3: Unconventional inner products on R2 [2]

All the defining properties of an inner product are satisfied:
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(i) Symmetric:

〈x,y〉 = x1y1 + x1y2 + x2y1 + 3x2y2 = y1x1 + y1x2 + y2x1 + 3y2x2 = 〈y,x〉 . X

(ii,iii) Linear:

〈λx+ y, z〉 = (λx1 + y1)z1 + (λx1 + y1)z2 + (λx2 + y2)z1 + 3(λx2 + y2)z2

= (λx1z1 + λx1z2 + λx2z1 + 3λx2z2) + (y1z1 + y1z2 + y2z1 + 3y2z2)

= λ〈x, z〉+ 〈y, z〉 . X

(iii) Positive semi-definite:

〈x,x〉 = x1x1 + x1x2 + x2x1 + 3x2x2 = (x1 + x2)
2 + 2x22 ≥ 0 . X

If 〈x,x〉, then x = (0, 0)T . X

Solution Optional Problem 4: Inner product and norm for the vector space of continuous
functions [3]

(a) All the defining properties of an inner product are satisfied:

(i) Symmetric: 〈f, g〉 =
�
I

dx f(x)g(x) =

�
I

dx g(x)f(x) = 〈g, f〉 .X

(ii,iii) Linear: 〈λ · f + g, h〉 =
�
I

dx (λf(x) + g(x))h(x)

= λ

�
I

dx f(x)h(x) +

�
I

dx g(x)h(x) = λ〈f, h〉+ 〈g, h〉 . X

(iv) Positive semi-definite: 〈f, f〉 =
�
I

dxf 2(x) ≥ 0 .

Since the integrand is everywhere ≥ 0, the integral is also ≥ 0. X Moreover, since f is continuous,
the integral can equal 0 if and only if the integrand f 2 vanishes everywhere. Therefore f(x) = 0,
i.e. f is the zero function. X

Optional: mathematical justification for the last statement: Suppose f 6= 0, then there exists an
x0 ∈ I such that (f(x0))

2 6= 0. Since f is continuous, (f(x))2 is non-zero in some neighbourhood
of x0, i.e., there exists a δ > 0, such that for all |x0−x| < δ, |(f(x))2| > 1

2
|(f(x0))2|. Thus the inte-

gral must be larger than zero; e.g. we can find a lower bound as follows: 〈f, f〉 =
�
I
dx (f(x))2 ≥� x0+δ

x0−δ dx (f(x))2 >
� x0+δ
x0−δ dx 1

2
(f(x0))

2 = δf(x0)
2 > 0. Furthermore, for f(x) ≡ 0, we have

〈f, f〉 =
�
I
dx (f(x))2 =

�
I
dx 0 = 0. X

(b) 〈f1, f2〉 =
� 1

−1

dx f1(x)f2(x) =

� 1

−1

dx sin
(x
π

)
cos
(x
π

)
= 0 ,

because the integrand is antisymmetric. Thus the two functions are ’orthogonal’ to each other.
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Explicitly, the substitution u = sin (x/π), du = dx cos (x/π) /π gives:

� 1

−1

dx sin
(x
π

)
cos
(x
π

)
= π

� sin( 1
π )

− sin( 1
π )

duu =
πu2

2

∣∣∣∣sin( 1
π )

− sin( 1
π )

= 0 .

[Total Points for Optional Problems: 10]
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