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Sheet 02: Vector Spaces, Euclidean Spaces

Solution Example Problem 1: /1 — 22 Integrals by trigonometric substitution [3]

()

Since %arcsinx = ﬁ the primitive function of the integrand is known, and we may

conclude immediately that I(z) = [arcsin z]§ = arcsin 2.

Equivalently, we may compute the integral using the substitution z = sin y, with dx = dyg—z =

dysin’y = dycosy and V1 — 22 = /1 —sin?y = cosy. The new integration boundaries
are found by evaluating y = arcsinx at x =0 and z = z:

z 1 arcsin z 1 arcsin z
I(z :/ dx—:/ dy cos :/ dy = |arcsin z|.
(2) Nyt | yoeosy o= | y

rcsin 0

Check result: [(\/%) = arcsin(\/%) =7, since sin(§) = \/% v
dI(z) d 1
General check: = —arcsinz = -V
dz dz V1—22
We substitute x = %sin y, with doz = dyg—z = dy% cosy and 1 — a?x? = cosy:
z 1 arcsin(az) 1.
](z):/ dm\/l—a%z:?:—/ dy cosycosy = —1(b).
0 Q@ Jarcsin0 a

We compute the cos®y integral, with upper limit b = arcsin(az), by integrating by parts,
with u = cosy, v =siny, v’ = —siny, v’ = cosy:

~ b u v wv—fu'v b b

1(b) :/ dy cosycosy = [cosy Siny} —/ dy [—siny|siny

cos2 y—1

= b+ cosbsinb — I(b)

= I(b) = $[b+sinbcosb] = %[b—l—sinb\/l —sinzb].

We expressed the r.h.s. through sin, because the argument of I(b) is b = arcsin(az).

= I(z) = 1f(arcsin(az)) = % [arcsin(az) + azm} :

a

Check result: for a = % I(\/§) = arcsin(\/ii) + L. /1-1= T+ % v

d
General check: =
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Solution Example Problem 2: Vector space axioms: rational numbers [3]

(a) First, we show that (Q?,+) forms an abelian group.
(i)  Closure holds by definition. v/

o s () (] ()-(219)- )
G l-C) -

(iii) Neutral element: (8) is the neutral element. v/
o
(iv) Additive inverse: (_i ) € 7 is the additive inverse of ( ) cQ?. v
(v) Commutativity: follows (component-wise) from the commutativity of Q3. v/
Second, we show that scalar multiplication, -, likewise has the properties required for (Q?,

y4

0
closure holds by definition. Moreover:

(vi) Multiplication of a sum of scalars and a vector is distributive:

e (1) = (0m) = Q) = (2) o (22)- 4

(vii) Multiplication of a scalar and a sum of vectors is distributive:

)= ()] - G ) -2 () 2 () <

(viii) Multiplication of a product of scalars and a vector is associative:

oo ()= (29) - ()]
(ix) Neutral element: 1 - @;) = (i;) v

Therefore, the triple (Q?, +, -) represents a QQ-vector space.

)

to form a vector space. Since the product of two rational numbers is always rational, (— - =

(b) The set of integers Z does not form a field, since not for each a € Z \ {0} a multiplicative
inverse a~! € Z exists (e.g. the equation 2-a = 1 has no solution within the integers). Hence,

it is also not possible to construct any vector space over the integers.

(Plpz)
(192)

)



Solution Example Problem 3: Real vector space with unconventional composition rules
[Bonus]

First, we show that (V;, +) forms an abelian group.
(i)  Closure holds by definition. v/
(ii) Associativity: (Vx+vy>+vz = ViyytatV. = V(z+y+a)+z+a = Vaty+z+2a

= Vot (y+z4a)+a = V:c+vy+z+a = Vx+(vy+vz) -V

(iii) Neutral element: VotVoo = Vorcapa = Ve, = 0=v_,.V

(iv) Additive inverse: VotV_i 90 = Var(ca—20)4a = V-a =0, = —V,=V_, o,. V

(v) Commutativity : Vo+Vy = Viiyia = Vytata = VyFve . v

Second, we show that scalar multiplication, - , likewise has the properties required for (V,, +,°)

to form a vector space. Closure holds by definition. Moreover:
(vi) Multiplication of a sum of scalars and a vector is distributive:

(v +A)ev, = Viy+Nzta(y+A-1) = Vyat+a(y—1)+Az+a(A-1)+a
= Vyzta(y—1) + Vazta(A-1) = V*Vz +Aev,. v

(vii) Multiplication of a scalar and a sum of vectors is distributive:

/\'<Vac + Vy) = A Vyiyta = Va(z4y+a)+a(A-1) = Vizt+a(A-1)+Ay+a(A—1)+a
= Vazta(r-1) F Vagrar—1) = Ave+ Aev, .V

(viii) Multiplication of a product of scalars and a vector is associative:
(’7/\)'Vx = V(Nz+a(vA-1) = Vy(Qaz+a(A-1))+a(y—1) = V*Viz+a(A-1) = 7'(/\"’1’) -V

(ix) Neutral element: 1+v, = vV, 41-1) = Vo . vV

Therefore, the triple (V,, +,+) represents an R-vector space.

Solution Example Problem 4: Linear independence [3]

(a) The three vectors are linearly independent if and only if the only solution to the equation

0 1 2
0=a'vy +a’vy + a®vy = a! (1) +a? <—1) +a® (—1) . with o €R, (1)
2 1 4

is the trivial one, a' = a*> = a® = 0. The vector equation (1) yields a system of three

equations, (i)-(iii), one for each of the three components of (1), which we solve as follows:

(i)  0a'+1a®+24°=0 4 (iv) |a® = —2d°
(i)  la'—1a*—1a® =0 N ) I
(i)  2a' +1a* +4a* =0 @8 (i =g



(i) yields (iv): a®> = —2a3. (iv) inserted into (ii) yields (v): a* = —a3. Inserting (iv) and (v)
into (iii) yields no new information. There are thus infinitely many non-trivial solutions (one
for every value of a®> € R), hence vy, vy and v; are linearly independent.

The desired vector v, = (x,y, 2)T should be linearly independent from v, and vj, i.e. its
components z, y and z should be chosen such that the equation 0 = a'v; +a*v}, + a’v3 has
no non-trivial solution, i.e. that it implies a' = a? = a® = 0:

(i)  0a'+xa®+2a* =0 4 (iv) choose [z = 0], then a* = 0.
(i) la'+ya®>—1a*=0 M (v)  choose |y = 0], then a' = 0.
(i)  2a' +za® +4a® =0 8O (vi)  choose [z = 1], then a? = 0.
(i) yields (iv): 2a® = —za?; to enforce a® = 0 we choose = = 0. (iv) inserted into (ii) yields
(v): a' = —ya?; to enforce a' = 0 we choose y = 0. (iv,v) inserted into (iii) yields za? = 0;

to enforce a®> = 0 we choose z = 1. Thus [ v}, = (0,0,1)” | is a choice for which v, v}, are
v3 linearly indepedent. This choice is not unique — there are infinitely many alternatives; one
of them, e.g. is v, = (0,1,0)7.

Solution Example Problem 5: Einstein summation convention [2]

(a)

a;b® = ba; is [true], since ¢ and j are dummy variables which are summed over, hence we
may rename as we please:

2 2
a;bt = Zaibi = a1b! + asb® = blay + b*ay = ijaj = bjaj. v
i=1 j=1
a;0' ;b7 = aib® is [true], since ¢'; is nonzero only for i = j, in which case it equals 1:
aiéijbj = a (511) bl + a; (512) b2 + a9 (621) bl + a9 (522) b2 = albl + a2b2 = akbk Y
~—— —— ~—— ——

=1 =0 =0 =1

aibjajbk = apbla;b® is , since the indices 7 and k are not repeated, i.e. they are not
summed over and hence may not renamed. For example, for i = 1 and & = 2 the left-hand
side, a;(b'a; + b%az)b?, clearly differs from right-hand side, ay(b'a; + b%as)b'.

arab'bt + b2ajasb? = (a;b')? is |truel, since multiplication is associative and commutative
and we may rename dummy indices as we please:

alaiblbi + bzajagbj :alblaibi + CLQbQCLibi = (Clel + CLQbQ)(CLibi) = (aﬂﬂ)(albl) = (azb’)Q v

In practice, the arguments illustrated above need not be written out explicitly. Relations such as
(a), (b) and (d) may be simply written down without further discussion.



Solution Example Problem 6: Angle, orthogonal decomposition [2]

a-b 3-7T+4-1 1 i
a) cos(Z(a,b)) = = =— = J(ab)=|-
@) el = o) ~ Voo vas1 v o S

SN U S et
(c-d)d 3-(-1)+1-2 /-1 1/ 1 AN T -
b = = == : : ‘ :
®F < ="jap r+1 \ 2) "5l d o
| i
P A AR s I
cL=¢c—¢ = 1 5\—2/) " |5\1 R T T "
Consistency check: ¢, -¢j=5(1-14—-2-7) =0. v
Solution Example Problem 7: Projection onto an orthonormal basis [2]
(a) (el,€)) =3[1-1+1-1] =1 (el,€h) = 3[1-14+(=1)-1] =0
1»*~1/ 7 2 — 1»%~2/ 7 9 - Y
(ehoeh) = 111+ (~1)-(~1)] =1

The two vectors are normalized and orthogonal to each other, (e;,eg) = 0;; |, therefore they

form an orthonormal basis of R2. v/

(b) Since the vectors {e/,e,} form an orthonormal basis, the component w’ of the vector w =
(—2,3)T = elw' with respect to this basis is given by the projection w’ = (e, w) (with
e’ =el):

[1:(=2)+1:3] =

Sl

[1:(=2) —1-3] =| -

S-Sk

Sl

Solution Example Problem 8: Gram-Schmidt procedure [2]

Strategy: iterative orthogonalization and normalization, starting from vy | = vy:

Starting vector: vy =vy=(1,-2, n*
. Vil
Normal : = ——=|1(1,-2, 1) |=¢e".
ormalizing vy | e el \/6< ,—2,1) e
Orthogonalizing v : Vo = vy — e (e vy) = (1,1,1)F — €)(0)
. Va1
Normal : f= —— = (1,1,1)"| = e,
ormalizing v | €, Vil \/g< ,1,1) e
Orthogonalizing vs : Vs = vz — e (e, v3) —e{e”? v3)

= (0,1,2)" — &}(0) — =(1,1,1)7 (%%) = (=1,0,1)"



. V3,1
Normalizing v | : e; = Vol = \%(—1,0, D' =e?.

Solution Example Problem 9: Non-orthogonal basis and metric [4]

. 2 . 1 . 1 - . 0 1A A
(@) vi= 0) Vg = 1) = e = 0 =|3Vi] €2 = 1 =|—3V1+ V2.

The vectors v and v, form a basis, because both standard basis vectors €; and €, can be
written in terms of them.

(b) A representation of the vectors x and y as column vectors in the standard basis of R? can
be found as follows:

JR2 = (X,¥)g = xigijyj

=3-4-(-1)+3-2-3+(=4)-2-(=1) +(-4) - 2-3=[=10]. v [= (b)]
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[Total Points for Example Problems: 21]




