
Fakultät für Physik

R: Rechenmethoden für Physiker, WiSe 2021/22

Dozent: Jan von Delft
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Solution Example Problem 1:
√
1− x2 Integrals by trigonometric substitution [3]

(a) Since d
dx

arcsinx = 1√
1−x2 , the primitive function of the integrand is known, and we may

conclude immediately that I(z) = [arcsin x]z0 = arcsin z.

Equivalently, we may compute the integral using the substitution x = sin y, with dx = dy dx
dy

=

dy sin′ y = dy cos y and
√
1− x2 =

√
1− sin2 y = cos y. The new integration boundaries

are found by evaluating y = arcsinx at x = 0 and x = z:

I(z) =

� z

0

dx
1√

1− x2
=

� arcsin z

arcsin 0

dy cos y
1

cos y
=

� arcsin z

0

dy = arcsin z .

Check result: I
(

1√
2

)
= arcsin

(
1√
2

)
= π

4
, since sin

(
π
4

)
= 1√

2
. X

General check:
dI(z)

dz
=

d

dz
arcsin z =

1√
1− z2

. X

(b) We substitute x = 1
a
sin y, with dx = dy dx

dy
= dy 1

a
cos y and

√
1− a2x2 = cos y:

I(z) =

� z

0

dx
√
1− a2x2 = 1

a

� arcsin(az)

arcsin 0

dy cos y cos y ≡ 1

a
Ĩ(b).

We compute the cos2 y integral, with upper limit b = arcsin(az), by integrating by parts,
with u = cos y, v = sin y, u′ = − sin y, v′ = cos y:

Ĩ(b) =

� b

0

dy
u

cos y
v′

cos y
uv−

�
u′v

=
[
cos y sin y

]b
0
−
� b

0

dy [− sin y] sin y︸ ︷︷ ︸
cos2 y−1

= b+ cos b sin b− Ĩ(b)

⇒ Ĩ(b) = 1
2

[
b+ sin b cos b

]
= 1

2

[
b+ sin b

√
1− sin2 b

]
.

We expressed the r.h.s. through sin, because the argument of Ĩ(b) is b = arcsin(az).

⇒ I(z) =
1

a
Ĩ
(
arcsin(az)

)
=

1

2a

[
arcsin(az) + az

√
1− a2z2

]
.

Check result: for a = 1
2
, I
(√

2) = arcsin
(

1√
2

)
+ 1√

2

√
1− 1

2
= π

4
+ 1

2
. X

General check:
dI(z)

dz

(a)
=

1

2

[
1√

1− a2z2
+
√
1−a2z2+az −az√

1− a2z2

]
=
√
1−a2z2 . X
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Solution Example Problem 2: Vector space axioms: rational numbers [3]

(a) First, we show that (Q2,+) forms an abelian group.

(i) Closure holds by definition. X

(ii) Associativity:

[(
x1

x2

)
+

(
y1

y2

)]
+

(
z1

z2

)
=

(
x1 + y1

x2 + y2

)
+

(
z1

z2

)
=

(
x1 + y1 + z1

x2 + y2 + z2

)
=

(
x1

x2

)
+

(
y1 + z1

y2 + z2

)
=

(
x1

x2

)
+

[(
y1

y2

)
+

(
z1

z2

)]
. X

(iii) Neutral element:

(
0
0

)
is the neutral element. X

(iv) Additive inverse:

(
−x1
−x2

)
∈ Q2 is the additive inverse of

(
x1

x2

)
∈ Q2 . X

(v) Commutativity: follows (component-wise) from the commutativity of Q. X

Second, we show that scalar multiplication, · , likewise has the properties required for (Q2,+, ·)

to form a vector space. Since the product of two rational numbers is always rational,

(
p1
q1
· p2
q2

=
(p1p2)

(q1q2)

)
,

closure holds by definition. Moreover:

(vi) Multiplication of a sum of scalars and a vector is distributive:

(λ+ µ) ·
(
x1

x2

)
=

(
(λ+ µ)x1

(λ+ µ)x2

)
=

(
λx1 + µx1

λx2 + µx2

)
= λ

(
x1

x2

)
+ µ

(
x1

x2

)
. X

(vii) Multiplication of a scalar and a sum of vectors is distributive:

λ ·
[(
x1

x2

)
+

(
y1

y2

)]
=

(
λx1 + λy1

λx2 + λy2

)
= λ

(
x1

x2

)
+ λ

(
y1

y2

)
. X

(viii) Multiplication of a product of scalars and a vector is associative:

(λµ) ·
(
x1

x2

)
=

(
λµx1

λµx2

)
= λ

[
µ ·
(
x1

x2

)]
. X

(ix) Neutral element: 1 ·
(
x1

x2

)
=

(
x1

x2

)
. X

Therefore, the triple (Q2,+, ·) represents a Q-vector space.

(b) The set of integers Z does not form a field, since not for each a ∈ Z \ {0} a multiplicative
inverse a−1 ∈ Z exists (e.g. the equation 2 ·a = 1 has no solution within the integers). Hence,
it is also not possible to construct any vector space over the integers.
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Solution Example Problem 3: Real vector space with unconventional composition rules
[Bonus]

First, we show that (Va, ) forms an abelian group.

(i) Closure holds by definition. X

(ii) Associativity: (vx vy) vz = vx+y+a vz = v(x+y+a)+z+a = vx+y+z+2a

= vx+(y+z+a)+a = vx vy+z+a = vx (vy vz) . X

(iii) Neutral element: vx v−a = vx+(−a)+a = vx , ⇒ 0 = v−a . X

(iv) Additive inverse: vx v−x−2a = vx+(−x−2a)+a = v−a = 0 , ⇒ −vx = v−x−2a . X

(v) Commutativity : vx vy = vx+y+a = vy+x+a = vy vx . X

Second, we show that scalar multiplication, · , likewise has the properties required for (Va, , •)
to form a vector space. Closure holds by definition. Moreover:

(vi) Multiplication of a sum of scalars and a vector is distributive:

(γ + λ)•vx = v(γ+λ)x+a(γ+λ−1) = vγx+a(γ−1)+λx+a(λ−1)+a

= vγx+a(γ−1) vλx+a(λ−1) = γ •vx λ•vx . X

(vii) Multiplication of a scalar and a sum of vectors is distributive:

λ•(vx + vy) = λ•vx+y+a = vλ(x+y+a)+a(λ−1) = vλx+a(λ−1)+λy+a(λ−1)+a

= vλx+a(λ−1) vλy+a(λ−1) = λ•vx λ•vy . X

(viii) Multiplication of a product of scalars and a vector is associative:

(γλ)•vx = v(γλ)x+a(γλ−1) = vγ(λx+a(λ−1))+a(γ−1) = γ •vλx+a(λ−1) = γ •(λ•vx) . X

(ix) Neutral element: 1•vx = vx+a(1−1) = vx . X

Therefore, the triple (Va, , ·) represents an R-vector space.

Solution Example Problem 4: Linear independence [3]

(a) The three vectors are linearly independent if and only if the only solution to the equation

0 = a1v1 + a2v2 + a3v3 = a1

(
0
1
2

)
+ a2

(
1
−1
1

)
+ a3

(
2
−1
4

)
, with aj ∈ R, (1)

is the trivial one, a1 = a2 = a3 = 0. The vector equation (1) yields a system of three
equations, (i)-(iii), one for each of the three components of (1), which we solve as follows:

(i) 0a1 + 1a2 + 2a3 = 0
(i)⇒ (iv) a2 = −2a3

(ii) 1a1 − 1a2 − 1a3 = 0
(iv) in (ii)⇒ (v) a1 = −a3

(iii) 2a1 + 1a2 + 4a3 = 0
(iv,v) in (iii)⇒ (vi) 0 = 0
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(i) yields (iv): a2 = −2a3. (iv) inserted into (ii) yields (v): a1 = −a3. Inserting (iv) and (v)
into (iii) yields no new information. There are thus infinitely many non-trivial solutions (one
for every value of a3 ∈ R), hence v1, v2 and v3 are not linearly independent.

(b) The desired vector v′2 = (x, y, z)T should be linearly independent from v1 and v3, i.e. its
components x, y and z should be chosen such that the equation 0 = a1v1+ a

2v′2+a
3v3 has

no non-trivial solution, i.e. that it implies a1 = a2 = a3 = 0:

(i) 0a1 + xa2 + 2a3 = 0
(i)⇒ (iv) choose x = 0 , then a3 = 0.

(ii) 1a1 + ya2 − 1a3 = 0
(iv) in (ii)⇒ (v) choose y = 0 , then a1 = 0.

(iii) 2a1 + za2 + 4a3 = 0
(iv),(v) in (iii)⇒ (vi) choose z = 1 , then a2 = 0.

(i) yields (iv): 2a3 = −xa2; to enforce a3 = 0 we choose x = 0. (iv) inserted into (ii) yields
(v): a1 = −ya2; to enforce a1 = 0 we choose y = 0. (iv,v) inserted into (iii) yields za2 = 0;

to enforce a2 = 0 we choose z = 1. Thus v′2 = (0, 0, 1)T is a choice for which v1, v′2 are

v3 linearly indepedent. This choice is not unique – there are infinitely many alternatives; one
of them, e.g. is v′2 = (0, 1, 0)T .

Solution Example Problem 5: Einstein summation convention [2]

(a) aib
i = bjaj is true , since i and j are dummy variables which are summed over, hence we

may rename as we please:

aib
i =

2∑
i=1

aib
i = a1b

1 + a2b
2 = b1a1 + b2a2 =

2∑
j=1

bjaj = bjaj . X

(b) aiδ
i
jb
j = akb

k is true , since δij is nonzero only for i = j, in which case it equals 1:

aiδ
i
jb
j = a1 (δ

1
1)︸︷︷︸

=1

b1 + a1 (δ
1
2)︸︷︷︸

=0

b2 + a2 (δ
2
1)︸︷︷︸

=0

b1 + a2 (δ
2
2)︸︷︷︸

=1

b2 = a1b
1 + a2b

2 = akb
k . X

(c) aib
jajb

k ?
= akb

lalb
i is false , since the indices i and k are not repeated, i.e. they are not

summed over and hence may not renamed. For example, for i = 1 and k = 2 the left-hand
side, a1(b

1a1 + b2a2)b
2, clearly differs from right-hand side, a2(b

1a1 + b2a2)b
1.

(d) a1aib
1bi + b2aja2b

j = (aib
i)2 is true , since multiplication is associative and commutative

and we may rename dummy indices as we please:

a1aib
1bi + b2aja2b

j=a1b
1aib

i + a2b
2aib

i=(a1b
1 + a2b

2)(aib
i)=(ajb

j)(aib
i)=(aib

i)2. X

In practice, the arguments illustrated above need not be written out explicitly. Relations such as
(a), (b) and (d) may be simply written down without further discussion.
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Solution Example Problem 6: Angle, orthogonal decomposition [2]

(a) cos(∠(a,b)) =
a · b
‖a‖‖b‖

=
3 · 7 + 4 · 1√

9 + 16 ·
√
49 + 1

=
1√
2
⇒ ∠(a,b) =

π

4

(b) c‖ =
(c · d)d
‖d‖2

=
3 · (−1) + 1 · 2

1 + 4

(
−1
2

)
=

1

5

(
1
−2

)

c⊥ = c− c‖ =

(
3
1

)
− 1

5

(
1
−2

)
=

7

5

(
2
1

)
Consistency check: c⊥ · c‖ = 1

25

(
1 · 14− 2 · 7

)
= 0. X

Solution Example Problem 7: Projection onto an orthonormal basis [2]

(a) 〈e′1, e′1〉 = 1
2

[
1·1 + 1·1

]
= 1 , 〈e′1, e′2〉 = 1

2

[
1·1 + (−1)·1

]
= 0 .

〈e′2, e′2〉 = 1
2

[
1·1 + (−1)·(−1)

]
= 1

The two vectors are normalized and orthogonal to each other, 〈e′i, e′j〉 = δij , therefore they

form an orthonormal basis of R2. X

(b) Since the vectors {e′1, e′2} form an orthonormal basis, the component wi of the vector w =
(−2, 3)T = e′iw

i with respect to this basis is given by the projection wi = 〈e′i,w〉 (with
e′i = e′i):

w1 = 〈e′1,w〉 = 1√
2

[
1·(−2) + 1·3

]
= 1√

2
,

w2 = 〈e′2,w〉 = 1√
2

[
1·(−2)− 1·3

]
= − 5√

2
.

Solution Example Problem 8: Gram-Schmidt procedure [2]

Strategy: iterative orthogonalization and normalization, starting from v1,⊥ = v1:

Starting vector: v1,⊥ = v1 = (1,−2, 1)T

Normalizing v1,⊥ : e′1 =
v1,⊥

‖v1,⊥‖
= 1√

6
(1,−2, 1)T = e′1 .

Orthogonalizing v2 : v2,⊥ = v2 − e′1〈e′1,v2〉 = (1, 1, 1)T − e′1(0)

Normalizing v2,⊥ : e′2 =
v2,⊥

‖v2,⊥‖
= 1√

3
(1, 1, 1)T = e′2 .

Orthogonalizing v3 : v3,⊥ = v3 − e′1〈e′1,v3〉 − e′2〈e′2,v3〉

= (0, 1, 2)T − e′1(0)− 1√
3
(1, 1, 1)T

(
3 1√

3

)
= (−1, 0, 1)T
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Normalizing v3,⊥ : e′3 =
v3,⊥

‖v3,⊥‖
= 1√

2
(−1, 0, 1)T = e′3 .

Solution Example Problem 9: Non-orthogonal basis and metric [4]

(a) v̂1 =

(
2

0

)
, v̂2 =

(
1

1

)
; ⇒ ê1 =

(
1

0

)
= 1

2
v̂1 , ê2 =

(
0

1

)
= −1

2
v̂1 + v̂2 .

The vectors v̂1 and v̂2 form a basis, because both standard basis vectors ê1 and ê2 can be
written in terms of them.

(b) A representation of the vectors x̂ and ŷ as column vectors in the standard basis of R2 can
be found as follows:

x̂ = v̂1x
1 + v̂2x

2, x1 = 3, x2 = −4 ⇒ x̂ =

(
2

0

)
3 +

(
1

1

)
(−4) =

(
2

−4

)
.

ŷ = v̂1y
1 + v̂2y

2, y1 = −1, y2 = 3 ⇒ ŷ =

(
2

0

)
(−1) +

(
1

1

)
3 =

(
1

3

)
.

Scalar product: 〈x̂, ŷ〉
R2 =

(
2

−4

)
·
(
1

3

)
= 2 · 1 + (−4) · 3 = −10 .

(c) g11 = 〈v̂1, v̂1〉R2 = 4 , g12 = 〈v̂1, v̂2〉R2 = 2 ,

g21 = 〈v̂2, v̂1〉R2 = 2 , g22 = 〈v̂2, v̂2〉R2 = 2 .

(d) 〈x̂, ŷ〉R2 = 〈x,y〉g = xigijy
j

= 3 · 4 · (−1) + 3 · 2 · 3 + (−4) · 2 · (−1) + (−4) · 2 · 3 = −10 . X [= (b)]

[Total Points for Example Problems: 21]
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