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Solution Example Problem 1: Composition of maps [2]

(a) Since A maps Z to Z and B maps Z to N0, it follows that C = B ◦ A maps Z to N0. The
image of n is C(n) = B(A(n)) = B(n+ 1) = |n+ 1| . To summarize:

C : Z→ N0, n 7→ C(n) = |n+ 1|.

(b) A, B and C are all surjective. A is also injective and bijective. B is not injective, because
any positive n ∈ N0 is the image of two points in Z, B(n) = B(−n) = n. Consequently, B
is not bijective either. It follows that C, too, is not injective and thus not bijective.

Solution Example Problem 2: The abelian group Z2 [3]

(a) The composition table implies the following properties:

(i) Closure: the result of any possible addition is listed in the table and
belongs to the set {0, 1}. X

0 1

0 0 1
1 1 0

(i) Associativity:

(1 0) 0 = 1 0 = 1
?
= 1 (0 0) = 1 0 = 1 X

(0 1) 0 = 1 0 = 1
?
= 0 (1 0) = 0 1 = 1 X

(1 1) 0 = 0 0 = 0
?
= 1 (1 0) = 1 1 = 0 X

(1 0) 1 = 1 1 = 0
?
= 1 (0 1) = 1 1 = 0 X

(0 1) 1 = 1 1 = 0
?
= 0 (1 1) = 0 0 = 0 X

(0 0) 1 = 0 1 = 1
?
= 0 (0 1) = 0 1 = 1 X

(ii) The neutral element is 0, since adding it yields no change: 0 0 = 0, 0 1 = 1.

(iii) For every element in the group, there is exactly one inverse, since every row of the table
contains exactly one 0.

(iv) The group is abelian since the table is symmetric with respect to the diagonal.

(b) The group ({+1,−1}, • ), with standard multiplication as group ope-
ration, is isomorphic to Z2, since their composition tables have the
same structure if we identify +1 with 0 and −1 with 1.

• +1 −1

+1 +1 −1
−1 −1 +1
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Solution Example Problem 3: Permutation groups [4]

(a) The entries of the composition table can found by evaluating the image of 123 under P

followed by P ′. For example 123
[213]7−→ 213

[321]7−→ 231, hence [321] ◦ [213] = [231].

P ′ ◦ P [123] [231] [312] [213] [321] [132]

[123] [123] [231] [312] [213] [321] [132]

[231] [231] [312] [123] [321] [132] [213]

[312] [312] [123] [231] [132] [213] [321]

[213] [213] [132] [321] [123] [312] [231]

[321] [321] [213] [132] [231] [123] [312]

[132] [132] [321] [213] [312] [231] [123]

(b) The neutral element is the permutation that ‘does nothing’, [123] . Each element has a unique
inverse, since every row and column contains the neutral element exactly once.

(c) The composition table is not symmetric, P ′ ◦ P 6= P ◦ P ′, hence S3 is not an abelian group.
For example, [312] ◦ [213] = [132], whereas [213] ◦ [312] = [321].

Solution Example Problem 4: Algebraic manipulations with complex numbers [4]

(a) z + z̄ = x+ iy + x− iy = 2x = 2Re(z) ,

(b) z − z̄ = x+ iy − (x− iy) = i2y = i2Im(z) ,

(c) z · z̄ = (x+ iy)(x− iy) = x2 + y2 ,

(d)
z

z̄

(c)
=
z · z
z̄ · z

=
(x+ iy)2

x2 + y2
=

x2 − y2

x2 + y2
+ i

2xy

x2 + y2
,

(e)
1

z
+

1

z̄
=
z̄ + z

z · z̄
(a),(c)
=

2x

x2 + y2
,

(f)
1

z
− 1

z̄
=
z̄ − z
z · z̄

(b),(c)
= i

(−2y)

x2 + y2
,

(g) z2 + z = (x+ iy)2 + (x+ iy) = (x2 − y2 + x) + i(2xy + y) ,

(h) z3 = (x+ iy)3 = (x3 + 3x2iy + 3x(iy)2 + (iy)3 = (x3 − 3xy2) + i(3x2y − y3) .

Solution Example Problem 5: Multiplication of complex numbers – geometrical inter-
pretation [4]
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(a) With zj = (ρj cosφj, ρj sinφj) and the given trigonometric identities, we have

z3 = z1z2 = ρ1(cosφ1+i sinφ1)ρ2(cosφ2+i sinφ2)

= ρ1ρ2 [(cosφ1 cosφ2 − sinφ1 sinφ2)

+i (sinφ1 cosφ2 + cosφ1 sinφ2)]

= ρ1ρ2 [cos (φ1+φ2) + i sin (φ1+φ2)]

≡ ρ3 [cosφ3+i sinφ3]

We read off: ρ3 = ρ1ρ2, φ3 = (φ1+φ2) mod(2π). X

1φ

2φ
3φ

1z

2z

)zRe(

)zIm(
2z1z=3z

1ρ

2ρ3ρ

(b) The complex number z = x + iy is represented in the complex plane by the Cartesian coor-
dinates z 7→ (x, y), or the polar coordinates ρ = |z| =

√
x2+y2, φ = arg(z) = arctan

(
y
x

)
.

The latter formula determines φ only modulo π; to uniquely fix φ ∈ [0, 2π), we identify the
quadrant containing the point (x, y).

z1 =
√

3+i 7→ (
√

3, 1) ρ1 =
√

3+1 = 2 φ1 = arctan
(

1√
3

)
= π

6

z2 = −2+2
√

3i 7→ (−2, 2
√

3) ρ2 =
√

12+4 = 4 φ2 = arctan
(−2√3

2

)
= 2π

3

z3 = z1z2 = (
√

3+i)(−2+2
√

3i) ρ3 =
√

16 · 3+16 = 8 φ3 = arctan
(

4
−4
√
3

)
= 5π

6

= −4
√

3+4i 7→ (−4
√

3, 4)

z4 = 1
z1

= 1√
3+i

= (
√
3−i)

(
√
3+i)(

√
3−i) ρ4 = 1

4

√
3+1 = 1

2
φ4 = arctan

(−1/4√
3/4

)
= 11π

6

=
√
3
4
− 1

4
i 7→ (

√
3
4
,−1

4
)

z5 = z̄1 =
√

3− i 7→ (
√

3,−1) ρ5 =
√

3+1 = 2 φ5 = arctan
(−1√

3

)
= 11π
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As expected, we find:
ρ3 = ρ1ρ2

φ3 = φ1+φ2

ρ4 = 1/ρ1

φ4 = −φ1mod(2π)

ρ5 = ρ1

φ5 = −φ1mod(2π)

1z

2z

)zRe(

)zIm(2z1z=3z

6π/2

4
8

6π/5

1z
1=4z

1z= ¯5z

6π/11

3π/2

Solution Example Problem 6: Differentiation of trigonometric functions [1]

Using d
dx

sinx = cosx, d
dx

cosx = − sinx, and sin2 x+ cos2 x = 1, we readily find

(a) d
dx

tanx = d
dx

sinx
cosx

= cosx
cosx

+ sin2 x
cos2 x

= 1 + tan2 x , X

= cos2 x+sin2 x
cos2 x

= 1
cos2 x

= sec2 x .X

(b) d
dx

cotx = d
dx

cosx
sinx

= − sinx
sinx
− cos2 x

sin2 x
= −1− cot2 x , X

= − sin2 x−cos2 x
sin2 x

= − 1
sin2 x

= − csc2 x .X
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Solution Example Problem 7: Differentiation of powers, exponentials, logarithms [2]

(a) f ′(x) =
1

2
√
2x3

(b) f ′(x) =
1

2

1

x1/2(x+1)1/2
− 1

2

x1/2

(x+1)3/2
=

1

2

1

x1/2(x+1)3/2

(c) f ′(x) = ex(2x− 1) (d) f ′(x) = d
dx

eln 3x = d
dx

ex ln 3 = ex ln 3 ln 3 = 3x ln 3

(e) f ′(x) = lnx+
x

x
= lnx+1 (f) f ′(x) = ln(9x2)+x 1

9x2
18x = ln(9x2) + 2

Solution Example Problem 8: Differentiation of inverse trigonometric functions [4]

The trigonometric functions f = sin, cos and tan are all periodic, hence their inverses, f−1 =
arcsin, arccos and arctan, each have infinitely many branches, one for each x-domain of f on
which a bijection can be defined. On any given branch, the slope of f−1 has the same sign as the
slope of f . We consider representative examples of such branches, and for each case compute the
derivative of f−1 using (f−1)′(x) = 1

f ′(y)|y=f−1(x)
.

(a) arcsin is the inverse function of sin, with sin(arcsinx) = x. We
consider two branches of arcsinx, with slopes of opposite sign.
I: The function sin : (−1

2
π, 1

2
π)→ (−1, 1) has positive slope,

sin′ x = cosx, and inverse arcsin : (−1, 1)→ (−1
2
π, 1

2
π).

II: The function sin : (1
2
π, 3

2
π)→ (1,−1) has negative slope,

sin′ x = cosx, and inverse arcsin : (−1, 1)→ (3
2
π, 1

2
π).

Using upper/lower signs for branch I/II, we obtain
2 1 1 2

3
2

2

1

1
2

I
xarcsin

xsin

3
2

arcsin′ x =
1

sin′(y)|y=arcsinx

=
1

cos(arcsinx)

=
±1√

1− sin2(arcsinx)
=

±1√
1− x2

.

Unless stated otherwise, the notation arcsin refers to branch I.
2 1 1 2

3
2

2

1

1
2

3
2

II
xarcsin

xsin

(b) arccos is the inverse function of cos, with cos(arccosx) = x. We
consider two branches of arccos, with slopes of opposite sign.
I: The function cos : (0, π)→ (1,−1) has negative slope,
cos′ x = − sinx, and inverse arccos : (−1, 1)→ (π, 0).
II: The function cosx : (−π, 0)→ (−1, 1) has positive slope,
cos′ x = − sinx, and inverse arccos : (−1, 1)→ (−π, 0).
Using upper/lower signs for branch I/II, we obtain

2 1 1 2

2

1

1
2

I

xcos

xarccos

arccos′ x =
1

cos′(y)|y=arccosx

=
−1

sin(arccosx)

=
∓1√

1− cos2(arccosx)
=

∓1√
1− x2

.

Unless stated otherwise, the notation arccos refers to branch I.

2 1 1 2

2

1

1
2

II

xcos

xarccos
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(c) arctan is the inverse function of tan, with tan(arctanx) = x. The
slope of tan, given by tan′ x = sec2 x, is positive for every branch.
We consider only the branch centered on zero, tan: (−π

2
, π
2
)→R,

with inverse arctan: R→ (−π
2
, π
2
):

arctan′ x =
1

tan′(y)|y=arctanx

=
1

sec2(arctanx)

=
1

1 + tan2(arctanx)
=

1

1 + x2
.

2 2

2

2

xtan

xarctan

Solution Example Problem 9: Integration by parts [6]

(a) I(z) =

� z

0

dx
u

x
v′

e2x =
[u
x

v
1
2
e2x
]z
0
−
� z

0

dx
u′

1 ·
v

1
2
e2x = 1

2
ze2z − 1

4

[
e2z − 1

]
I ′(z) =

[
1
2
(1 + 2z)− 1

4
2
]

e2z
X
= ze2z I(1

2
)

X
= 1

4

Note the cancellation pattern: I ′ = u′v + uv′ − u′v = uv′. [Similarly for (c,d).]

(b) I(z) =

� z

0

dx
u

x2
v′

e2x =
[ u
x2

v
1
2
e2x
]z
0
−
� z

0

dx
u′

2x
v

1
2
e2x

The integral on the right can be done by integrating by parts a second time, see (a):

I(z)
(a)
= 1

2
z2e2z − 1

2
ze2z + 1

4

[
e2z − 1

]
I ′(z) =

[
1
2
(2z + 2z2)− 1

2
(1 + 2z) + 1

4
2
]

e2z
X
= z2e2z I(1

2
)

X
= e

8
− 1

4

Since we integrated by parts twice, I ′ yields more involved cancellations than for (a).

(c) I(z) =

� z

0

dx
u

(lnx) ·
v′

1 =
[ u

(lnx)
v

x
]z
0
−
� z

0

dx
u′

1
x

v

x = (ln z)z − z

I ′(z) = 1
z
z + ln z − 1

X
= ln z I(1)

X
= −1

(d) I(z) =

� z

0

dx
u

(lnx) ·
v′

1√
x

=
[ u

(lnx)
v

2
√
x
]z
0
−
� z

0

dx
u′

1
x

v

2
√
x = (ln z)2

√
z − 4

√
z

To evaluate [ln(x)
√
x]x=0, we used the rule of L’Hôpital (see sheet 01, optional problems

3,4): [
(lnx)

√
x
]
x=0

= lim
x→0

lnx

x−1/2
= lim

x→0

d
dx

lnx
d
dx
x−1/2

= lim
x→0

x−1

−1
2
x−3/2

= lim
x→0

[
−2x1/2

]
= 0 .

Thus the divergence of ln(x) for x→ 0 is so slow that
√
x suppresses it.

I ′(z) = 2
[
1
z

√
z + (ln z)1

2
1√
z

]
− 41

2
1√
z

X
= (ln z) 1√

z
I(1)

X
= −4

(e) I(z) =

� z

0

dx
u

sinx
v′

sinx =
[ u

sinx
v

(− cosx)
]z
0
−
� z

0

dx
u′

cosx
v

(− cosx)︸ ︷︷ ︸
sin2 x−1
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Reexpress the integral on the right in terms of I(z),

I(z) = − sin z cos z − I(z) +

� z

0

dx 1 , and solve for I(z):

I(z) = 1
2
(− sin z cos z + z)

I ′(z) = 1
2
(− cos2 z + sin2 z + 1)

X
= sin2 z I(π)

X
= π

2

(f) I(z) =

� z

0

dx
u

sin3 x
v′

sinx =
[ u

sin3 x
v

(− cosx)
]z
0
−
� z

0

dx
(
3 sin2

u′

x cosx
) v

(− cosx)︸ ︷︷ ︸
sin2 x−1

Reexpress the integral on the right in terms of I(z),

I(z) = − sin3 z cos z − 3
[
I(z)−

� z

0

dx sin2 x
]
, solve for I(z), and use (e):

I(z)
(e)
= 1

4

[
− sin3 z cos z + 3

2
(− sin z cos z + z)

]
I ′(z) = 1

4

[
−3 sin2 z cos2 z︸ ︷︷ ︸

1−sin2 z

+ sin4 z + 3
2
(− cos2 z + sin2 z + 1)

]
X
= sin4 z I(π)

X
= 3π
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Solution Example Problem 10: Integration by substitution [4]

(a) I(z) =

� z

0

dx x cos(x2 + π) [y(x) = x2, dy = 2x dx]

= 1
2

� y(z)

y(0)

dy cos(y + π) = 1
2

sin(y + π)
∣∣∣z2
0

= 1
2

sin(z2 + π)

I ′(z) = 1
2

cos(z2 + π) d
dz
z2

X
= cos(z2 + π) z I(

√
π
2
)

X
= −1

2

(b) I(z) =

� z

0

dx sin3 x cosx [y(x) = sin x, dy = cosx dx]

=

� y(z)

y(0)

dy y3 = 1
4
y4
∣∣∣sin z
0

= 1
4

sin4 z

I ′(z) = sin3 z d
dz

sin z
X
= sin3 z cos z I(π

4
)

X
= 1

16

(c) I(z) =

� z

0

dx sin3 x =

� z

0

dx sinx
[
1− cos2 x

]
[y(x) = cos x, dy = − sinx dx]

= −
� y(z)

y(0)

dy (1− y2) = −(y − 1
3
y3)
∣∣∣cos z
1

= − cos z + 1
3

cos3 z + 2
3

I ′(z) = sin z + cos2 z(− sin z) = sin z(1− cos2 z)
X
= sin3 z I(π

3
)

X
= 5

24

(d) I(z) =

� z

0

dx cosh3 x =

� z

0

dx coshx
[
1 + sinh2 x

]
[y(x) = sinh x, dy = coshxdx]

=

� y(z)

y(0)

dy (1 + y2) = (y + 1
3
y3)
∣∣∣sinh z
0

= sinh z + 1
3

sinh3 z

I ′(z) = cosh z + sinh2 z cosh z = cosh z(1 + sinh2 z)
X
= cosh3 z I(ln 2)

X
= 57

64
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(e) I(z) =

� z

0

dx
√

1 + ln(x+ 1) 1
x+1

[
y(x) = ln(x+ 1), dy = 1

1+x
dx
]

=

� y(z)

y(0)

dy
√

1 + y = 2
3
(1 + y)3/2

∣∣∣ln(z+1)

0
= 2

3

[(
1 + ln(z + 1)

)3/2 − 1
]

I ′(z) =
(
1 + ln(z + 1)

)1/2 d
dz

ln(z + 1)
X
=
√

1 + ln(z + 1) 1
z+1

I(e3−1)
X
= 14

3

(f) I(z) =

� z

0

dx x3e−x
4

[y(x) = x4, dy = 4x3 dx]

= 1
4

� y(z)

y(0)

dy e−y = −1
4
e−y
∣∣∣z4
0

= 1
4

[
1− e−z

4
]

I ′(z) = 1
4
e−z

4 d
dz
z4

X
= e−z

4

z3 I(
4
√

ln 2)
X
= 1
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[Total Points for Example Problems: 34]
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